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Neuroimaging-based age prediction using machine learning is proposed as a biomarker
of brain aging, relating to cognitive performance, health outcomes and progression of
neurodegenerative disease. However, even leading age-prediction algorithms contain
measurement error, motivating efforts to improve experimental pipelines. T1-weighted
MRI is commonly used for age prediction, and the pre-processing of these scans
involves normalization to a common template and resampling to a common voxel size,
followed by spatial smoothing. Resampling parameters are often selected arbitrarily.
Here, we sought to improve brain-age prediction accuracy by optimizing resampling
parameters using Bayesian optimization. Using data on N = 2003 healthy individuals
(aged 16–90 years) we trained support vector machines to (i) distinguish between young
(<22 years) and old (>50 years) brains (classification) and (ii) predict chronological
age (regression). We also evaluated generalisability of the age-regression model to an
independent dataset (CamCAN, N = 648, aged 18–88 years). Bayesian optimization
was used to identify optimal voxel size and smoothing kernel size for each task. This
procedure adaptively samples the parameter space to evaluate accuracy across a range
of possible parameters, using independent sub-samples to iteratively assess different
parameter combinations to arrive at optimal values. When distinguishing between
young and old brains a classification accuracy of 88.1% was achieved, (optimal voxel
size = 11.5 mm3, smoothing kernel = 2.3 mm). For predicting chronological age, a
mean absolute error (MAE) of 5.08 years was achieved, (optimal voxel size = 3.73 mm3,
smoothing kernel = 3.68 mm). This was compared to performance using default values
of 1.5 mm3 and 4mm respectively, resulting in MAE = 5.48 years, though this 7.3%
improvement was not statistically significant. When assessing generalisability, best
performance was achieved when applying the entire Bayesian optimization framework
to the new dataset, out-performing the parameters optimized for the initial training
dataset. Our study outlines the proof-of-principle that neuroimaging models for brain-
age prediction can use Bayesian optimization to derive case-specific pre-processing
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parameters. Our results suggest that different pre-processing parameters are selected
when optimization is conducted in specific contexts. This potentially motivates use of
optimization techniques at many different points during the experimental process, which
may improve statistical sensitivity and reduce opportunities for experimenter-led bias.

Keywords: brain aging, Bayesian optimization, T1-MRI, machine learning, pre-processing

INTRODUCTION

The aging process affects the structure and function of the
human brain in a characteristic manner that can be measured
using neuroimaging. This quantifiable relationship was key to
the early demonstrations of voxel-based morphometry (VBM)
(Good et al., 2001) and to this day represents one of the most
robust relationships between a measurable phenomenon (i.e.,
aging) and brain structure. This makes aging an ideal target
for evaluating novel neuroimaging analysis tools. More recently,
researchers have used this relationship to develop neuroimaging-
based tools for predicting chronological age in healthy people
using machine learning (Franke et al., 2010; Cole et al., 2017b).
A ‘brain-predicted age’ determined from magnetic resonance
imaging (MRI) scans represents an intuitive summary measure of
the natural deterioration associated with the effects of the aging
process on the brain, and has the potential to serve as biomarker
of age-related health (Cole, 2017).

The extent to which brain-predicted age is greater than
an individual’s chronological age has been associated with
accentuated age-associated physical and cognitive decline (Cole
et al., 2017c). Specifically, an ‘older’-appearing brain has
been associated with decreased fluid intelligence, reduced lung
function, weaker grip strength, slower walking speed and an
increased likelihood of mortality in older adults (Cole et al.,
2017c). Factors which could contribute to an increased brain-
predicted age include genetic effects, neurological or psychiatric
conditions, or poor physical health (Koutsouleris et al., 2013;
Löwe et al., 2016; Steffener et al., 2016; Cole et al., 2017c,d;
Pardoe et al., 2017). Potentially, individuals at increased risk
of experiencing the negative consequences of brain aging, such
as cognitive decline and neurodegenerative disease, could be
identified by measuring brain-predicted age in clinical groups or
even screening the general population.

Despite promising results to-date, models for generating
brain-predicted age still continue to contain measurement error,
and efforts to improve accuracy and particularly, generalisability,
to data from different MRI scanners are warranted. Training
on large cohorts of healthy adults is one approach to reduce
error, with the lowest mean absolute error (MAE) rates between
4 and 5 years (Konukoglu et al., 2013; Irimia et al., 2014;
Steffener et al., 2016; Cole et al., 2017b). Notably, individual
errors range across the population from perfect prediction to
discrepancies as great as 25 years. While brain-predicted age has
high test–retest reliability (Cole et al., 2017b), and a proportion
of this variation likely reflects underlying population variability,
certainly a substantial amount of noise remains. This means
that a model with an MAE = 0 is highly unlikely, however, the
lower bound of prediction accuracy has not yet been reached, as

indicated by the gradual improvements in performance seen in
more recent methods. This means that efforts to reduce noise,
improve prediction accuracy and in particular the generalisability
to new data is essential if such approaches are to be applied to
individuals in a clinical setting, the ultimate goal of any putative
health-related biomarker.

A key issue in brain-age prediction, along with many other
neuroimaging approaches, is the choice of methods for extracting
features or summary measures from raw data for further analysis
(Jones et al., 2005; Klein et al., 2009; Franke et al., 2010;
Andronache et al., 2013; Shen and Sterr, 2013). For example,
the majority of brain-age prediction pipelines have used T1-
weighted MRI data and either generated voxelwise maps of brain
volume (e.g., Cole et al., 2015) or summary measures of cortical
thickness and subcortical volumes (e.g., Liem et al., 2017). The
parameters set during image pre-processing are commonly the
defaults supplied by the software developer or are based on prior
studies. Nevertheless, the choice of pre-processing parameters
may have a strong influence on the outcome of any subsequent
data modeling, and ideally should be optimized on a case-by-case
basis. This optimization is rarely conducted, as trial-and-error
approaches are time-consuming and often ill-posed. Importantly,
using sub-optimal pre-processing may reduce experimental
precision, which increases the likelihood of false positives or
false negatives as well as reducing reproducibility. In the worst-
case scenario, p-hacking may occur, whereby pre-processing is
manually optimized based on minimizing the resultant p-values
of the subsequent hypothesis testing within the same sample.
Here, we outline a principled Bayesian optimization strategy
for identifying optimal values for pre-processing parameters
in neuroimaging analysis, implementing sub-sampling to avoid
bias. We then demonstrate proof-of-principle applied to the
problem of age prediction using machine learning.

Bayesian optimization is an efficient and unbiased approach to
parameter selection, which avoids both the failure to adequately
search a large parameter space and the drawbacks of an
exhaustive search. Instead, it utilizes a guided sampling strategy,
assessing a subgroup of points from within the possible parameter
space and testing these values on subsets of the total sample
(Brochu et al., 2010; Snoek et al., 2012). This data division strategy
ensures performance tests reflect out-of-sample prediction and
always evaluate differing conditions on separate data, reducing
the likelihood of overfitting. This intelligent selection of a small
number of points for evaluation allows the characterization of
parameter space and the solution of the optimization problem
to be accomplished in fewer steps, making it a computationally
efficient approach (Pelikan et al., 2002).

The current work used Bayesian optimization to attempt to
optimize image pre-processing parameters for: (i) distinguishing
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the brains of young and old adults (classification), (ii) predicting
chronological age (regression), and (iii) evaluating the
generalisability of the resulting optima for the regression task to
an independent dataset. The classification task was included to
allow evaluation of Bayesian Optimization hyper-parameters and
to show the applicability of Bayesian optimization to different
contexts. We hypothesized that by using Bayesian optimization
we would improve model accuracy compared to previously
used ‘non-optimized’ values. The study was designed to show
proof-of-principle of the applicability of Bayesian optimization
to help improve neuroimaging pre-processing in a principled
and unbiased fashion.

MATERIALS AND METHODS

Neuroimaging Datasets
This study used data compiled from 14 public sources (see
Table 1), and as per our previous research (e.g., Cole et al.,
2015), referred to here as the brain-age healthy control (BAHC)
dataset. Data included T1-weighted MRI from 2003 healthy
individuals aged 16–90 years (male/female = 1016/987, mean
age = 36.50 ± 18.52). All BAHC participants were either
originally included in studies of healthy individuals, or as healthy
controls from case-control studies. As such, all were screened
according to local study protocols to ensure they had no history
of neurological, psychiatric or major medical conditions. Images
were acquired at 1.5T or 3T with standard T1-weighted MRI
sequences (see Table 1). Ethical approval and informed consent
were obtained locally for each study covering both participation
and subsequent data sharing.

Additionally, the Cambridge Centre for Aging Neuroscience
(CamCAN) neuroimaging cohort was used as an independent
validation dataset (Shafto et al., 2014; Taylor et al., 2017).
These data were obtained from the CamCAN repository1. The
CamCAN cohort consisted of T1-weighted images (acquired at
3T, using a 3D MPRAGE sequence: repetition time = 2250 ms,
echo time = 2.99 ms, inversion time = 900 ms; flip angle = 9◦;
field of view = 256 × 240 × 192 mm; 1 mm isotropic voxels)
from 648 participants aged 18–88 years (male/female = 324/324,
mean age 54.28 ± 18.56). This study used similar exclusion
criteria, including only healthy individuals. Ethical approval for
CamCAN was obtained locally, including the permission to
subsequently make anonymised versions of the data publicly
available.

An outline of the analysis pipeline for the study has been
included as Figure 1. The details of each stage are as follows.

Pre-processing to Prediction
Normalized brain volume maps were created following a
standard VBM protocol, described previously (Cole et al., 2015).
This involved segmentation of raw T1-weighted images into
gray matter maps using SPM12 (University College London,
London, United Kingdom). Images were normalized to a study-
specific template in MNI152 space using DARTEL for non-linear

1http://www.mrc-cbu.cam.ac.uk/datasets/camcan/

registration (Ashburner, 2007). This step involved resampling
to a common voxel size, modulation to retain volumetric
information and spatial smoothing; the specific voxel size and
smoothing kernel size parameters were chosen by the Bayesian
optimization protocol as detailed below.

After pre-processing, gray matter volume images were
converted to vectors of ASCII-format intensity values. These
were used as the input features for subsequent classification
or regression analysis. This was performed in MATLAB
using the support vector machine (SVM) program. For the
binary classification problem of distinguishing young and old
participants, SVMs were used. For predicting age as a continuous
variable, SVM regression (SVR) was used. Both SVM and SVR
procedures used a linear kernel to map the input data into a
computationally efficient feature space.

Bayesian Optimization of Pre-processing
Bayesian optimization was used to identify optimal pre-
processing parameters, based on the accuracy of the subsequent
model predictions (either classification or regression). Hence, the
Bayesian optimization procedure can be seen as an additional
outer layer of analysis, that surrounds the standard pipeline (pre-
processing through to model accuracy evaluation). The Bayesian
optimization process runs multiple iterations of this internal
pipeline using different sub-samples of the dataset, exploring
the parameter space to select varying image pre-processing
options based on their influence on the objective function (i.e.,
classification or regression accuracy).

A key advantage of Bayesian optimization derives from its
‘surrogate’ model that represents the relationship between an
algorithm and the initially unknown objective function. This
surrogate model is progressively refined in a closed-loop manner,
by automatically selecting points in the parameter space. This
provides an informed coverage of that space, based on the
performance of previously sampled points. This aspect makes
Bayesian optimization highly efficient, reducing the number of
iterations necessary to identify optima of complex objective
functions (Brochu et al., 2010; Lorenz et al., 2017). We used the
MATLAB Bayesian Optimization Algorithm2 implementation,
which internally defines a number of optimization parameters,
including selecting the covariance kernel and tuning the hyper-
parameters of the process.

In this study, we aimed to optimize the final normalized voxel
size and the full-width half-maximum (FWHM) of the spatial
smoothing kernel used during final resampling. Conventionally,
these are set between 1 and 2 mm3 and either 4 or 8 mm
FWHM, respectively for VBM studies conducted using SPM. In
our previous work on brain-age prediction we used 1.5 mm3

voxel dimensions and a 4 mm smoothing kernel (Cole et al., 2015,
2017a,b,c,d; Pardoe et al., 2017), which we subsequently refer
to as ‘un-optimized’ pre-processing parameters. Comparison of
classification and regression accuracy was compared between
optimized and un-optimized models using Steiger’s z-test for
dependent correlations and McNemar’s chi-square for paired
nominal data accordingly. Using Bayesian optimization, a wider

2https://uk.mathworks.com/help/stats/bayesian-optimization-algorithm.html
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FIGURE 1 | Experimental overview of the use of Bayesian optimization in image pre-processing. The figure shows the resampling stage of the experimental pipeline
as the element subject to Bayesian optimization. After optimization based on 12 iterations using sub-samples on n = 80 and assessed using 10-fold cross-validation,
the defined objective function of the corresponding parameter space can be used to determine optimal values for voxel size and smoothing kernel size. This process
was conducted in a task-specific manner (i.e., once for young-old classification and once for age prediction regression), resulting in separate optima for each task.
After determining model accuracy for each task, the classification model was used to determine the stability of the Bayesian optimization features and the regression
model was used to determine the generalisability of the model to an entirely independent dataset.

range of values were considered; between 1 and 30 mm isotropic
was permitted for voxel size and 1–20 mm FWHM for smoothing
kernel size for the classification task, while ranges of 1–15 mm
and 1–10 mm were used for the regression task (the latter
smaller parameter space was used to reduce computation time
for the more intensive task). The time taken for the optimization
procedure was approximately 30 s per image for the resampling
step, running on a desktop computer with 16GB RAM. A full
optimization cycle thus took approximately 8 h to complete 12
iterations (see below).

Classifying Young and Old Adults
We categorized the 500 oldest individuals (aged 51–90 years)
and the 500 youngest (aged 16–22 years) as the “old” and
“young” groups for classification. Each iteration of Bayesian
optimization used a sub-sample of the total dataset (N = 1000),
to test a combination of pre-processing parameter values.
Participants were divided into subsets of size n stratified
by age, such that each subset contained an approximately
representative distribution of participants from across the
age range, resulting in a total of N/n iterations. We used
n = 80 total (40 participants from each group) as a sample
for each iteration, giving 1000/80 = 12 iterations of Bayesian
optimization. This included a burn-in phase (i.e., preliminary
phase of unevaluated samples to initialize the process) of 5
randomly sampled points from within the parameter ranges
to begin characterization of the search space, followed by 7
iterations of ‘guided’ active sampling. In each iteration, a voxel
size and smoothing kernel size combination was selected and
used for resampling during DARTEL normalization of each
subject’s images. Normalized images were then converted
to feature vectors and a binary SVM classifier was trained

and assessed using 10-fold cross-validation. SVM hyper-
parameters were left at default values. Classifier error was the
objective function to be minimized. Bayesian optimization
used the Expected Improvement Plus (EI+) acquisition
function, with the default exploration-exploitation ratio
of 0.5.

Regression Prediction of Chronological
Age
Next, we used Bayesian optimization in the context of
regression models which predict chronological age in healthy
individuals using brain volume images. This was done by
first identifying optimal pre-processing parameters through
Bayesian optimization, then applying them to the full training
dataset and comparing the resulting prediction accuracy to
that achieved in using ‘un-optimized’ values. The regression
analysis used n = 80 participants per iteration, with age values
spanning the full range (16–90 years) and the same Bayesian
optimization hyper-parameters as above. The MAE in age
prediction across 10-fold cross-validation using SVM regression
(i.e., SVR) was the objective function to be minimized. SVR
hyper-parameters were left at default values. To enable both
the optimization search and make use of the full sample
size available for training a generalisable regression model,
the dataset was divided into a training set and a held-out
test set. Bayesian optimization was first carried out using
1803 of the 2003 total participants to determine the optimal
voxel size and smoothing kernel size values (allowing 22 total
optimization iterations). A regression model was then trained
on these 1803 images pre-processed using the identified optimal
values, and tested on the 200 held-out participants in the
test set (pre-processed using the same optimized parameters)
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to give an unbiased out-of-sample measure of age prediction
performance.

A final regression model was trained on all 2003 participants
(the full model). This allowed us to evaluate how well
the optimized pre-processing parameters generalized to the
independent CamCAN dataset. We compared three possible
approaches for this independent validation step: (1) application
of the BAHC-derived full model to age prediction on CamCAN
data, (2) application of the entire Bayesian optimization
framework to the CamCAN dataset followed by regression
training, (3) using the BAHC-derived pre-processing parameters
to process the CamCAN dataset, but training a new regression
model for age prediction. In case #1 the optimized voxel
size and smoothing kernel size from the BAHC dataset were
applied to the CamCAN dataset. In case #2, the pre-processing
parameters were optimized afresh, using only the CamCAN
dataset. Case #3 is something of an intermediate iteration,
generalizing the optimized pre-processing parameters, but not
the trained regression model.

Performance Stability
Finally, we performed several experiments to assess
reproducibility and variability of different solutions to the
classification task (i.e., young vs. old). This was done to allow
inference regarding which image pre-processing parameters
had the greatest impact on prediction accuracy, and to establish
robustness of the model. We tested the consistency of model
solutions across repetitions and participant sets, using different
random seeds to create shuffled groups and burn-in points.
We also varied the acquisition function of the Bayesian
approach. This included comparing the results using six different
acquisition functions: Expected Improvement (EI), EI per
second, EI+, EI per second +, Lower Confidence Bound, and
Probability of Improvement. Finally, model solutions were
compared across differing values for the exploration-exploitation
ratio, ranging from 10 to 90% exploration. These tests were
conducted in context of voxel size and smoothing kernel size,
using ranges of 1–15 mm3 and 1–10 mm FWHM, respectively.
The acquisition function “Expected Improvement +” has a
property which allows for escape from a local optimum, and
returns to exploratory behavior when a region is thought to be
over-exploited. The plus addition to the EI function enables
this escape and refers to the additional requirement that the
standard deviation of the posterior function must be less than
the standard deviation of included noise multiplied by the
exploration ratio.

RESULTS

Classification Analyses
Model performance accuracy from ten-fold cross-validation
was 88.1% for correct classification of neuroimaging data as
either young or old (see Table 2). The optimized voxel size
was 11.5 mm3 and smoothing kernel size was 2.3 mm. The
performance using un-optimized values (1.5 mm3 voxels and
4 mm smoothing kernel) was 80.3%. The optimized model

TABLE 2 | Classification performance for distinguishing young and old brains.

Un-optimized Actual old Actual young

Predicted old 380 120

Predicted young 77 423

Optimized

Predicted old 441 59

Predicted young 60 440

performance was significantly better than the un-optimized case
(McNemar test, χ2 = 18.76, p < 0.001). The parameter space
exploring the expanded range of voxel size and smoothing kernel
size values yielded by the model is shown in Figure 2.

Classification Model Stability
Stability and reproducibility of model solutions were explored
in the classification problem. Correlation of models in different
scenarios are shown in Figure 3. These were; (a) across 10
repetitions of the final classification protocol, (b) produced by
the use of each of six different acquisition functions, and (c)
using 5 different exploration-exploitation ratios ranging between
90% exploration and 90% exploitation. In all three cases, model
solutions showed high cross-correlation across replications, as
well as across varying settings of the optimization process.
The choice of acquisition function for Bayesian sampling and
the choice of exploration-exploitation ratio of this function
had little impact on final model performance. Similar models
were reproducible across repetitions and in randomly shuffled
participant sub-sets. This behavior implied that a stable model
exists in the outlined parameter space. These observations
supported our use of the default acquisition function options
for the classification analysis: Expected Improvement Plus (EI+),
with an exploration ratio of 0.5. We thus adopted these
parameters for the regression task.

FIGURE 2 | Objective function model for classification of young and old.
Objective function model showing the space of voxel size and smoothing
kernel values in terms of old versus young classification performance with a
linear kernel SVM. The red surface is the function model and represents
performance at each location. Points where the parameter space was
sampled are shown (blue).
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FIGURE 3 | Classification model stability over varying Bayesian optimization parameters. Correlation heat maps illustrating the relationships between model objective
function solutions across (A) replicates of the protocol, (B) six different acquisition functions, and (C) a range of exploration-exploitation ratios between 0.1 and 0.9
(where exploitation is 1-exploration).

Age Prediction Regression
Figure 4 shows the objective function model created during
regression, when varying smoothing kernel and voxel
size (1–10, 1–15), and minimizing the MAE in SVR age
prediction. The lowest MAE observed for an individual
sample (N = 80) was 7.17 years and the objective model
function estimated a minimum error of 8.52 years (lowest
point on the surface fitted in Figure 4). The estimated
optimal voxel size and smoothing kernel size values were
3.73 mm3 and 3.68 mm respectively. Following optimization
these values were used to pre-process the full dataset and
train a regression model for subsequent application to other
datasets.

The final resulting model was applied to predict ages for
the remaining 200 holdouts and achieved a MAE of 5.08 years
(Figure 5A). This was compared to MAE = 5.48 years when
using the un-optimized pre-processing values, though this value
was not significantly different from the optimized case (Steiger
test p > 0.1). The absolute error observed ranged from 0 to
22.78 years. In the hold-out set the Pearson’s correlation between
predicted and true age was r = 0.941, with R2 = 0.89 using
optimized pre-processing. Using un-optimized pre-processing
parameters, we found r = 0.927, R2 = 0.86.

The relevance of this approach for an independent dataset
(i.e., CamCAN) was considered in three different ways. (1)
The BAHC-trained model was applied to the CamCAN data
pre-processed with the BAHC-informed optimum voxel
size and smoothing kernel size values. Here the CamCAN
participants were included in the test set only. This achieved
a MAE of 6.08 years, r = 0.929, with R2 = 0.86 (Figure 5B).
This was an improvement compared to the performance
when using un-optimized pre-processing values (voxel
size = 1.5 mm3, smoothing kernel size = 4 mm) which
resulted in MAE = 6.76 years. (2) The CamCAN data was
analyzed entirely independently; the full Bayesian optimization
framework was instead applied to the CamCAN data to discover
new, CamCAN-specific pre-processing optima, and a new
regression model was trained with 588 participants and tested on
60 participants (giving a similar training-testing ratio as used in
the BAHC dataset). This resulted in optimal values of 8.41 mm3

for voxel size and 3.54 mm for smoothing kernel size and yielded
MAE = 5.46 years, r = 0.91, R2 = 0.83. (3) The CamCAN cohort

FIGURE 4 | Objective function model for age prediction. Objective function
model resulting from optimizing during regression for exact age prediction.
The red surface is the function model and represents performance at each
location. Points where the parameter space was sampled are shown (blue).

was pre-processed using the BAHC-informed optimum values
but a new regression model was trained and tested within the
CamCAN participants. This model resulted in MAE = 6.21 years,
r = 0.89, R2 = 0.79. The model from case #2 was significantly
more accurate than the model from case #3 (Steiger test, t = 1.67,
p = 0.05).

DISCUSSION

Using Bayesian optimization, we present a conceptual
improvement to conventional pipelines for distinguishing
young and old brains or predicting age using neuroimaging
data. The Bayesian optimization-derived optima for voxel size
and smoothing kernel size showed improved performance
over ‘un-optimized’ defaults for the classification of young and
old brains, though performance in brain-age prediction was
similar to un-optimized values. Potentially, the values previously
used are relatively near the optimum thanks to the testing and
experience of the researchers involved. In fact, the derived
optimal smoothing kernel was very near the un-optimized
value (3.68 mm vs. 4 mm). It is also important to note optima
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FIGURE 5 | Relationship between chronological age and brain-predicted age. Chronological age (x-axis) plotted against brain-predicted age (y-axis) when testing
the BAHC-trained model on (A) the hold-out N = 200 test set from BAHC (MAE = 5.08 years, r = 0.941, R2 = 0.89), and (B) on participants from the CamCAN
dataset, using the pre-processing values optimized on the BAHC dataset (MAE = 6.08 years, r = 0.929, R2 = 0.86).

derived from the Bayesian optimization process should not
be regarded as definitive, as a completely exhaustive search of
the parameter space is not conducted (nor desirable due to
time constraints). Our results are important as they suggest
that the same pre-processing parameters are not optimal for
different prediction tasks (i.e., classification vs. regression) or
for different datasets (BAHC vs. CamCAN). Often, researchers
will apply parameters used in one context to another. This may
not necessarily be best practice, and our work shows proof-of-
principle that Bayesian optimization can be used to improve
image pre-processing in a principled and unbiased fashion.

Beyond optimizing model performance, our Bayesian
optimization approach also allows for relative comparison of
the influence of different parameters. This potentially provides
novel information regarding the prediction problem at hand.
For example, here we found that varying voxel size had a much
greater impact on overall performance than did smoothing
kernel size. This was seen in all experiments; the change in
performance across the full range of values was much smaller
for smoothing kernel size than voxel size, and is clearly seen
in the surface plots (Figures 1, 2). This suggests that in future
neuroimaging pre-processing pipeline design, there is more to
be gained from optimizing voxel size, rather than smoothing
kernel size. The target voxel size for normalization is often not
considered, though has an important impact on the degree of
partial volume effects, number of simultaneous statistical tests
undertaken, spatial resolution and subsequent inferences made
about anatomical specificity. Our findings suggest that more
weight needs to be placed on this important parameter when
relating volumetric MRI data to age.

Importantly, the conclusions regarding specific optimal values
are related to the particular application in which they are tested.
Within this study, we observed a notable difference in the

optimal voxel size for classification (11.5 mm3) compared to
regression (3.73 mm3). Potentially, the more gross distinction
between young and old brains benefits from a coarser resolution
which increases signal-to-noise ratio, while the subtler patterns
underlying gradual age-associated changes in brain structure
requires finer-grained representation. Alternatively, the much
larger voxel size identified here could result in better classification
by reducing data dimensionality, with this size representing
the optimal trade-off between representing the information and
simplifying a high-dimensional feature space for more effective
classification. Either way, the discrepancy in optimal voxel
size between classification and regression reinforces the point
that systematic evaluation of parameter specifications should
be conducted case-by-case. Commonly, ‘one-size-fits-all’ is the
prevailing heuristic for setting pre-processing parameters in
neuroimaging analysis, where the defaults are assumed to be
adequate. Our findings show that this is not necessarily the
case, supporting the use of optimization techniques to improve
experimental precision.

The age-prediction accuracy achieved in the BAHC dataset
(MAE = 5.08 years) is comparable to the current performance
seen in similar research (Konukoglu et al., 2013; Mwangi
et al., 2013; Irimia et al., 2014; Cole et al., 2015, 2017b,c;
Steffener et al., 2016). In these studies, pre-processing parameters
are set somewhat arbitrarily (c.f. Franke et al., 2010). Here,
the Bayesian optimization method offered a more principled
approach. The prediction tools used here were common
methods selected for computational efficiency (i.e., SVMs), in
contrast with some of the studies capitalizing on state-of-the-
art techniques and advanced modeling such as deep learning
or Gaussian process regression (Cole et al., 2017b,c). One
limitation of Bayesian optimization is the computational time
needed to derive optima, which may slow its adoption with
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newer, computationally intensive algorithms. The duration of
the optimization also depends on the process to be optimized.
Here, we selected image resampling parameters as these can be
computed rapidly. One important target for optimization should
be image registration, however, the speed of most non-linear
registration algorithms currently makes this a time-consuming
goal.

We explored the generalisability of the model and the general
framework. The resulting MAE in the CamCAN dataset of
6.08 years (BAHC-defined model and parameters), 5.18 years
(CamCAN defined model and parameters) and 6.38 years
(BAHC-defined parameters, CamCAN model) provides some
interesting insights. Though the BAHC-derived model produced
reasonable performance, the highest accuracy was achieved when
re-optimizing and re-training within the independent cohort,
using the full Bayesian optimization framework. Interestingly,
the optimal smoothing kernel size was similar between the two
datasets (3.68 mm vs. 3.54 mm), while there was a marked
difference in optimal voxel size (3.73 mm3 vs. 8.41 mm3).
Speculatively, this could be due to the specific acquisition
parameters at this site, or as a result of latent sample
characteristics, as truly random sampling is hard to achieve.
This suggests that there is unlikely to be ground-truth optimum
for a given parameter, highlighting the importance of defining
such optima in a given context. This relates to another
potential limitation of the approach; sufficiently large datasets
are necessary for the optimization to work effectively. While this
is increasingly possible due to the drive to share data and the
availability of large, publicly accessible cohorts (e.g., Alzheimer’s
Disease Neuroimaging Initiative, Human Connectome Project,
UK Biobank), this may not be possible in certain clinical
contexts, particularly regarding rarer diseases. Nevertheless, the
‘generalized’ performance of the model was still reasonable in
this case, which suggests that it is incumbent on researchers to
decide what constitutes sufficient prediction accuracy in each
context.

Bayesian optimization is a robust and elegant way to tune pre-
processing pipelines in an efficient and automated manner. In
addition to the parameter optima, an additional strict, unbiased
estimate for performance and generalisability is generated. The
objective function model created provides detailed information
on model performance and new insights can be gained from
mapping the entire parameter space by enabling visualization
of relationships between key components of the analysis and
performance. This could allow for informed decision-making in
experimental design, such as allowing for cost-benefit analysis
in the case where optimal parameters only lead to marginal
improvement in performance over other values which are
easier, quicker, or less costly to enact. This could be critical
in applications where the varied inputs represent expensive or
invasive procedures, such as MRI scanning or obtaining CSF
samples from lumbar punctures.

Though our analysis focused on neuroimaging pre-processing
to illustrate the strengths of Bayesian optimization methods,
the potential applications are far-reaching. Optimization
could be applied anywhere in the experimental pipeline:

in questions of experimental design, stimuli choice, data
acquisition, statistical method or algorithm selection, prediction
methods or final model selection. The current literature on
Bayesian optimization topics applies mainly to tuning of
machine learning algorithms (Snoek et al., 2012) and though
machine learning is widely used in neuroscience, few studies
have capitalized on this strategy to improve neuroimaging
analysis or neuroimaging-based prediction (Lorenz et al.,
2016, 2017). In machine learning contexts, and especially
in applied multi-disciplinary fields like neuroscience where
researchers may not necessarily have expertise regarding every
relevant experimental parameter, more widespread use of
a priori unbiased parameter optimization could be highly
beneficial.

Our study shows the potential of Bayesian optimization
to improve neuroimaging pre-processing by reducing prior
assumptions, in the context of classification and regression in
the context of brain aging. Future research into brain aging
and other neuroscientific areas could benefit from applying
principled optimization approaches to improve study sensitivity
and reduce bias.
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