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Mild cognitive impairment (MCI), which generally represents the transition state between
normal aging and the early changes related to Alzheimer’s disease (AD), has drawn
increasing attention from neuroscientists due that efficient AD treatments need early
initiation ahead of irreversible brain tissue damage. Thus effective MCI identification
methods are desperately needed, which may be of great importance for the clinical
intervention of AD. In this article, the range scaled analysis, which could effectively detect
the temporal complexity of a time series, was utilized to calculate the Hurst exponent
(HE) of functional magnetic resonance imaging (fMRI) data at a voxel level from 64 MCI
patients and 60 healthy controls (HCs). Then the average HE values of each region of
interest (ROI) in brainnetome atlas were extracted and compared between MCI and HC.
At last, the abnormal average HE values were adopted as the classification features
for a proposed support vector machine (SVM) based identification algorithm, and the
classification performance was estimated with leave-one-out cross-validation (LOOCV).
Our results indicated 83.1% accuracy, 82.8% sensitivity and 83.3% specificity, and an
area under curve of 0.88, suggesting that the HE index could serve as an effective
feature for the MCI identification. Furthermore, the abnormal HE brain regions in MCI
were predominately involved in left middle frontal gyrus, right hippocampus, bilateral
parahippocampal gyrus, bilateral amygdala, left cingulate gyrus, left insular gyrus, left
fusiform gyrus, left superior parietal gyrus, left orbital gyrus and left basal ganglia.

Keywords: mild cognitive impairment, range scaled analysis, Hurst exponent, brainnetome atlas, support vector
machine

INTRODUCTION

Mild cognitive impairment (MCI), which is characterized by memory complaints, attention
deficits and other reduced cognitive functions (Petersen, 2007; Han et al., 2011; Zhang
et al., 2012), generally represents the transition state between normal aging and the early
changes related to Alzheimer’s disease (AD; Desikan et al., 2009; Wang et al., 2015).

Abbreviations: AD, Alzheimer’s disease; BOLD, blood oxygen level dependent; fMRI, functional magnetic resonance
imaging; HCs, healthy controls; HE, Hurst exponent; LOOCV, leave-one-out cross-validation; MCI, mild cognitive
impairment; RBF, radial basis function; ROI, region of interest; rs-fMRI, resting-state functional magnetic resonance
imaging; SVM, support vector machine.
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Overall, MCI patients progress to AD at a rate of 10%–15%
per year (Khazaee et al., 2016), and roughly half of them will
evolve to AD within 3–5 years (Long et al., 2016). Recently, a
great deal of attention from neuroscientists, neurologists and
neuroradiologists has been paid to MCI due that efficient AD
treatments need early initiation ahead of irreversible brain tissue
damages (Davatzikos et al., 2008). Therefore, developing accurate
and effective MCI identification methodologies that may be of
great importance for clinical interventions of AD are desperately
needed.

Functional magnetic resonance imaging (fMRI) has received
increasing interests because it could provide a primary method
of mechanism detection, diagnostic evaluation or therapeutic
monitoring for MCI and AD (Fornito and Bullmore, 2010; Wang
et al., 2015). Previous studies demonstrated that the aberrant
and spontaneous neuronal activities in MCI or AD could be
detected by resting-state fMRI (rs-fMRI; Zhang et al., 2012;
Brier et al., 2014), and the abnormal brain regions mainly
involved in hippocampus, parahippocampal gyrus, posterior
cingulate gyrus and precuneus cortex, etc (Baron et al., 2001;
He et al., 2007). In addition, many recent studies employed
rs-fMRI data to identify MCI or AD from healthy controls
(HCs) by extracting a single type of feature or multi-level
characteristics (Chen et al., 2011; Dai et al., 2012; Zhang et al.,
2012; Brier et al., 2014; Long et al., 2016), and the recognition
accuracies were varied with a wide range, suggesting the MCI
or AD discrimination needs to be continued. Generally, an
effective rs-fMRI based MCI or AD discrimination method
should: (I) exhibit an excellent discrimination accuracy between
MCI or AD and HC; (II) specifically quantify fundamental
characteristics of Alzheimer’s pathology in individuals with MCI
or AD.

Prior studies demonstrated that blood oxygen level dependent
(BOLD) signals have been shown scale-free dynamics (Ciuciu
et al., 2012; Wei et al., 2013), and the power spectrum of
fMRI signals can be written as S(f ) ∝ 1/|f |β with β < 1
(where f represents frequency; Maxim et al., 2005; Gentili
et al., 2015), suggesting that the fMRI signals have fractal
or fractal-like properties. Hurst Exponent (HE), which has a
direct linear relationship with the parameter β = 2HE − 1,
could well display the fractal dynamics of fMRI signals via
describing the self-similarity of a time series. In fact, the HE,
an index ranging from 0 to 1, could divide the time series
into three categories according to its values. A HE bigger
than 0.5 indicates a persistent or positively correlated time
series, meaning that the time series generally causes changes
that fluctuate in the same direction along time. A HE equal
to 0.5 stands for a random white noise. A HE smaller than
0.5 implies an anti-correlated or anti-persistent time series. In
this case, the dynamics of a time series would keep a reversing
pattern in time, and a decrease in the time series generally would
be followed an increase and vice versa (Gentili et al., 2015).
Recently, HE index has been utilized to measure the changes of
BOLD signals related to major depressive disorder, normal and
pathological aging, cholinergic modulation, AD, autism disorder
and different personality traits (Maxim et al., 2005; Wink et al.,
2006; Lai et al., 2010; Lei et al., 2013; Gentili et al., 2015;

Jing et al., 2017). However, little information was known about
the HE changes in MCI patients, and it still remains unknown
whether the HE index could serve as an effective parameter for
MCI classification.

In this article, the HE index of fMRI signals were first
calculated using range scaled analysis at a voxel level. Then
the average HE values of each region of interest (ROI) in
brainnetome atlas, a newly structural and functional brain
partition scheme, were extracted and compared between MCI
and HC groups. At last, the abnormal HE values were adopted as
the classification features for a proposed support vector machine
(SVM)-based classification method to identify MCI patients
from HC.

MATERIALS AND METHODS

Participants
Sixty-nine MCI patients and 63 HC subjects participated in
the current study, and none of MCI patients had taken any
medications that interfere with cognitive functions. All MCI
patients were recruited from the memory outpatient clinic
at Nanfang Hospital, and the clinical diagnosis of MCI was
made by two experienced neurologists based on the following
criteria: (1) memory complaints, confirmed by patient-self
or their relatives; (2) normal or near normal performance
on cognitive function; (3) normal or near normal activities
of daily life; (4) Clinical Dementia Rate equals to 0.5; and
(5) absence of dementia according to the DSM-IV (Diagnostic
and Statistical Manual of Mental Disorders, 4th edition, revised).
The HC participants matched well with MCI patients on
gender, age and education level and were collected from local
community by print advertisements, and the inclusions for
all participants were: (1) no other nervous or psychiatric
diseases that can intervene with cognitive functions, such
as Parkinson’s disease, depressive disorders and encephalitis,
etc; (2) no history of stroke or dependence of alcohol;
(3) no systemic diseases that cause cognitive impairments;
and (4) no medication conditions that can influence cognitive
performance. All subjects were undergone several clinical
assessments including Clinical Dementia Rate, Mini-Mental
State Examination (MMSE) and Auditory Verbal Learning Test
(AVLT). This study was approved by the ethics committee
of Nanfang Hospital affiliated to Southern Medical University,
and the informed written consents from all subjects were
obtained in accordance with the Declaration of Helsinki. Five
MCI patients and three HC subjects were discarded due to
excessive head motion during the scan, and the detailed clinical
characteristics of the remaining participants were summarized
in Table 1.

Data Acquisition
All images were collected on a 3 Tesla Siemens scanner with
8-channel radio frequency coil at Nanfang hospital. Headphones
and a foam padding were utilized to reduce the scanner noise
and limit the head motion during the scan, and all subjects
were instructed to close their eyes, to keep mind relax, to not
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TABLE 1 | Participants’ demographic and clinical characteristics.

Characteristics MCI HC P values

Gender (M/F) 64 (28/36) 60 (26/34) 0.96#

Age (years) 67.14 ± 7.33 65.27 ± 7.30 0.16∗

Education (years) 9.73 ± 4.24 10.07 ± 4.27 0.66∗

CDR 0.5 0 0∗

MMSE 23.16 ± 2.77 27.40 ± 3.15 <0.001∗

AVLT-immediate recall 7.99 ± 2.60 12.94 ± 2.94 <0.001∗

AVLT-delay recall 3.64 ± 2.89 9.77 ± 2.79 <0.001∗

AVLT-recognition 7.11 ± 3.55 11.58 ± 2.23 <0.001∗

Values are mean ± SD unless the SD was not calculated. M, male; F, female. CDR, Clinical Dementia Rating scale; MMSE, Mini-Mental State Examination; AVLT, Auditory
Verbal Learning Test. #The P value was obtained by Chi-square test. ∗The P values were obtained by two-sample two-tailed-t-test.

fall asleep and to not move their head. Resting-state fMRI
were acquired using an echo-planar imaging sequence with
the following parameters: repetition time = 2000 ms, echo
time = 40 ms, flip angle = 90◦, matrix size = 64 × 64,
number of slices = 28, field of view = 240 × 240 mm2, slice
thickness = 4 mm, and voxel size = 3.75 × 3.75 × 4 mm3.
Two-hundred and thirty-nine volumes were collected for each
subject within 478 s. T1-weighted structural images for all
subjects were acquired by using magnetization-prepared rapid
gradient echo sequence with the following parameters: repetition
time = 1900 ms, echo time = 2.2 ms, inverse time = 900 ms, flip
angle = 9◦, matrix = 256 × 256, number of slices = 176, slice
thickness = 1 mm, and voxel size = 1× 1× 1 mm3.

Data Preprocessing
Data preprocessing for all images were carried out with Statistical
Parametric Mapping (SPM8)1. The first 10 functional volumes
were discarded due to signal equilibrium and participant’s
adaptation to the scanner environment, and the remaining
229 volumes were corrected for different acquisition time
between slices. Then all volumes were realigned to the
first volume by using a six-parameters rigid-body spatial
transformation to compensate for head movement effects.
Eight participants (five MCI patients and three HC subjects)
were discarded because of excessive head motion (2 mm and
2◦criteria). To improve the spatial normalization accuracy,
the realigned images were normalized into the Montreal
Neurological Institute space by using the parameters obtained
from structural normalization, and all normalized functional
images were re-sampled into a voxel size of 3 × 3 × 3 mm3.
Next, all the normalized images were detrended, and the spurious
covariates including the six head motion parameters obtained
from rigid-body transformation, signals of white matter and
ventricular system were regressed. At last, a temporal band-pass
filter (0.01–0.10 HZ) was carried out on the time series of
each voxel to reduce the effects of low-frequency drifts and
high-frequency cardiac and respiratory noise, and the filtered
images were smoothed with a 4 mm full width at half maximum
Gaussian kernel.

HE Calculation and Feature Selection
The range scaled analysis, which is an effective method to
detect the temporal complexity of a time series, was utilized

1http://www.fil.ion.ucl.ac.uk/spm

FIGURE 1 | The detailed brainnetome atlas which including 210 cortical
sub-regions and 36 subcortical sub-regions.

to calculate the HE index of fMRI signals at a voxel level, and
the detailed principle of HE calculation was reported in our
previous study (Jing et al., 2017). In addition, the brainnetome
atlas (Figure 1), which partitions the cerebral cortex into
246 ROIs including 210 cortical sub-regions and 36 subcortical
sub-regions (Fan et al., 2016), was used to extract the HE
index feature for the SVM-based classification algorithm. In
this article, the average HE values of each ROI in brainnetome
atlas were extracted as the candidate features. Considering
that properly and correctly reducing the number of features
could not only improve the classification performance but also
speed up the computation (De Martino et al., 2008; Pereira
et al., 2009). Thus a Fisher score method and two-sample two-
tailed-t-test (P < 0.05, uncorrected) were utilized to select out
the discriminative HE features between MCI patients and HC
subjects. The detailed Fisher score criterion for each candidate
feature is defined as:

FS =
n1(m1 −m)2 + n2(m2 −m)2

n1σ 2
1 + n2σ 2

2
(1)

Here n1 and n2 are the number of the samples on each group,
m1 and m2 are the respective mean value of the feature, m
represents the mean value of the feature, σ 2

1 and σ 2
2 represent the
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FIGURE 2 | A flowchart of the proposed support vector machine (SVM)-based classification method for mild cognitive impairment (MCI) identification.

FIGURE 3 | (A) The relationship between the Mini-Mental State Examination (MMSE) score of MCI patients and prediction values; (B) receiver operating
characteristics curve of the proposed classification method, and the area under curve is 0.88.

variance of the feature on each group. A high Fisher score value
indicates a strong discriminative ability of the feature to some
degree. At last, it’s worth noting that the feature selection was
only performed on the training set of per leave-one-out cross-
validation (LOOCV) fold, which could reduce the overfitting of
the classification algorithm.

SVM-Based Classification Method
The SVM algorithm, which has been widely utilized for its
powerful recognition function as well as its simple theory and
implementation, was originally proposed for binary classification
problems based on statistical learning principles (Beheshti
and Demirel, 2016). During the training process, the SVM
algorithm seeks the optimal separation hyper-plane in the
feature space where the input features were mapped into using
a kernel function, and each divided subspace corresponds
to one class of training set. In the same way, all the test
samples could be labeled depending on which subspace they are
mapped into after the training process (Magnin et al., 2009).

In this article, the LibSVM toolbox2 was utilized for SVM
implementation.

The radial basis function (RBF) defined as (X,Xi)→

K(X,Xi) = eγ |X−Xi|2 was adopted as the kernel function for
the SVM algorithm. To improve classification performance, a
grid-search method was utilized to optimize two parameters:
the parameter γ representing the width of RBF kernel and
the punishment factor C adjusting the importance of error
separation. In detail, at each pair of (γ, C), three steps including
the above-mentioned feature selection, the training of the
SVM-based algorithm and the prediction of the test samples
were performed in succession, and the classification performance
was estimated with LOOCV. It’s worth noting that the feature
selection was only carried out on the training set of each
LOOCV fold. The whole classification process was repeatedly
performed with (γ, C) varying along a grid with γ = 2−8,
2−7.5,. . .,28 and C = 2−8, 2−7.5,. . .,28, which is referred as
the grid-search method. Considering that each pair of (γ, C)

2http://www.csie.ntu.edu.tw/∼cjlin/libsvm
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TABLE 2 | The number of features retained in per fold of leave-one-out cross-validation (LOOCV) with brainnetome atlas.

Fold No. of features Fold No. of features Fold No. of features Fold No. of features

1 16 32 17 63 15 94 15
2 15 33 16 64 16 95 15
3 17 34 16 65 15 96 15
4 17 35 14 66 14 97 15
5 16 36 15 67 16 98 15
6 16 37 14 68 16 99 15
7 16 38 15 69 15 100 16
8 15 39 15 70 16 101 14
9 15 40 16 71 15 102 15

10 15 41 16 72 16 103 16
11 15 42 15 73 14 104 14
12 15 43 14 74 15 105 15
13 14 44 14 75 14 106 14
14 16 45 16 76 16 107 15
15 16 46 16 77 16 108 16
16 15 47 16 78 17 109 15
17 14 48 15 79 16 110 16
18 15 49 14 80 16 111 16
19 15 50 17 81 16 112 15
20 15 51 15 82 16 113 15
21 16 52 14 83 15 114 17
22 15 53 14 84 14 115 15
23 16 54 14 85 16 116 16
24 15 55 14 86 16 117 14
25 17 56 15 87 16 118 14
26 15 57 16 88 14 119 15
27 16 58 16 89 16 120 15
28 16 59 15 90 14 121 16
29 16 60 16 91 16 122 15
30 14 61 16 92 16 123 15
31 14 62 14 93 15 124 14

FIGURE 4 | The brain regions with abnormal hurst exponent (HE) values in
MCI patients by using brainnetome atlas.

corresponds to an accuracy, the best accuracy rate on the grid
of 33 × 33 was acquired as the classification accuracy of the
classifier. A flowchart of the detailed classification process was
shown in Figure 2.

RESULTS

Applying the proposed SVM-based classification method to
identify MCI patients from HC subjects, our results indicated
83.1% accuracy, 82.8% sensitivity and 83.3% specificity. Besides,
the receiver operating characteristics curve and the relationship
between MMSE and prediction values were shown in Figure 3,
and the area under curve of the classification algorithm is 0.88,
indicating a powerful classification performance.

The number of features retained in per fold of LOOCV was
shown in Table 2. In addition, the abnormal HE brain regions
with the retained times of the HE features no less than 118
(124× 0.95, 124 is the total number of the samples) in the whole
LOOCV process were shown in Figure 4, and the Fisher score
values of these abnormal HE features were displayed in Figure 5.
Compared to HC subjects, these abnormal HE brain regions
in MCI patients were predominately involved in left middle
frontal gyrus, right hippocampus, bilateral parahippocampal
gyrus, bilateral amygdala, left cingulate gyrus, left insular gyrus,
left fusiform gyrus, left superior parietal gyrus, left orbital gyrus
and left basal ganglia.

DISCUSSION

This study proposed an effective classification method to identify
MCI patients from HC subjects using HE index of rs-fMRI.
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FIGURE 5 | The Fisher score values of these abnormal HE features which
were retained no less than 118 times (124 × 0.95, 124 is the total number of
the samples) in the whole leave-one-out cross-validation (LOOCV) process.

A promising classification performance was obtained with an
accuracy of 83.1% and an area under curve value of 0.88,
suggesting that the proposed SVM-based method was effective
in identifying MCI from HC subjects, and the calculated HE
index could serve as an effective feature for the SVM-based
classification algorithm.

To obtain high discrimination accuracy for MCI
classification, three steps were taken for the proposed
classification method. First, previous studies demonstrated
that properly reducing the number of features could not only
improve the classification performance but also speed up the
computation (Dosenbach et al., 2010; Dai et al., 2012). Thus
two-sample two-tailed-t-test and Fisher score criteria were
both utilized to select out the discriminative HE features in
this article, and the classification performance was improved
significantly compared to without feature selection. In fact,
we firstly tried a total 246 HE features by using the proposed
SVM-based algorithm, and the classification accuracy without
feature selection was lower than 70%. It needs to note that
the feature selection was only performed on the training set,
which could reduce the overfitting of the classifier. Second,
the RBF kernel function was adopted as the kernel function
due that it could deal with the case when the relationship
between labels and features is nonlinear (Hsu et al., 2003), which
also has an important impact on classification performance.
In this article, we also utilized the linear kernel function for
MCI classification, and the discrimination rate was 78.2%,
which was lower than that with RBF kernel. At last, the grid
search method, which has a high learning accuracy and could
be implemented with parallel processing (Long et al., 2016),
was utilized to optimize the two parameters of SVM, which
also improved the classification performance. In addition,
to further validate the effectiveness of the proposed MCI
classification method, the dataset was randomly split into two

subsets including a training subset (42 MCI and 40 HC), a
testing subset (22 MCI and 20 HC). The training subset was
utilized to train the classification algorithm and optimize the
two parameters through an internal cross-validation procedure
which averagely divided the training set into two groups
to train the algorithm with one group and then predict the
other group mutually (Dyrba et al., 2015). Then the final
performance of the classification algorithm was estimated
with the testing subset. A promising accuracy of 85.71% was
obtained, which also indicated that the proposed SVM-based
method is effective in identifying MCI patients form HC
subjects.

In this article, we found that the abnormal HE brain regions
in MCI patients mainly involved in left middle frontal gyrus,
right hippocampus, bilateral parahippocampal gyrus, bilateral
amygdala, left cingulate gyrus, left insular gyrus, left fusiform
gyrus, left superior parietal gyrus, left orbital gyrus and left
basal ganglia. Almost all these brain regions were consistent
with previous studies that analyzed the structural and functional
data of MCI or AD patients with conventional statistical
analysis (Hirata et al., 2005; Lerch et al., 2008; Xie et al.,
2012). Themiddle frontal gyrus, hippocampus, parahippocampal
gyrus, cingulate gyrus and orbital gyrus belong to the default
mode network (Dai et al., 2012; De Vogelaere et al., 2012).
Currently, the behavioral correlations of default mode network
still remain uncharacterized although some investigators had
proposed several potentially inclusive hypotheses that it mediates
processes such as reviewing past knowledge and preparing for
future actions (Greicius et al., 2004). The abnormal HE values in
these brain regions supplementarily supported the abnormalities
of default mode network in MCI patients. In addition, the
amygdala and insular gyrus were labeled with significant atrophy
in MCI patients in previous voxel-based morphometry studies
(Hämäläinen et al., 2007), and the fusiform gyrus showed
significantly aberrant amplitude of low-frequency fluctuations
of BOLD signals in MCI (Wang et al., 2015). Furthermore, the
basal ganglia was associated with cognitive functions such as
mood swings or disorders (de Oliveira and de Oliveira, 2013). All
the above-mentioned evidences suggested that these abnormal
brain regions were related to the mechanisms underlying MCI
patients.

The HE analysis has already been utilized to describe complex
properties of biological signals including electroencephalogram
and electrocardiogram (Costa and McCrae, 1992; Ignaccolo
et al., 2010). By applying the HE analysis method to
BOLD signals, some investigators found that the HE value
of fMRI signals in gray matter was higher than in white
gray (Maxim et al., 2005), and decreased with cholinergic
transmission enhancement and augmented in hippocampus
with aging (Wink et al., 2006). Nevertheless, these findings
could not conclude that a higher HE value is associated with
worse brain functioning. It seems to reflect some inherent
patterns of spontaneous discharge and the HE could be
modulated by different psychotic or psychological variables
(Gentili et al., 2015). In this article, the HE analysis was
applied in MCI patients, and some core brain regions were
detected with HE abnormalities. It demonstrated that the
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persistent behavior of brain activities in these abnormal
regions were changed, which may provide some information
for the mechanisms underlying MCI patients. However, the
physiological significance of HE index still remains unknown
currently, and future studies should pay more attention to
confirm it through the multi-modal imaging validation in animal
models.

Several issues need to be addressed in this article. First,
some other structural or functional brain partition atlases
exist and these brain parcellation atlases could also be used
for identifying different psychiatric disorders. Different
parcellation schemes may lead to different classification results.
Compared to the widely used automated anatomical labeling
atlas, the brainnetome atlas that simultaneously combines
information from structural and functional connections
obtained better classification performance in differentiating
major depressive disorder from HC in our previous study
(Jing et al., 2017). Thus the brainnetome atlas was adopted
to discriminate MCI from HC subjects in this work. Second,
deep learning plays an increasing important role in identifying
different psychiatric disorders as it could acquire powerful
identification performance from high dimension feature
data. Future studies could extract the HE features or other

multi-level characteristics at a voxel level for deep learning
algorithm to obtain better classification accuracy and more
comprehensive explanations for abnormalities in psychiatric
disorders.
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