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The cause of Alzheimer’s disease (AD) remains uncertain. The accumulation of amyloid
peptides (Aβ) is the main pathophysiological hallmark of the disease. Spatial deficit
is an important initial sign of AD, while other types of memory impairments that
appear in later stages. The Barnes maze allows the detection of subtle alterations in
spatial search by the analysis of use of different strategies. Previous findings showed
a general performance deficit in this task following long-term (35 days) infusion of
Aβ, which corresponds to the moderate or severe impairments of the disease. In the
present study, we evaluated the effects of a low-dose 15-day long treatment with Aβ

peptides on spatial and non-spatial strategies of rats tested in the Barnes maze. Aβ

peptides (0.5 µL/site/day; 30 pmoL solution of Aβ1–40:Aβ1–42 10:1) or saline were
bilaterally infused into the CA1 (on the first treatment day) and intraventricularly (on the
following 15 days) in 6-month-old Wistar male rats. Aβ infusion induced a deficit in the
performance (increased latency and distance traveled to reach the target compared
to saline group). In addition, a significant association between treatment and search
strategy in the retrieval trial was found: Aβ group preferred the non-spatial search
strategy, while saline group preferred the spatial search. In conclusion, the protocol
of Aβ infusion used here induced a subtle cognitive deficit that was specific to spatial
aspects. Indeed, animals under Aβ treatment still showed retrieval, but using non-spatial
strategies. We suggest that this approach is potentially useful to the study of the initial
memory deficits in early AD.
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INTRODUCTION

Alzheimer disease (AD) is a neurodegenerative disorder characterized by atypical neural activity,
dysfunction and loss of synapses and neurons, accompanied by progressive cognitive decline (Braak
et al., 1992; West et al., 1994; Eustache et al., 2004; Sadek et al., 2004). The main pathophysiological
hallmarks of AD are amyloid plaques and neurofibrillary tangles in the brain tissue (Serrano-Pozo
et al., 2011). The exact cause of AD remains unknown, although the accumulation of amyloid
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peptides has been suggested as the cause of cytotoxicity. This
accumulation is the basis of the amyloid cascade hypothesis for
AD and precedes the first manifestations of cognitive decline
(Braak and Braak, 1991; Hardy and Selkoe, 2002; Desikan et al.,
2013; Sperling et al., 2011, 2014).

Recent studies have investigated human spatial learning and
memory in virtual reality environments (Iaria et al., 2009; Head
and Isom, 2010; Plancher et al., 2010). This approach has been
useful to show age-related cognitive hippocampal dysfunctions,
similarly to studies in rodent models (McNaughton et al., 1989;
Poucet et al., 1991; McDonald and White, 1993; Pouzet et al.,
2002). The results highlight the importance of protocols for early
detection of such impairment (Foster et al., 2012). Further, spatial
deficits detected in navigation tasks have been proposed as an
important initial sign of AD, and this feature distinguishes this
condition from other types of age-related cognitive impairments
(Lithfous et al., 2013). In addition, deficits in other types of
memory usually arise in later stages of the disease progression
(Sá et al., 2012; Tarawneh and Holtzman, 2012).

Spatial tasks have been employed to investigate cognitive
decline in rodents, and some of the tasks allow the detection of
subtle changes in spatial behavior. This feature is relevant to the
evaluation of mild hippocampal impairment, such as the initial
degenerative process in animalmodels of AD. The Barnesmaze is
as spatial task in which the animals are trained to reach a hidden
shelter guided by visual cues (Barnes, 1979; Barnes et al., 1980,
1989, 1990; Harrison et al., 2006; O’Leary and Brown, 2012).
In this task, memory is evaluated by latency and distance to
reach the target, time in target quadrant and number of errors
(Sunyer et al., 2007; Attar et al., 2013; Rojanathammanee et al.,
2013). In addition, subtle alterations in spatial search can be
detected by the analysis of different search strategies to solve
the task (Harrison et al., 2006). This behavioral task has been
used to investigate spatial memory impairment in models of
neurodegenerative conditions, including AD (Pompl et al., 1999;
Reiserer et al., 2007; O’Leary and Brown, 2009).

Brain infusion of Aβ peptides is a well recognized rodent
model of AD (Kowall et al., 1991; Nitta et al., 1994; Frautschy
et al., 1996; Yamada and Nabeshima, 2000; Kang et al.,
2015). However, most of the Aβ infusion studies focus the
intermediate or late stages of the disease (Dickey et al., 2003,
2004; Palop et al., 2003; Blanchard et al., 2008, 2009), an
approach that would diminish the contribution to the efficiency
of potential neuroprotective treatments. In general, the protocols
are conducted with large concentrations or long treatment
durations (Han et al., 2011; Tran et al., 2011; Cioanca et al., 2013).
To our knowledge, only one study investigated the effects of Aβ

treatment in mice tested in the Barnes maze. This work showed
a general performance deficit following long-term (35 days)
infusion, without evaluation of different strategies (Morzelle
et al., 2016). Here, we used a protocol of Aβ infusions that induces
subtle memory deficits, which would be similar to initial stages in
humans. The effects of this treatment were investigated in Barnes
maze general performance and use of spatial or non-spatial
search strategies.We hypothesize that the protocol of Aβ infusion
used here will induce subtle deficits in the maze performance,
specifically in the use of spatial strategies.

MATERIALS AND METHODS

Animals
Seventeen six-month-old maleWistar rats (350–500 g) were kept
in four or five animals per cage (30 × 37 × 16 cm) under
controlled conditions of temperature (25 ± 1◦C) and luminosity
(12/12 h light/dark cycle, with lights turned on 7:00 a.m. and
turned off 7:00 p.m.). Food and water were provided ad libitum.
All rats were handled during 3 days, at least 5 min per day,
previously to the beginning of the experiments. All procedures
were in accordance to the Brazilian Law for the use of animals in
scientific research (law 11.794) and approved by the local ethics
committee (CEUA/UFRN, protocol no. 50/2014). All efforts were
made to minimize pain, suffering or animal discomfort. Before
the procedures, animals were allocated in the experimental room
for habituation. The behavioral experiments were conducted in
the mornings, beginning at 8 a.m.

Stereotaxic Surgery
After anesthesia with ketamine (100 mg/kg) and xylazin
(50 mg/kg), the animals were submitted to stereotaxic surgery
and cannulas were implanted bilaterally into dorsal hippocampus
subregion CA1 (AP: −4.2 mm; LL: ±3.0 mm and DV: −2.5 mm)
and one in the lateral ventricle (i.c.v.; AP:−1.0mm; LL:±1.8mm
and DV: −3.3 mm). Right or left hemispheric location was
randomized among rats. The coordinates were chosen according
to a rat brain atlas (Paxinos and Watson, 2007) and adjusted
considering age. The microinjections were performed with an
infusion pump and a 10 µL microsyringe (Hamilton Company,
Reno, NV, USA) connected to a 26-gauge steel needle into the
brain sites.

Beta-Amyloid (Aβ) Infusion
Animals received infusions (0.5 µL at the rate of 1 µL/min) of
Aβ or vehicle i.c.v. and CA1 (bilateral) on the first day, followed
by 14 daily i.c.v. infusions. Animals in the Aβ group (n = 9)
received a 1:10 solution of 1–42 and 1–40 Aβ peptides (Iwatsubo
et al., 1994; Suzuki et al., 1994; Gravina et al., 1995), equivalent
to 30 pmoL per day, diluted in 0.9% saline. Before the beginning
of infusions, each Aβ peptide solution was separetaly heated at
37◦C for 3 days (Pike et al., 1991). Afterwards, 1–42 and 1–40 Aβ

peptides (Sigma Chemical Co. St. Louis, MO, USA) were put
together and left at 37◦C for 24 h. Control animals receive the
same volume of saline (n = 5). Two saline and one Aβ animals
were excluded from the analyses because they did not reach the
target in the probe session.

Barnes Maze
The Barnes maze is a spatial learning apparatus in which the
animals search for an escape box (Barnes, 1979). The maze is a
dark circular platform (120 cm diameter), elevated 90 cm from
the floor, containing 20 holes (10 cm in diameter) disposed
circularly at the edge of the platform. One of the holes (target
hole) is connected to an escape box (10 × 10 × 15 cm). There
were visual cues on the walls, located 50 cm distant from the
apparatus. During the behavioral sessions, the lights were turned
on (420 lux) to increase escape motivation. All experimental
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sessions were recorded by a video camera placed above the
apparatus and analyzed with a video-tracking software (ANY-
maze, Stoelting, USA).

In the habituation session, the animals were allowed to freely
explore the apparatus during 150 s or until the entrance in
escape box. Afterwards, the animals were submitted to a set of
four daily training sessions, each one with two trials. The inter-
trials interval was the duration of cleaning the apparatus (with
a 5% alcohol solution). The first training session was performed
immediately after the habituation. All trials lasted 300 s or until
the animals reached the escape box. However, if the rats did not
reach the target hole, the experimenter gently guided the animal
towards it at the end of the trial. After reaching the escape box,
animals remained inside for 60 s. The escape box is always located
in the same place during the training set, but not during the
previous habituation session. Retrieval of spatial learning was
evaluated in the probe session, which was conducted 3 days after
the last training day. The procedure was similar to the training
trials, but the escape box was removed. At the beginning of each
session, the animals were placed in an opaque container at the
center of the maze. The container was then pulled up, and the
animal was released to explore the maze. Between animals, the
maze was cleaned and rotated to avoid odor cues (Figure 1).

The parameters analyzed were the percentage of time in the
quadrants of the maze, the latency to reach the target hole, the
distance traveled until reaching the target hole and the number
of errors. We also analyzed search strategies (the kind of search
performed to reach target), and analysis was conducted on the
basis of previous studies (Bach et al., 1995; Harrison et al., 2006),
with minor modifications. The search strategies were categorized
into three types: spatial (or direct), serial or random (the two
latter were considered non-spatial strategies). One search was
computed each time the animal visited the target hole in the
probe trial. The direct (spatial) strategy was computed when
the animal moved directly to the target hole or to an adjacent
hole before visiting the target hole. The serial strategy was
computed when there were visits to at least three sequential
holes in clockwise or counter-clockwise direction previously to
the visit to the target hole. The random strategy was computed
when at least three visits before the target hole happened in an
unsystematic manner, i.e., the animal visited non-adjacent holes
before visiting the target. The type of strategy was analyzed by
the following approaches: (1) initial and last search (the strategy
used to reach the target for the first and the last time in the
probe trial); (2) total preference in the probe trial (the percent
of use of each strategy across the whole probe trial (the number
of times the animal used a certain strategy/total number of
searches); and (3) the mean percentage of preferred strategy in
each group.

Data Analyses
Weused Shapiro-Wilk test to check data distribution.We applied
one-way ANOVA, one- or two-sample t-tests according to the
parameter analyzed. For analyses across sessions, we performed
repeated-measures ANOVA. Bonferroni post hoc test was applied
when necessary. Fisher’s exact test (x2) was used for the analysis
of the association between treatment (Aβ/saline) and preferred

strategy, as well as the magnitude of this association in 95%
confidence interval (odds ratio, OR, 95% CI). Data are shown
as mean ± SEM. We determined the level of significance at
p < 0.05.

RESULTS

The latency to reach the escape hole diminished over
training sessions in both groups, indicating similar learning
curves (F(1.7,21.2) = 16.688, p < 0.001, Bonferroni post hoc;
Figure 2A). Indeed, we did not find differences between
groups (F(1,12) = 1.592, p = 0.231) or factors interaction
(F(1.7,21.2) = 2.103, p = 0.151). However, in the probe trial, Aβ

group displayed longer latency to reach the target hole for the
first time (t(12) = −2.679, p = 0.02; Figure 2B).

We observed the same pattern of results for the distance
traveled until the escape hole across the training sessions
(session effect [F(3,36) = 9.638, p < 0.001], without group effect
[F(1,12) = 1.005, p = 0.336] or interaction [F(3,36) = 0.509,
p = 0.678], Bonferroni post hoc; Figure 2C). On the probe trial,
we found that Aβ groups showed longer distance traveled until
the target than saline (t(12) = −2.636, p = 0.022; Figure 2D).

The number of errors reduced across the training sessions
for both groups (F(3,36) = 5.419, p = 0.004, Bonferroni post
hoc; Figure 3A). In addition, we did not find differences
between groups (F(1,12) = 0.573, p = 0.464) or factors interaction
(F(3,36) = 0.218, p = 0.883). Likewise, on the probe trial, there
was no difference between the groups (t(12) = −0.985, p = 0.344;
Figure 3B).

Additionally, both groups showed increased time in the target
quadrant across trainings (F(3,36) = 14.954, p < 0.001, Bonferroni
post hoc; Figure 4A), without treatment effect (F(1,12) = 0.416,
p = 0.531) or factors interaction (F(3,36) = 0.946, p = 0.429). On the
probe trial, there was no difference between groups (t(12) = 0.736,
p = 0.476; Figure 4B).

We found a significant effect of treatment on the search
strategy in the probe trial. Saline group preferred the spatial
strategy as initial choice compared to Aβ group (Fisher’s exact
test, x2(1) = 95.998, p < 0.001; Figure 5A). The probability that
saline group had used the spatial strategy was 32 times higher
than Aβ group (OR 32.36, 95% CI: 14.61–71.69).

Considering the search strategies in the whole probe session,
the Aβ group used less spatial search strategy compared to saline
(Fisher’s exact test, x2(1) = 20.276, p < 0.001; OR 5.091, 95% IC
2.456–10.553, Figure 5B). In addition, the analysis of groups
by strategy in the whole probe session (including animals that
preferred random or serial strategies and had no preference into
the non-spatial category), Aβ group sustains the preferential
use of non-spatial search strategies compared to saline animals
(Fisher’s exact test, x2(1) = 7.574, p = 0.009; OR 2.364, 95% IC
1.272–4.392; Figure 5C).

We also analyzed the last choice, i.e., the strategy used to
reach the target for the last time in the probe session. We found
that the Aβ group persevered on non-spatial strategies, while
saline-treated animals changed preference towards the end of
the probe session. Indeed, within subjects analyses (first vs. last
choices) confirmed the change of preference in saline group
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FIGURE 1 | Experimental design. Rats were infused with saline or Aβ solution for 15 days (D0 to D14); at D0, CA1 and I.C.V. infusion; from D1 to D11, only I.C.V.
infusion. After the 11th infusion, the rats were submitted to the habituation phase (Hab), followed by acquisition phase (two series of four two-trial daily trainings,
Tr1 to Tr4, D11 to D14). On the 3rd day after the last training day, they were tested for task retrieval (90 s probe trial, D17). The perfusion for immunohistochemistry
was conducted 1 h after the probe trial.

(x2(1) = 72.000, p< 0.001; OR, 16.000, 95% CI: 8.002–31.994), and
the persistence of preference for non-spatial strategies in the Aβ

group (x2(1) = 4.391, p = 0.056; OR, 0.438, 95%CI: 0.200–0.961). In
addition, the use of strategies as last choice did not differ between
groups (x2(1) = 3.196, p = 0.082; OR 2.045, % CI: 0.924–4.529).
In Table 1, we show the percent of animals that show spatial
and non-spatial preferences for the first three and the last choice
in the probe session. We show four choices because it was the
minimum number of strategies used by a subject in the probe
session.

The comparison of means of percentage of strategies in the
groups in the whole probe session showed that saline group
used possible search strategies similarly (spatial, t(4) = −0.636,
p = 0.559; non-spatial, t(4) = 0.685, p = 0.531), while the Aβ group
preferred non-spatial search strategies (spatial, t(8) = −3.020,
p = 0.017; non-spatial, t(8) = 3.121, p = 0.014; Figure 5D).

DISCUSSION

We observed that both groups showed reduced distance and
latency to reach target and number of errors, and increased
percent time in the target quadrant across the trainings,
indicating that all the animals learned the task (Barnes, 1979;
Pompl et al., 1999). Moreover, we found that animals that
received Aβ peptides showed impairments when the latency and
distance to reach the target were analyzed in the probe trial.

However, no differences were found to the other performance
parameters (number of errors and percent time in the target
quadrant) in the probe session, suggesting that Aβ animals
showed some extent of retrieval. In addition, we found
that Aβ-infused animals preferentially used non-spatial search
strategies, corroborating an impairment in spatial retrieval,
despite the performance was not completely impaired. Finally,
there were no differences in the distance traveled in the maze
between saline and Aβ groups, indicating that Aβ peptides
infusion did not modify motor activity (data not shown).

Our data are in line with previous studies that suggest that the
amyloid aggregation impairs hippocampal connectivity, which is
necessary for spatial navigation and for strategy choice (Pouzet
et al., 2002; Savonenko et al., 2005; O’Leary and Brown, 2009).
In the present study, when the search strategies to reach target
were analyzed, saline group preferred the spatial strategy to
the non-spatial strategy, while Aβ animals had the opposite
preference. This outcome suggests that the deficit promoted by
beta-amyloid was revealed by the kind of search navigation,
which has modified the spatial performance. Of note, when the
analysis of search strategies was performed for mean percentage
of search strategy within the groups, Aβ animals showed
increased preference for non-spatial search strategies. However,
saline animals did not show differences from chance for both
strategies. This apparently contradictory outcome might be due
to a tendency to randomization of safe place search towards
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FIGURE 2 | Latency and distance until escape in training (TR) sessions and until target hole in probe trial. (A,C) Effect of session for both groups (repeated measures
two-way ANOVA, Bonferroni post hoc); ∗p < 0.05 compared to TR1. (B,D) Unpaired t-test; ∗p < 0.05 compared to SALINE. Mean ± SEM.

FIGURE 3 | Number of errors in training sessions (TR, A) and probe trial (B). (A) Effect of session for both groups (repeated measures two-way ANOVA, Bonferroni
post hoc); ∗p < 0.05 compared to TR1. (B) Unpaired t-test; p > 0.05. Mean ± SEM.

the end of the session, because the escape box is no longer
present (Harrison et al., 2006). Indeed, in line with previous
findings, saline animals changed preference across the probe
session, and preferred spatial strategies as first choice as opposed
to non-spatial strategies as last choice. Conversely, Aβ animals
persevered on the non-spatial strategies, showing preference for
this type of navigation towards the end of the probe session as
well (see Table 1).

The Barnes maze has been used in studies of spatial learning
and memory in transgenic models of AD (Pompl et al., 1999;
Reiserer et al., 2007; O’Leary and Brown, 2009). Pompl et al.
(1999) suggested that transgenic animals have difficulty to use
spatial reference memory to reach a specific place (Chapman
et al., 1999; Chen et al., 2000; Janus, 2004). This outcome
resembles the memory deficit found in AD patients (Kaskie
and Storandt, 1995) due to hippocampal function impairment

(McNaughton et al., 1989; Poucet et al., 1991; McDonald
and White, 1993). Rodriguez et al. (2013) demonstrated that
APOE4 (an AD risk allele) mice showed delayed learning and
impaired retrieval in the Barnes task. These animals also showed
reduction in length and density of dendritic spines in the medial
entorhinal cortex, and these alterations were related to early-
impaired spatial cognition. Prut et al. (2007) showed that the AD
transgenic mice APP23 had increased latency to reach the target
and number of errors throughout the trainings in the Barnes
maze, along with plaque deposition in the hippocampus and
neocortex. Moreover, these animals had delays to switch from
non-spatial to spatial strategies in the course of training. In the
present study, we did not observe alterations during the training
sessions of the Barnes maze, probably due to the mild nature of
the cognitive deficit induced by our protocol. Indeed, we only
observed spatial retrieval impairment in the probe trial.
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FIGURE 4 | Percent time in target quadrant in training sessions (TR, A) and probe trial (B). (A) Effect of session for both groups (repeated measures two-way
ANOVA, Bonferroni post hoc); ∗p < 0.05 compared to TR1. (B) Unpaired t-test; p > 0.05. Mean ± SEM.

FIGURE 5 | Percentage of strategy use at initial choice (A) and in the total (B,C) probe trial. (A,B) Saline had increased initial (A) and total (B) spatial strategy choice
compared to Aβ group. (C) The preferential use of spatial strategy by saline is sustained when spatial, non-spatial and without preference are grouped into
non-spatial strategy. (A–C) Data are percentage of strategy compared between the groups. Fisher’s exact test, x2, p < 0.05. (D) Percentage of spatial and
non-spatial strategies (mean + SEM) differed from chance for Aβ, but not for saline group (one-sample t-test). ∗p < 0.05 compared to chance (dashed line).

In line with the deficit in the retrieval of spatial information,
Janus (2004) found that AD transgenic mice (TgCRND8) did
not use spatial strategies in the Morris water maze; they learned
to reach the goal using a non-spatial strategy. Hamm et al.
(2017) have also studied the transgenic TgCRND8 model, and

TABLE 1 | Percentage of strategies used at the first three and the last choices in
the probe trial.

Group Type of strategy Choice in the probe session

1st 2nd 3rd Last

Saline Spatial 80.00 60.00 40.00 20.00#

Non-spatial 20.00 40.00 60.00 80.00#

Aβ Spatial 11.11∗ 44.44 22.22 22.22
Non-spatial 88.89∗ 55.56 77.78 77.78

Fisher’s exact test, x2, p < 0.05: ∗compared to saline; #compared to first choice.

showed an impaired association between object and place in a
hippocampal dependent-task. In general, these previous studies
suggest that the impairment in learning and retrieval of memory
in AD models are due to deficits in the use of spatial strategies
promoted by Aβ peptides increase and/or accumulation. In
line with these findings, the results reported here show subtle
alterations in spatial performance and the preferential use of
non-spatial strategies after Aβ peptides infusion, suggesting a
similarity with the early stages of AD.

Human versions of rodent spatial mazes in virtual
environments have been used for detection of spatial memory
deficits induced by hippocampal damage (Skelton et al., 2000;
Moffat et al., 2001; Astur et al., 2002; Bohbot et al., 2004;
Kumaran et al., 2007; Bartsch et al., 2010; Goodrich-Hunsaker
et al., 2010). These investigations of spatial navigation in humans
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could allow early detection of dementia, which is relevant for
early therapeutic intervention.

Nevertheless, similar to rodent tasks, the continuous
exposition to such tasks diminishes the possibility of impairment
detection (Jansen et al., 2010). On the other hand, the delayed
retrieval assessment allows the detection of the episodic
memory deficit (Albert, 1997; Foster, 1999). In this respect,
contrary to the results described in the present study, Hamm
et al. (2017) did not verify an impairment in the Barnes
maze performance. This discrepancy is probably due to the
reduced number of training trials and increased retrieval
delay in our study. Thus, these protocol modifications allowed
the detection of a spatial deficit similarly to the delayed
retrieval protocol used in humans for the study of early
impairments in AD.

The detailed etiology of Alzheimer remains unknown,
although a great amount of evidence points to Aβ peptides as
contributing factors to the neuronal dysfunctions and cognitive
deficits of the disease (Braak and Braak, 1991; Dickey et al.,
2003, 2004; Palop et al., 2003; Eustache et al., 2004; Sadek
et al., 2004). The protocol of Aβ infusion used here induced
a subtle cognitive deficit that was specific to spatial aspects,
possibly compatible with prodromic characteristics of AD.
Animals under Aβ treatment showed some extent of retrieval, but
using non-spatial strategies. Further, these animals persevered
on non-spatial choices until the end of the probe session.
The results indicate that a task that can be solved by both
spatial and non-spatial strategies is sensitive to detect deficits
that could go unnoticed otherwise. The detection of subtle

changes on cognition in an animal model can be useful to
investigations of mechanisms as well as tests of potential
neuroprotective approaches. We suggest that this approach is
potentially useful to the study of the initial memory deficits in
early AD.
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