
REVIEW
published: 26 April 2018

doi: 10.3389/fnagi.2018.00099

Frontiers in Aging Neuroscience | www.frontiersin.org 1 April 2018 | Volume 10 | Article 99

Edited by:

Elizabeth B. Torres,

Rutgers University, The State

University of New Jersey,

United States

Reviewed by:

Jose Bargas,

Universidad Nacional Autónoma de

México, Mexico

Tipu Z. Aziz,

John Radcliffe Hospital,

United Kingdom

*Correspondence:

Isobel T. French

belleitf88@gmail.com

Received: 31 May 2017

Accepted: 22 March 2018

Published: 26 April 2018

Citation:

French IT and Muthusamy KA (2018)

A Review of the Pedunculopontine

Nucleus in Parkinson’s Disease.

Front. Aging Neurosci. 10:99.

doi: 10.3389/fnagi.2018.00099

A Review of the Pedunculopontine
Nucleus in Parkinson’s Disease
Isobel T. French* and Kalai A. Muthusamy

Division of Neurosurgery, Department of Surgery, University Malaya, Kuala Lumpur, Malaysia

The pedunculopontine nucleus (PPN) is situated in the upper pons in the dorsolateral

portion of the ponto-mesencephalic tegmentum. Its main mass is positioned at the

trochlear nucleus level, and is part of the mesenphalic locomotor region (MLR) in the

upper brainstem. The human PPN is divided into two subnuclei, the pars compacta

(PPNc) and pars dissipatus (PPNd), and constitutes both cholinergic and non-cholinergic

neurons with afferent and efferent projections to the cerebral cortex, thalamus, basal

ganglia (BG), cerebellum, and spinal cord. The BG controls locomotion and posture via

GABAergic output of the substantia nigra pars reticulate (SNr). In PD patients, GABAergic

BG output levels are abnormally increased, and gait disturbances are produced via

abnormal increases in SNr-induced inhibition of the MLR. Since the PPN is vastly

connected with the BG and the brainstem, dysfunction within these systems lead to

advanced symptomatic progression in Parkinson’s disease (PD), including sleep and

cognitive issues. To date, the best treatment is to perform deep brain stimulation (DBS)

on PD patients as outcomes have shown positive effects in ameliorating the debilitating

symptoms of this disease by treating pathological circuitries within the parkinsonian brain.

It is therefore important to address the challenges and develop this procedure to improve

the quality of life of PD patients.

Keywords: Pedunculopontine nucleus, mesenphalic locomotor region, basal ganglia, substantia nigra, brainstem,

Parkinson’s disease, deep brain stimulation

THE PEDUNCULOPONTINE NUCLEUS

The pedunculopontine nucleus (PPN) is situated in the upper pons in the dorsolateral part of
the ponto-mesencephalic tegmentum. Its main mass is located at the level of trochlear nucleus,
and is part of the mesenphalic locomotor region (MLR) in the upper brainstem (Olszewski and
Baxter, 1954; Geula et al., 1993). Olszewski and Baxter (1954) divided the human PPN into two
subnuclei, the pars compacta (PPNc) and pars dissipatus (PPNd). The PPNc is more prominent
with a compact cluster of large neurons, whereas the PPNd is composed of small andmedium-sized
neurons scattered inside the superior cerebellar peduncle (SCP) and central tegmental tract
(Olszewski and Baxter, 1954). The PPN comprises both cholinergic and non-cholinergic neurons,
and possesses afferent and efferent projections to the cerebral cortex, thalamus, basal ganglia (BG),
cerebellum, and spinal cord.

Eighty to ninety percentage of the PPNc contains cholinergic neurons amassed along the
dorsolateral border of the SCP at trochlear nucleus levels with few dopaminergic neurons (Jones,
1991; Pahapill and Lozano, 2000; Winn, 2008). These thin unmyelinated axons diverge extensively
over the brain supply nuclei in the BG, cerebellum, reticular formation in the lower brainstem, and
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also the spinal cord (Stein, 2009). PPNd neurons dispersed along
the SCP from mid-encephalic to mid-pontine levels constitute
mainly glutamatergic neurons (Rye et al., 1987; Lavoie and
Parent, 1994a) while the rest are cholinergic (Mesulam et al.,
1989).

The PPNc and PPNd also possess GABAergic inhibitory
neurons, whereas cholinergic neurons also contain
neuropeptides and novel neuromodulators (Vincent et al.,
1986; Vincent and Kimura, 1992; Lavoie and Parent, 1994a,b,c;
Bevan and Bolam, 1995). The PPN possesses ascending and
descending afferent and efferent (see Figure 1) projections,
and PPN inputs approach from above and below its level.
Descending networks from the cerebral cortex project via the
BG and extrapyramidal system to the PPN, including the face,
arm, trunk, and leg areas of the motor cortex (MCx), specifically
Brodmann area 4 (von Monakow et al., 1979). The PPNc is also
a primary constituent in a feedback loop to the thalamus from
the spinal cord and limbic system (Pahapill and Lozano, 2000)
and is a component of the ascending reticular activating system
(ARAS), where cortical stimulation is modulated via ascending
cholinergic connections to the thalamus (Steriade, 2004).

The PPN enhances the movement, motivational, and
cognitive aspects of multifaceted behavioral responses (Garcia-
Rill, 1986; Inglis and Winn, 1995; Reese et al., 1995; Takakusaki
et al., 2004a). Stimulation of this area induces locomotion in
animals, whereas damage leads to a number of neurological
disorders included in Parkinson’s disease (PD), Alzheimer’s
disease and schizophrenia due to its close ties with the BG and
thalamus.

PPN Connectivity and Physiology
Motor Cortical Connections
The PPN possesses dense connections to the upper extremity
regions of the MCx, followed by the lower extremity, trunk,
and orofacial regions. Connections are more dense in the pre-
MCx and frontal lobe compared to other regions (Muthusamy
et al., 2007). Reciprocal connections also exist with the ipsilateral
prefrontal MCx (Pahapill and Lozano, 2000). The PPN also
obtains direct cortical afferent fibers from the primary and
somatosensory motor area, pre-supplementary, dorsal, and
ventral pre-MCx, as well as frontal eye fields (Kuypers and
Lawrence, 1967; Moonedley and Graybiel, 1980; Matsumura
et al., 2000). These connections implicate the PPN in cortical
functions such as movement, cognition and sleep.

Abbreviations: Ach, Acetylcholine; ARAS, Ascending reticular activating system;

BG, Basal ganglia; BG-BS, Basal ganglia-brainstem; CN, caudate nucleus; CuN,

Cuneiform nucleus; DA, Dopamine; DBS, Deep brain stimulation; GABA,

Gamma aminobutyric acid; GiN, Gigantocellular reticular nucleus; GP, Globus

pallidus; GPe, Globus pallidus externa; GPi, globus pallidus interna; LN, Lewy

neurites; LB, Lewy bodies; LDT, Laterodorsal tegmental nucleus; MCx, Motor

cortex; MLR, mesenphalic locomotor region; NAcc, Nucleus accumbens; PPN,

Pedunculopontine nucleus; PPNc; Pedunculopontine nucleus pars compacta;

PPNd, Pedunculopontine nucleus pars dissipatus; PD, Parkinson’s disease; REMS,

Rapid eye movement sleep; VTA, Ventral tegmental area; VA, ventral anterior

nucleus; VL, ventrolateral nucleus; SC, Superior colliculus; SN, Substantia nigra;

SNc, Substantia nigra pars compacta; SNr, Substantia nigra pars reticulate; STN,

Subthalamic nucleus.

Striatal Connections
PPN efferent projections contacting the striatum are poorly
arborized, excluding the ventral and peri-pallidal zone of the
putamen (Lavoie and Parent, 1994c). These connections indicate
that the PPN is also involved in limbic function. This is seen
in the ventral striatum, also known as the nucleus accumbens
(NAcc). Ascending PPN connections provide control over striatal
input and output via connections with the thalamus and cerebral
cortex, even in the absence of direct projections (Winn, 1998).
PPN stimulation increases bursting activity in the NAcc (Floresco
et al., 2003), where changes in release accompanying different
firing patterns reveal two forceful conditions in dopamine (DA)
levels in the striatum and NAcc. This is namely a tonic state
with truncated but stable DA levels, and a phasic state correlated
to behavioral actions and reactions to environmental stimuli.
PPN cholinergic inputs therefore provide a functional duality
ensuring the basal level of DA neurons response, whether
stimulus-specific or anatomically diffuse. This also determines
the response required in precise circumstances (Mena-Segovia
et al., 2008b).

Thalamic Connections
Ascending PPN outputs project via the ventral and dorsal
tegmental bundle pathways carry major cholinergic projections
(Garcia-Rill, 1991) to all thalamic nuclei (Lavoie and Parent,
1994b). Strong cholinergic innervations to the intralaminar and
reticular nuclei were also revealed (Mesulam et al., 1992a). These
studies suggest that the thalamus obtains major cholinergic PPN
input, especially toward “nonspecific” nuclei associated with
the ARAS. The ARAS (Moruzzi and Magoun, 1949) stimulates
the cortex using cholinergic input to the thalamus largely via
PPN cholinergic cells (Pare et al., 1988; Steriade et al., 1988).
This projection then travels to non-specific thalamic nuclei and
produces rapid cortical oscillatory activity associated with arousal
and rapid eye movement sleep (REMS) (Steriade, 2004). This
stimulates reticular formation neurons in a positive-feedback
procedure, whereas termination is induced through inhibitory
activity of REMS-off aminergic neurons via REMS-on stimulated
neuronal regulation positioned in the laterodorsal tegmental
nucleus (LDT), and PPN regions (French andMuthusamy, 2016).

Pallidal Connections
The globus pallidus interna (GPi) of the globus pallidum
(GP) sends inhibitory efferent fibers to the ipsilateral PPN.
Anterograde tracer studies reveal that the PPN sends substantial
efferent fibers to the GPi (Lavoie and Parent, 1994b) rather
than the globus pallidus externa (GPe). In humans, the GP
receives cholinergic innervations from the brainstem (Mesulam
et al., 1983). Pallidal efferent pathways descend along the
pallidotegmental tract to the Forel’s field before dividing into
the medial & lateral descending pathway into the PPN and
midbrain tegmentum. The medial pathway then joins the medial
longitudinal fasciculus in the pre-rubral field & terminates in the
PPN, whereas the lateral pathway descends in the ventrolateral
tegmentum before intermingling with the medial lemniscus and
terminating in the PPN (Carpenter, 1976; DeVito et al., 1980).
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FIGURE 1 | The connections of The PPN, and the direct and indirect pathway of BG-thalamocortical circuits under normal (A) and PD (B) conditions. Red, green, and

yellow lines denote glutamatergic, GABAergic and dopaminergic projections respectively, while blue lines indicate chemically amalgamated projections. Thickening

lines show increased activity whereas thinning lines show decreased activity when alterations occur in the average activity rate of specific projection pathways in PD

compared with the normal state. Dotted yellow lines indicate loss. The striatum and STN deliver input from incoming cortical information to the BG. The GPi and SNr

deliver output information from the BG to the rest of the brain and apply robust inhibitory control on targets in the thalamus and the brainstem. This tonic inhibitory

input must be disinhibited to permit normal movements to occur. The striatum applies opposite influences on the GPi and SNr via two distinct classes of efferent

neurons, namely the D1-receptor-rich “direct pathway” positively modulated by DA and the D2-receptor-rich “indirect pathway” negatively modulated by DA. The loss

of DA in PD’s causes disequilibrium in the activity of these two striatofugal pathways and their corresponding cortical inputs.

Nigral Connections
Afferent gamma aminobutyric acid (GABA) endings from the
substantia nigra (SN) profusely contact with synapses of PPN
cell bodies and dendrites (Granata and Kitai, 1991). Reciprocally,
the PPN sends efferent glutamatergic and cholinergic fibers
to dopaminergic SN pars compacta (SNc) neurons (Charara
et al., 1996) via multiple contacts with dendrites and cell
bodies (Bolam et al., 1991; Mesulam et al., 1992b; Charara
et al., 1996). These connections propose that strong excitatory
influences on dopaminergic SNc neurons exerted from the PPN
as pedunculonigral fibers branch more profusely in the SNc than
SN pars reticulata (SNr).

The PPN also receives DA innervation over its anteroposterior
extent (Rolland et al., 2009) from the SNc at posterior and
mediodorsal levels, crossing through the medial lemniscus and
reticular formation. These fibers tend to avoid cholinergic
cell bodies but converge in neighboring non-cholinergic PPN
parts through an anteroposterior and ventrodorsal gradient,
particularly in the ventral cuneiform nucleus (CuN) located
dorsally to the PPN. Furthermore, cell bodies analogous to
the dopaminergic peri- and retrorubral cell clusters decrease
rapidly posteriorly in the anterior PPN. Lavoie and Parent
(1994b) also report that DA and cholinergic cells dominate
adjoining but definite regions, with the dopaminergic population
more anteriorly and laterodorsally located. Thus, the PPN along
with the CuN receives dopaminergic innervation, endorsing
that DA has a role in neural activity modulation of these
structures. Intriguingly, DA fibers are heterogeneously dispersed,

with central concentrations in the non-cholinergic PPN and
ventral CuN border. This implies that functions such as postural
muscle tone controlled by the PPN or locomotion via the
CuN (Takakusaki et al., 2003) are directly influenced by DA.
Furthermore, PPN and nigral dopaminergic neurons ascertain a
direct loopmoderating motor activity as both the cholinergic and
especially non-cholinergic PPN project back to dopaminergic
neurons of the SNc and ventral tegmental area (VTA) (Lavoie and
Parent, 1994b; Mena-Segovia et al., 2008a).

PPN cholinergic projections have an expansive effect upon
midbrain DA systems innervating both SNc and VTA neurons.
Though less significant in controlling burst firing and population
action of DA neurons, PPN neurons could be associated with
sustaining the muscarinic-dependent tonic discharge of DA and
specifying DA neuronal phasic signals to time sensory events.
This suggests a responsibility for the PPN in associative learning.
These phasic signals most likely work as a part of the ARAS in
contribution of acetylcholine (ACh), to thalamocortical neuronal
coherence in sensory stimuli integration.

PPN connections to the SNc and VTA alters DA release
in different regions of the striatum, further affecting striatal
inputs such as the cortex and thalamus. This modifies activity
throughout the BG that eventually leads to behavioral changes.
PPN afferents increase the number of neuronal burst firing in the
VTA, though only in neurons that are already firing (Floresco
et al., 2003). Extensive bilateral cholinergic innervation is also
observed in the VTA, deriving primarily from the LDT and
caudal PPN. An ipsilateral cholinergic projection originating
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from less dense regions of the cholinergic group projects to the
SN. Cholinergic and glutamatergic PPN cells projecting to the
SN and VTA (Beninato and Spencer, 1987; Bolam et al., 1991;
Futami et al., 1995). This activates midbrain DA cells with short
latencies (Scarnati et al., 1984; Lokwan et al., 1999) and evokes
DA release in dopaminergic innervation areas (Forster and Blaha,
2003). Such topography indicates that cholinergic outflow from
the PPN to functionally different systems vary depending on
where afferent input is received. Input to dense cores of the
group appears to affect cholinergic outflow to the mesolimbic
DA system rather than the nigrostriatal system. However, this
does not negate its influence on the nigrostriatal system as
SN-projecting cells are also found throughout areas containing
cholinergic cells. This implies that input received by an SN-
projecting cell is more likely to affect the ipsilateral nigrostriatal
system rather than the contralateral side. The VTA, however,
appears to receive input from both sides of the cholinergic
group. The identification of a distinct difference in cholinergic
innervation of the SN and VTA relays important information
on how cholinergic systems regulate CNS-controlling behavioral
states including arousal and motor functions (Steriade and
Buzsaki, 1990). Relative to this, the PPN also works with a parallel
cholinergic input arising from the LDT. The PPN is thus part
of two interrelated systems arising from cholinergic brainstem
neurons modulating DA systems in the midbrain, another of
which is the LDT.

Subthalamic Nuclei Connections
Glutamatergic afferents from the subthalamic nucleus (STN) to
the PPN function through a positive feed-forward circuit arising
from PPN cholinergic neurons. These projections converge with
inputs from the cortex and GPe, affecting the activity of direct
and indirect pathways (Bevan and Bolam, 1995).

A subpopulation of PPN neurons with ascending projections
to the STN are distinct from neurons with descending projections
to the gigantocellular reticular nucleus (GiN) (Mena-Segovia
et al., 2008a; Ros et al., 2010). PPN projections are predominantly
discrete to these two motor components, although cholinergic
and non-cholinergic projections also surface from neurons
within similar areas (Mena-Segovia et al., 2008a; Ros et al.,
2010). This suggests that projection neurons in both pathways
interact with each other, advocating an integrative role within
PPN microcircuits. Similarly, the distribution of cholinergic,
GABAergic, and glutamatergic neurons (Mena-Segovia et al.,
2009; Wang and Morales, 2009; Martinez-Gonzalez et al.,
2012) suggests that the rostral PPN is chiefly inhibitory being
GABAergic, while the caudal PPN is chiefly excitatory being
glutamatergic. Hence, motor projections to the STN and GiN are
primarily glutamatergic with distinctive subtypes as they contain
a diverse balance of calcium-binding proteins. Nonetheless,
GABAergic constituents also exist (Bevan and Bolam, 1995).
The quantity of cholinergic neurons in the caudal PPN is
larger connecting to both targets, suggesting that cholinergic-
mediated excitation of motor structures arise from the caudal
PPN. Descending non-cholinergic neurons showed distinct
electrophysiological properties compared to ascending non-
cholinergic neurons, supporting the existence of functional

differentiations concerning these two routes (Ros et al., 2010).
Thus, descending PPN projections mediated via reticulospinal
neurons of the GiN excites inhibitory interneurons in the
spinal cord and modulate excitatory MLR output (Takakusaki
et al., 2004a; Takakusaki, 2008). This concurs that the PPN is
implicated in locomotion initiation (see Figure 1A).

Cerebellar and Spinal Cord Connections
Efferent fibers from deep cerebellar nuclei send collaterals to the
PPN before reaching the thalamus (Hazrati and Parent, 1992),
suggesting that the PPN acts as a well-designed consolidation
epicenter between the BG and the cerebellum. Matsumura et al.
(1997) also suggests that the PPN acts as a dispatch between
the cerebral cortex and spinal cord, performing as a brainstem
regulator center for interlimb movement synchronization and
bimanual motor performance (Matsumura et al., 1997).

PARKINSON’S DISEASE

PD is a collection of neurodegenerative conditions affecting the
brain, particularly pigmented nuclei in the extrapyramidal system
of the midbrain and brainstem, the olfactory tubercle, cerebral
cortex, and components of the peripheral nervous system (Braak
et al., 2003). Ultimate physical debilities ensuing from these
pathologies are motor deficiencies termed “parkinsonism.” These
comprise dearth and movement slowness, known as akinesia and
bradykinesia, muscle rigidity and resting tremor. Parkinsonism is
produced primarily through BG functional impairments.

Principally, these problems result from dopaminergic
neuronal degeneration in the midbrain leading to DA deficiency
in areas receiving dopaminergic inputs, specifically from the
post-commissural putamen and other BG areas (Braak et al.,
2003). However, before dopaminergic degeneration occurs in
the midbrain, Lewy neurites (LNs), and bodies (LBs), first form
in the non-catecholaminergic dorsal glossopharyngeus-vagus
complex and intermediate reticular zone projection neurons,
and exclusive gain setting system nerve cell types, which are
the coeruleus-subcoeruleus complex, caudal raphe nuclei,
GiN, and olfactory bulb, tract, and/or anterior nucleus before
nigral involvement (Del Tredici et al., 2002). This is possibly
why PD patients develop anosmia during initial stages. This
multisystem disorder first involves few susceptible nerve cell
types in particular areas of the human nervous system, where
the intracerebral development of abnormal proteinaceous
LBs and LNs commences at definite locations and progress
in a topographic order (Braak and Del Tredici, 2004). As the
disease advances, constituents of the autonomic, limbic, and
somatomotor systems become increasingly compromised.
During pre-symptomatic stages 1–2, LB inclusion pathology is
constricted to the medulla oblongata/pontine tegmentum and
olfactory bulb/anterior nucleus. This means that SN involvement
presumes an obvious prevailing pathology in the medulla
oblongata. If it were possible to detect PD during this stage
with an underlying therapy available, consequent neuronal loss
in the SN could probably be prevented (Braak et al., 2003). In
stages 3–4, the SN and other midbrain gray nuclei and forebrain
undergo severe pathological changes as the process develops
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in an ascending manner traversing the upper border of the
pontine tegmentum and enters midbrain and forebrain basal
portions. More explicitly, the very first solitary LNs are observed
in the SNc leading to granular aggregations, pale bodies, and
LBs in melanized projection neurons, all of which are thin and
sparsely myelinated axons (Braak et al., 2004). Classically, nigral
pathology initiates in the SNc postero-lateral subnucleus (Braak
and Braak, 1985; Gibb and Lees, 1991) and continue on in the
postero-superior and posteromedial subnuclei, circumventing
the SN magnocellular and anterior subnuclei while causing
trivial lesions (Braak et al., 2003). Nuclear gray pathology from
earlier stages is now severely exacerbated. Concurrently, the
process impinges on the central amygdala subnucleus before
extending into basolateral nuclei. LN complexes progressively fill
the central subnucleus and characterize it off from contiguous
structures (Sims and Williams, 1990; Amaral et al., 1992; Braak
et al., 1994; Bohus et al., 1996). Other brain regions involved
include the cholinergic PPN (Garcia-Rill, 1991; Inglis and Winn,
1995; Rye, 1997; Pahapill and Lozano, 2000), oral raphe nuclei,
cholinergic magnocellular nuclei of the basal forebrain (Candy
et al., 1983; Whitehouse et al., 1983; Mesulam et al., 1992a), and
hypothalamic tuberomamillary nucleus (Del Tredici and Braak,
2004).

Excluding the SN and PPN, other striatal loop axes begin
early myelination and oppose undergoing pathological changes
(Braak et al., 2004). At stage 4, the poorly myelinated temporal
mesocortex involving the transentorhinal region between the
allocortex and neocortex is engaged in disease development for
the first time (Braak et al., 2003). Most patients transcend into
the symptomatic stages at this juncture. In the last stages 5–6, the
disease reveals itself in all of its clinical dimensions as the process
crosses the mature neocortex (Braak et al., 2004). During this
stage, a plexus of LNs develop in the second sector of Ammon’s
horn (Dickson et al., 1994). This feature is typical of stages
4–6 that even when sections through the SN are unavailable,
PD can be diagnosed based on Ammon’s horn lesions alone
(Del Tredici and Braak, 2004). During these final stages, the
neurodegenerative progression reaches its supreme topographic
degree. The SN appears practically stripped of melanoneurons,
appearing colorless upon macroscopic inspection (Braak et al.,
2004).

THE BG AND PD

The BG comprises the neostriatum containing the caudate
nucleus (CN) and putamen, the GP containing the GPe and
GPi, the STN, and the SN consisting of the SNr and SNc. These
structures contribute to anatomically and functionally isolated
loops involving certain thalamic and cortical regions. These
parallel circuits differ based on the cortical function involved
and are separated into “motor,” “associative,” and “limbic”
loops (Alexander et al., 1986; Alexander and Crutcher, 1990;
Middleton and Strick, 2000; Kelly and Strick, 2004). Reciprocal
projections concerning the striatum and GPi/SNr are divided
into two distinct pathways, namely a “direct” monosynaptic
connection, and an “indirect” projection via the interpolated

GPe/STN. GPi/SNr output projects mainly to ventral anterior
(VA) and ventrolateral (VL) thalamic nuclei, which project to the
cerebral cortex. Minor BG projections extend to the intralaminar
centromedian and parafascicular thalamic nuclei, and brainstem
structures such as the superior colliculus (SC), PPN, and reticular
formation. The striatum also obtains prominent dopaminergic
SNc input (Galvan and Wichmann, 2008). The BG are a major
brain system modulated by dopaminergic input from the SN
(Albin et al., 1989) with profound effects on behavior.

The striatum and STN obtains glutamatergic afferents
from exclusive cerebral or thalamic regions and transfer this
information to BG output nuclei, namely the GPi and SNr.
These BG output nuclei fire tonically and rapidly (DeLong and
Georgopoulos, 2011), thus brain areas receiving inputs from the
BG are continuously under strong tonic inhibitions (Hikosaka,
2007). Decreases in SNr/ GPi neuronal activity is caused by
direct input from the neostriatum, which are also GABAergic
and inhibitory (Yoshida and Precht, 1971; Hikosaka et al.,
1993b). An appealing theory states that the BG’s chief purpose
is apt behavior selection (Hikosaka et al., 1993a; Mink, 1996;
Nambu et al., 2002), where unwanted behaviors are subdued by
SNr/GPi-induced inhibition preservation or increment whilst
required behaviors are liberated by SNr/GPi-induced inhibition
decrement or elimination. Patients with BG dysfunctions portray
involuntary movement disorders such as tremor, dyskinesia,
dystonia, chorea, athetosis, and ballism (Denny-Brown, 1968).
These involuntary movements are instigated by a disruption of
the SNr/GPi-induced inhibition, consistent with parkinsonian
symptoms displaying involuntary tremulous movements,
diminished muscular power whether in activation or not,
impaired posture with an inclination to bend the trunk forwards,
festination from walking to running or poverty and slowness of
movement without paralysis (DeLong and Wichmann, 2007),
where the senses and intellect are uninjured initially. However,
these patients also display difficulty in initiating purposeful
movements known as akinesia, or slow and small movements
known as bradykinesia and hypokinesia (see Figure 2). This
movement disorder is elicited by an incomplete disinhibition
of the SNr/GPi-induced inhibition on thalamocortical systems
(Burbaud et al., 1998; Stein, 2009), ensuing in gait disturbances
with difficulties initiating or terminating walking (Azulay
et al., 2002). Additionally, dyskinesias induced by the DA
pre-cursor levodopa (L-DOPA) or DA agonist apomorphine, are
concomitant with the inadequate suppression of BG GABAergic
output (Nevet et al., 2004). This leads to abnormal oscillatory
firing of motor neurons in the aforementioned areas, inducing
tremor or other involuntary movements.

The BG is known for controlling locomotion and posture via
SNr-GABAergic output (Takakusaki et al., 2004c). In PD patients,
GABAergic BG output levels are abnormally increased (Miller
and DeLong, 1987; DeLong, 1990; Filion, 1991). Takakusaki et al.
(2004b) proposed that gait disturbances in PD are produced
by abnormal increases in SNr-induced inhibition of the MLR.
Furthermore, muscle rigidity might result from abnormally
increased PPN inhibition that would otherwise produce muscle
relaxation (see Figure 1B). Dystonia could be triggered by BG
GABAergic output diminution to the PPN, depicted by focal
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FIGURE 2 | Behavior selection: Red lines depict glutamatergic pathways, whereas green lines depict GABAergic pathways. Blue lines depict chemically composite

pathways. The corresponding colored notations show how each different movement disorder is elicited.

and involuntary muscle tone, posture, or movement changes
(Starr et al., 2005). Augmented GABAergic outputs would thus
overwhelm target areas including the SC, MLR, PPN, thalamo-
cortical circuits, and feasibly mouth movement and vocalization
centers, ensuing in akinesia or hypokinesia (see Figure 2).

Another reason for a deranged BG-GABAergic output in
the SNr/GPi would result from inputs coming from the
GPe/neostriatum (Hikosaka, 2007). These motor features are
often accompanied by non-motor issues such as depression,
anxiety, autonomic dysfunction, sleep disorders, and cognitive
impairment as a result of DA deficiency in non-motor portions
of the striatum and more widespread progressive pathologic
changes in the brainstem, thalamus, and eventually, the cerebral
cortex (Braak et al., 2003).

THE PPN AND BG-BRAINSTEM SYSTEM

Ascending PPN projections provide substantial innervation to
the SNc, STN, and GP (Mehler and Nauta, 1974; Graybiel, 1977;
Nomura et al., 1980; Saper and Loewy, 1982; Edley and Graybiel,
1983; Jacobs and Azmitia, 1992; Spann and Grofova, 1992; Lavoie
and Parent, 1994a,b,c). The inconsistency between the number
of ascending and descending projections indicate that the PPN is
not a major output component, but a modulating structure as it is
part of the many auxiliary loops in BG circuitry and activity. This
is because of its strategic position and network with the MCx,
thalamus, SN, STN, and CuN. PPN neurons exert excitatory
action upon various BG components facilitated mainly by Ach

(Woolf and Butcher, 1986). However, the presence of glutamate
and various neuropeptides within (Clements and Grant, 1990;
Clements et al., 1991; Côté and Parent, 1992) suggest that the
PPN also applies an expansive range of effects upon BG neurons
through various chemo-specific neuronal systems (Parent and
Hazrati, 1995). PPN neurons directly influence BG output
nuclei, namely the SNr and GPi, and therefore directly affect
information processed within the BG before approaching targets
such as the thalamus. Since the PPN establishes highly reciprocal
connections with the BG than any other brain region, both these
structures exhibit complex physiological interdependence crucial
for physiologic function (Mena-Segovia et al., 2004, 2008b).
These structures are interconnected either directly or indirectly
with every element, and the BG receives large converging input
from the PPN (Garcia-Rill, 1991; Pahapill and Lozano, 2000;
Mena-Segovia et al., 2004; Alderson and Winn, 2005).

The BG–brainstem (BG–BS) system functions throughout
the mesopontine tegmentum in controlling diverse behavioral
expressions. This includes automatic movement control
comprising periodic limb movements and postural muscle tone
adjustments throughout locomotion integrated with voluntary
control. It is also involved in awake–sleep state regulation.
The BG-BS system is thus accountable for the manifestation of
volitionally-directed and emotionally-instigated motor behavior
consolidation, and dysfunction of this system together with
the cortico-BG loop triggers behavioral disorders (Takakusaki
et al., 2004c). The BG performs planning and implementation
of deliberate movements through parallel BG-thalamocortical
loop sequences (Alexander and Crutcher, 1990; DeLong, 1990;
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Turner and Anderson, 1997), directing outflow to motor
networks in the brainstem (Inglis and Winn, 1995; Hikosaka
et al., 2000; Takakusaki et al., 2003) where central neuronal
complexes for muscle tone and locomotor movement control are
located (Garcia-Rill, 1991). Thus, BG outputs project through
thalamocortical loops to the brainstem, and are involved in
postural muscle tone and locomotion integrative assimilation
(Takakusaki et al., 2004b). Hikosaka et al. (2000) postulates that
the BG utilizes two types of output to regulate movements; one
via thalamocortical systems, and another via brainstem motor
networks (see Figure 3).

BG output to the cerebral cortex regulates voluntary
movement control processes, whereas specific movement
patterns such as saccades (Hikosaka and Wurtz, 1983a,b,c;
Hikosaka, 1991; Hikosaka et al., 2000; Sparks, 2002), vocalization
(Düsterhöft et al., 2000), and locomotion (Rossignol, 1996)
are generated by exclusive neuronal systems in the brainstem
and spinal cord. MCx projections are directed to the PPN
(Matsumura et al., 2000) and pontomedullary reticular formation
(Matsuyama and Drew, 1997), where muscle tone regulation
and the locomotor system are coordinated simultaneously
by dual feedback via net BG inhibition and MCx excitation
to the brainstem. In PD, GABAergic BG output is overactive
(Wichmann and DeLong, 1996, 2003), ensuing in sluggishness
and movement decreases by thalamocortical neurons, known
as bradykinesia and hypokinesia respectively. Contrarily,
increases in BG inhibition together with PPN cortical excitation
reductions would increase the level of muscle tone, known as
hypertonus. Likewise, excessive MLR inhibitions and cortical
excitation decreases in the brainstem reticular formation would
educe gait failure. Furthermore, primary MCx inactivity would
disrupt the locomotor programming necessary for defined gait
control (Hanakawa et al., 1999; Pahapill and Lozano, 2000).
Resultantly, this would constrain the degree of freedom for

FIGURE 3 | Volitional and automatic control of locomotor movements by the

BG-BS system: GABAergic BG output to thalamocortical and brainstem

neurons assimilates volitional and automatic movement control processes.

Adapted from Villiger and Piersol (1912).

locomotion (Takakusaki et al., 2004c). Gait disturbances where
delays are seen in freezing of gait (FoG), stance phase increases
in movement sequences and movement speed decreases are also
seen in PD invalids (Morris et al., 1994; Pahapill and Lozano,
2000). BG–BS system impairment would be the principal
foundation for PD-induced gait deficiencies (Takakusaki et al.,
2004c) as these gait failures resemble SNr-stimulated movement
(Takakusaki et al., 2003).

In saccadic control, the direct and indirect pathways
within the BG (Alexander and Crutcher, 1990; DeLong, 1990)
cause GABAergic SNr tonic neuronal inhibition of SC output
neurons, consequently preventing unnecessary saccades. The
direct pathway from the CN to SNr results in SC neuronal
disinhibition by eradicating this constant inhibition. Specifically,
phasic GABAergic output neuronal activity in the CN permits
saccade occurrence via tonic SNr-SC inhibition suspension
(Hikosaka, 1989). The indirect pathway, involving the GPe and
STN, further enhances the SNr-SC inhibition via excitatory
cortical input (Nambu et al., 2002). Hence, direct CN-SNr
and indirect CN-GPe-STN-SNr pathways induce contrasting
SNr-SC system effects. Concurrent interactions within the two
pathways generate additional discriminating information and
heighten the target systems’ neural signal spatial contrast.
Inversely, behavior interchange from locomotor subdual when
the indirect pathway dominates, to locomotor induction when
the direct pathway dominates, is produced via consecutive
communication of the pathways. This effect enhances temporal
contrast. Thus, BG saccadic control can be summarized via two
mechanisms. The first is by enhancement of tonic inhibition and
disinhibition, while the secondmechanism is through converging
and sequencing. These two modules are elicited via direct and
indirect pathway communication, andmight influence brainstem
networks besides thalamocortical networks (Hikosaka et al.,
2000) (see Figure 4).

Similarly, disinhibition and inhibition regulations are key
mechanisms for BG postural muscle tone and locomotion
control. Locomotor and muscle tone control systems are
normalized by the direct and indirect pathway balance via muscle
tone inhibitory regions in the PPN, MLR, and SC receiving
GABAergic input from the SNr. During locomotor movement
preparation, tonic SNr neuronal tonic activity continuously
inhibits both systems. When an activating signal occurs, the
direct pathway releases activity in these systems, causing
locomotion initiation followed by muscle tone level reduction.
Parallel SNr organization to the MLR/PPN also regulates muscle
tone level accompanying the initiation and termination of
locomotion (Takakusaki et al., 2004c).

Cholinergic PPN neuronal loss in PD (Hirsch et al., 1987;
Zweig et al., 1987, 1989; Jellinger, 1988) also attributes to attentive
and cognitive damages and sleep defects (Scarnati and Florio,
1997). This validates that the BG-BS are also involved in non-
motor function, specifically in REMS regulation, arousal and
emotional motor behaviors (Takakusaki et al., 2004c).

Gait and Locomotion
As mentioned, the PPN is a central part of the MLR within
the brainstem, where it generates and supports lower controlled
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FIGURE 4 | Saccadic control (A) and postural muscle tone/ locomotion control (B) by the direct and indirect pathways.

FIGURE 5 | The involvement of the PPN in the neuropathology of PD.

locomotion (Skinner and Garcia-Rill, 1984; Skinner et al.,
1990) via descending projections innervating foci in the lower
brainstem and medulla, comprising the oral pontine reticular
nucleus, the GiN, the medioventral medulla, and spinal cord
regions (Mitani et al., 1988; Rye et al., 1988; Nakamura et al.,
1989; Semba et al., 1990; Grofova and Keane, 1991; Scarnati et al.,
2011). These projections are associated with gait control and
posture primarily via locomotion inhibition, where increasing
levels of high stimulation drives the frequency of stepping from

walking to running (see Figure 5) (Garcia-Rill et al., 1987;
Garcia-Rill, 1991).

The cholinergic PPNc induces locomotion (Garcia-Rill et al.,
1987) together with other brainstem regions via prominent
sensory nuclei stimulating locomotion through direct outputs to
spinal cord regions of recognized locomotor generators (Pahapill
and Lozano, 2000). PPN neuronal response to somatosensory
excitation (Grunwerg et al., 1992; Reese et al., 1995) combined
with cholinergic PPN neuronal thalamic projections and inputs

Frontiers in Aging Neuroscience | www.frontiersin.org 8 April 2018 | Volume 10 | Article 99

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


French and Muthusamy The Pedunculopontine Nucleus and Parkinson’s Disease

from lamina 1 of the spinal cord, advocates that the PPN
modulates sensory information to thalamic nuclei. Thus, the PPN
plays a role as a dispatch amid the cerebral cortex and spinal
cord, providing feedback information vital for posture and gait
initiation modulation. This is enabled by ascending thalamic
cholinergic projections and deep cerebellar nuclei networks
(Pahapill and Lozano, 2000).

Non-cholinergic PPNd neurons receive input from the BG
and limbic structures, propositioning that the PPN acts as
an assimilator for BG motor choice output and incentive-
motivated commands from the striatal-pallidal complex to
deliver motivationally influenced activation of motor pattern
generators in the pons, medulla and spinal cord (Inglis andWinn,
1995). Such factors affect motor function like kinesia paradoxica.
Treatment via PPN activation would improve motor planning
and permit increasing motivational ability in stimulating
preserved motor programs for stereotyped movements (Pahapill
and Lozano, 2000).

Reward, Motivation, and Compulsion
The PPN is accountable for the phasic activity bursts in
SNc DA cells, which plays a key role in learning and
preserving instrumental tasks (Scarnati et al., 1988; Futami
et al., 1995). Primary PPN reward stimuli originate from the
lateral hypothalamus, but excitatory reward-prediction stimuli
spawns a condition stimulus-elicited DA surge traversing the
ventral striatum–pallidum pathway, receiving predominantly
limbic cortex input (Schultz et al., 1992). Striosomal cells regulate
response to primary reward after conditioning via suppressing
DA burst response through the striosomal-SNc pathway (Gerfen,
1992). Striosomal cells also modulate the adaptive scheduled
reward expectation that annuls the predicted reward at the
predicted interval (Schultz et al., 1997). DA cell activity is
therefore an exclusive parallel act of PPN inactivation, compared
to a secondary influence on motivation or abridged capability of
task performance. The PPN thus serves as an integrative interface
amidst innumerable stimuli necessary for executing intended
behaviors (Kobayashi et al., 2004). This enables the fundamental
activities for motor command initiation and external sensory
dispensation via arousal regulation and attentive conditions
through dopaminergic systems (Takakusaki et al., 2004c).

PPN lesions ensued in impaired attention (Inglis et al.,
2001) and memory learning during a trained incitement and
a prime reward (Inglis et al., 1994, 2000). This advocates
that PPN inactivation has variable effects on non-dopaminergic
cells in the VTA. Firstly, PPN neurons respond to the same
task stimuli, whether visual- or auditory-activating DA cells.
Secondly, PPN responses are governed by phasic inception
patterns observed in DA cells. Thirdly, PPN cells respond
before DA cells, permitting PPN-DA information transfer.
Finally, PPN suppression subdues DA cell responses to stimuli
without upsetting baseline firing frequency (Pan and Hyland,
2005). Therefore, auditory, visual, and somatosensory trained
incitements stimulate DA cells (Romo and Schultz, 1990; Schultz
and Romo, 1990), with bias toward auditory incitements at
tremendously brief latencies, strictly programmed to the stimulus
interval. The preference of PPN cells for tone and light increases

the likelihood that homogenous afferent projections regulate
DA cell action, with biasness for either constituent (Wallace
and Fredens, 1988; Comoli et al., 2003). Thus, the PPN and
SC supplement each other in dispatching sensory knowledge
of different stimuli. PPN neuronal activity predisposed toward
auditory responses has a functionally imperative role in reducing
DA cell responses without substantial effects on baseline firing
rate via a visual component inactivation. This establishes that
the PPN selectively controls DA cell bursting rather than tonic
resting activity (Floresco et al., 2003), and that PPN inputs are
necessary for producing DA cell surge reactions to significant
sensory stimuli (Schultz, 1998; Brown et al., 1999). The PPN is
therefore imperative for arousal, attention, motivation, learning,
and specifically stimulated–reward conditions (Steckler et al.,
1994).

PPN lesions do not disrupt brain stimulation reward value
however (Waraczynski and Perkins, 1998), suggesting that
it performs as a primary sensory and motivational system
interface toward delivering communication signals irrespective
of reward value. DA cells typically react staggeringly when signals
are reward-connected, while PPN cells react non-contingently,
suggesting that separate, reward-information-bearing pathways
gate PPN inputs. Hence PPN inputs have a dual role, to provide
precise and brief latent information toward sensory stimuli
intervals and advanced-level function information transmission
concerning signals dispatched via sensory-attention regulating
mechanisms (Pan and Hyland, 2005).

Research establishes that lateral hypothalamic brain
stimulation not only rewards, but also drive-induces (Coons
et al., 1965; Glickman and Schiff, 1967). Rewarding hypothalamic
brain stimulation depends on trans-synaptic induced release
of Ach in the VTA (Yeomans et al., 1993), where dominant
portions of these fibers synapse in PPN cholinergic efferents
relaying messages back to the VTA (Yeomans et al., 1993).
These cholinergic PPN neurons provide non-specific facilitation
for reward-connecting behaviors, and therefore act as a relay
amid limbic-incentive organization and brainstem locomotor
machinery (Steckler et al., 1994). Due to its position within the
mesolimbic DA system encompassing the VTA and NAcc, it is
entangled in brain mechanisms and neural circuitry formation
involved in reward processing, which can lead to motivation and
compulsion.

Rapid Eye Movement Sleep (REMS)
PPN and LDT cholinergic neurons are involved in arousal
state maintenance and REMS generation (Rye, 1997). During
sleep, PPN cholinergic activation of the cortex transpires via
projections to the thalamocortical network to subdue slow delta
waves and elicit cortical stimulation (Belaid et al., 2014). This
leads to REMS, through REM-on and –off cellular activity
together with the locus coeruleus and dorsal raphe nuclei (DRN)
(McCarley and Chokroverty, 1994). Reduced inhibitory input
from the SNr/GPi nuclei to the PPN results in higher intrinsic
activity causing cortical activation and electroencephalography
(EEG) desynchronization (Reiner et al., 1988) leading to REMS
(Steriade, 1996). These neuronal mechanisms that induce REMS
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and muscular atonia together with PPN cholinergic projections
are under SNr GABAergic inhibition regulation.

PD patients are known to experience several sleep disorders,
including reduction of REMS sleep period and REMS behavior
disorder (RBD) (Bliwise et al., 2000; Eisensehr et al., 2001). This is
because decreases in BG dopaminergic activities is also involved
in REMS reduction and RBD (Rye et al., 1999; Albin et al.,
2000), hence providing a lucid explanation for the pathogenesis
of sleep disturbances in PD (Takakusaki et al., 2004c; French
and Muthusamy, 2016). A summary of the different maladies
associated with the PPN in PD are listed in Table 1.

TREATMENT/DEEP BRAIN STIMULATION

Electrode recordings in deep brain stimulation (DBS) postulate
that uncontrolled abnormal pathological oscillations throughout
motor networks in the STN, GP, and thalamus are concomitant
with motor symptoms in PD (Hammond et al., 2007). Similarly
BG networks oscillating at a pathological beta (β) range of
20Hz, driven by cerebral neurons firing in either “burst” or
“tonic” modes is associated with akinesia (Stein, 2009). Successful
alleviation of akinesia with L-DOPA enables the system to
break away from this pathological beta repression (Kühn et al.,
2008). High frequency stimulation, applied via DBS also subdues
pathological synchronization (Brown and Eusebio, 2008). PD

symptoms are lessened by DBS via preventing pathological
neuronal network oscillations that destabilize them, and are
successful as they abolish nodes responsible for oscillation
generation itself. DBS is thus permanently effective by driving
neurons tonically so that pathological oscillations causing the
burst/silence mode are reversible.

Neurophysiologically, cortical bursts normally govern PPN
input and orchestrate field potentials and neuronal discharges
to the cortical rhythm so that PPN local field potentials
and neuronal discharges are synchronized with those of
MCx activity (Aravamuthan et al., 2008). However, these
synchronies reverse after cell lesions and PPN neurons fire
mostly throughout positive swings in the cortex when they
should be silent. This indicates that inhibitory GP and SNr
output is predominant input to the PPN, rather than excitatory
MCx output. Stimulation of the GP and SNr also requires
adequate glutamate conduction. This substitutes dominant PPN
firing via inhibitory input for normal excitatory input from
the MCx and STN to the PPN. The β-band is responsible
for associated akinesia, where β suppression increases with the
complexity of the intended movement while its latency predicts
movement onset. This means that the earlier the suppression,
the shorter the movement latency. Therapeutic interventions
reducing akinetic symptoms reduce enhanced synchronization
in the β band and facilitates regular gamma oscillations (Brown
et al., 2001).

TABLE 1 | Maladies associated with the PPN in PD, the source and affected brain components, as well as its consequence/ indications.

Malady type Source Brain components affected Consequence/ Indications

LOCOMOTOR

Akinesia/bradykinesia/hypokinesia Overactive GABAergic BG output MCx, thalamus, BG, PPN, SC, MLR Decreases in velocity and amount of

movement

Hypertonus Increases in BG inhibition Increases in PPN

inhibition

Decreases in cortical PPN excitation

Direct-indirect pathway imbalance via

increased SNr inhibition

MCx, BG, PPN Increased muscle tone

Dystonia Diminution or instability of BG GABAergic

outputs to the PPN

BG (SNr, Gpi), PPN Central and spontaneous fluctuations

in muscle tone, posture, or

locomotion

Gait disturbances/ failure Excessive MLR inhibition via SNr-GABAergic

output

Cortical excitation of brainstem reticular

formation

Decreases in cortical stimulation of the

brainstem reticular formation

Inactivity of the PMC

Dysfunction of BG-BS system

Direct-indirect pathway imbalance

MLR

MCx, brainstem

Primary MCx

SNr, PPN, MLR, SC

Uncontrolled gait

Limited movement

Freezing of gait, increases in stance

phases in locomotor cycles and

decreases in locomotor velocity

COGNITIVE

Impaired attention and memory

learning

PPN lesions PPN Inability to concentrate, unable to

retain memory

Motivation and compulsion PPN lesions, impaired brain mechanisms and

neural circuitry formation involved in reward

processing

NAcc, VTA, PPN Obsessive compulsive disorder

SLEEP

REMS Decreases in BG dopaminergic activity SNr, GPi, DRN, LDT, PPN REMS behavior disorder
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The PPN area might be a good prospective DBS objective
concerning freezing and other gait disorders’ treatment
associated with PD, where data shows that cholinergic
denervation due to PPN neuronal degeneration causes DA
non-responsive gait and balance impairment (Karachi et al.,
2010; Grabli et al., 2013). Imaging studies in PD patients
propose that unilateral PPN DBS intensifies cerebral blood flow
bilaterally into the central thalamus and cerebellum (Ballanger
et al., 2009). However, recognized assessments support bilateral
DBS (Khan et al., 2012) ascertained to be superior particularly
for controlling FoG. Thevathasan et al. (2012) further supports
this, concluding that bilateral stimulation was more successful
in a specific subgroup of PD patients by ∼200%. This study
exhibited concrete unprejudiced, double-blinded proof that
an explicit subcategory of Parkinsonian patients benefit from
bilateral stimulation of a caudal PPN region just below the
pontomesenphalic junction that discriminately improves
FoG. This did not include inconsistencies in step length
however, which could be furtive freezing interrupting the
smooth execution of gait (Thevathasan et al., 2012). Long-term
outcomes would unquestionably need further substantiation
via supplementary studies or randomized trials with longer
follow-up periods involving a higher number of patients and
exclusive criteria.

Most PPN DBS studies denote alleviation in patients
disturbed by freezing and falls although outcomes are variable.
This possibly reflects patient choice, target option heterogeneity,
surgical procedure differences and stimulation protocols
(Hamani et al., 2016a). This leads to a number of challenges to be
solved, including the prime target identification, surgical method
choice that optimizes electrode placement, precision, and impact
of surgical procedures, intraoperative target reliability, and
procedural modifications in postoperative electrode position
validation. Nonetheless, the procedure appears to provide
benefit to selected patients and is comparatively safe. One
important limitation in comparing studies from different centers
and analyzing outcomes is great target variability and surgical
techniques (Hamani et al., 2016b).

Chronic PPN stimulation is usually combined with
stimulation of other targets, including the STN, GPi, and
the caudal zona incerta due to its superiority compared to PPN
DBS alone. However, combined stimulation poses challenges
in the effectual assessment of DBS in each target, and also in
enlightening the complex relationship between medication and
stimulation. A particular problem is the use of low-frequency
PPN stimulation and high-frequency stimulation in other targets,
where this necessitates intricate programming or utilization of a
supplementary pulse generator. Another issue is the concordance
on the ideal target position within the PPN region, where it is
ambiguous as to whether electrodes should be implanted in the

rostral PPN at the level of the inferior colliculus or caudal PPN in
a region about 4mm below the inferior colliculus. A reasonable
approach would be to insert contacts in both rostral and caudal
PPN regions since available data is still vague, and also because
the PPN is oriented along the long axis of the brainstem. Since
the PPN is partially degenerated in PD, smaller-spaced electrodes
might be preferable. It would also be vital to develop a specified
set of resting and movement-related intraoperative local field
potentials while conducting PPN DBS as frequency bands in the
alpha, β, and theta ranges and movement-related potential were
all recorded from the PPN region (Hamani et al., 2016b).

PPN DBS is still a relatively novel intervention in PD, and the
numerous challengesmentioned beforemust be resolved. Despite
these trials, the procedure provides benefit to selected patients
and appears relatively safe. The future role of PPN DBS in the
armamentarium of surgery for PD patients is still uncertain.
Unquestionably, more studies are needed to provide more solid
data on the advantages and limits of chronic stimulation (Hamani
et al., 2016b).

CONCLUSION

Understanding the function of the PPN and its utility in themany
neuronal circuitries of the brain is vital for neurophysiological
knowledge. This would ensue in the understanding of how
maladies such as Parkinson’s disease occurs along amid
its consequences, and subsequently help in producing the
appropriate treatment needed to cure and control these
disorders. A promising and long-term treatment would be DBS,
which could vastly improve patients’ quality of life. Further
studies would definitely need to be conducted to elucidate
further on such disorders especially in terms of genetics and
biochemistry.
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