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While the aging process is a universal phenomenon, people perceive and experience
one’s aging considerably differently. Subjective age (SA), referring to how individuals
experience themselves as younger or older than their actual age, has been highlighted
as an important predictor of late-life health outcomes. However, it is unclear whether and
how SA is associated with the neurobiological process of aging. In this study, 68 healthy
older adults underwent a SA survey and magnetic resonance imaging (MRI) scans.
T1-weighted brain images of open-access datasets were utilized to construct a model
for age prediction. We utilized both voxel-based morphometry (VBM) and age-prediction
modeling techniques to explore whether the three groups of SA (i.e., feels younger,
same, or older than actual age) differed in their regional gray matter (GM) volumes,
and predicted brain age. The results showed that elderly individuals who perceived
themselves as younger than their real age showed not only larger GM volume in the
inferior frontal gyrus and the superior temporal gyrus, but also younger predicted brain
age. Our findings suggest that subjective experience of aging is closely related to the
process of brain aging and underscores the neurobiological mechanisms of SA as an
important marker of late-life neurocognitive health.
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INTRODUCTION

Subjective age (SA) refers to how individuals experience themselves as younger or older than their
chronological age. Subjective perception of aging does not coincide with the chronological age
and shows large variability among individuals (Rubin and Berntsen, 2006). The concept of SA has
been highlighted in aging research as an important construct because of its relevance to late-life
health outcomes. Previous studies have suggested that SA is associated with various outcomes,
including physical health (Barrett, 2003; Stephan et al., 2012; Westerhof et al., 2014), self-rated
health (Westerhof and Barrett, 2005), life satisfaction (Barak and Rahtz, 1999; Westerhof and
Barrett, 2005), depressive symptoms (Keyes andWesterhof, 2012), cognitive decline (Stephan et al.,
2014), dementia (Stephan et al., 2016a), hospitalization (Stephan et al., 2016b) and frailty (Stephan
et al., 2015a). Although chronological age is a primary factor in explaining these late-life health
outcomes, these studies suggest that SA can be another construct that characterizes individual
differences in the aging process.

The interoceptive hypothesis posits that a significant number of functions, both physical
and cognitive, decline with age and this is subsequently followed by an awareness of such
age-related changes (Diehl and Wahl, 2010). In other words, feeling subjectively older may be
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a sensitive marker or indicator reflecting age-related biological
changes. This hypothesis is supported by several studies that
have reported significant associations between older SA and
poorer biological markers, including C-reactive protein (Stephan
et al., 2015c), diabetes (Demakakos et al., 2007), and body
mass index (Stephan et al., 2014). Moreover, the indices of
biological age (MacDonald et al., 2011) including peak expiratory
flow and grip strength, also were associated with SA, even
after demographic factors, self-rated health and depressive
symptoms were controlled for Stephan et al. (2015b). Among
a variety of biological aging markers, a decrease in neural
resource constitutes a major dimension of age-related changes in
addition to physical, socio-emotional and lifestyle changes (Diehl
and Wahl, 2010). Together with the interoceptive hypothesis,
the subjective experience of aging may partly result from
one’s subjective awareness of age-related cognitive decline. For
example, subjective reports of one’s own cognitive decline have
received attention as an important source of information for the
prediction of subtle neurophysiological changes. Even when no
signs of decline are found in cognitive test scores, subjective
complaints of cognitive impairment may reflect early stages of
dementia or pathological changes in the brain (de Groot et al.,
2001; Reid and MacLullich, 2006; Stewart et al., 2008; Yasuno
et al., 2015). It is, thus, possible to examine a link between the
subjective experience of aging and neurophysiological aging.

To assess age-related brain structural changes and widespread
loss of brain tissue, neuroanatomical morphometry methods
have been widely used (Good et al., 2001; Fjell et al., 2009a; Raz
et al., 2010; Matsuda, 2013). Moreover, the large neuroimaging
datasets and newly developed machine learning techniques
have made it possible to estimate individualized brain markers
(Gabrieli et al., 2015; Cole and Franke, 2017; Woo et al.,
2017). This approach can be advantageous for interpreting an
individualized index for brain age, since predictive modeling
can represent multivariate patterns expressed across whole brain
regions, unlike massive and iterative univariate testing. In recent
studies, estimated brain age was found to predict indicators of
neurobiological aging, including cognitive impairment (Franke
et al., 2010; Franke and Gaser, 2012; Löwe et al., 2016; Liem et al.,
2017), obesity (Ronan et al., 2016) and diabetes (Franke et al.,
2013).

Although SA has predictive values for future cognitive
decline or dementia onset, few studies have examined
the neurobiological basis of such outcomes. Combining
both regional morphometry and the brain age estimation
method, this study will provide an integrated picture of
how each individual undergoes a heterogeneous brain
aging process and supply further evidence of the neural
underpinnings of SA (Kotter-Grühn et al., 2015). Using analyses
for voxel-based morphometry (VBM) and age-predicting
modeling, we aimed to identify whether younger SA is
associated with larger regional brain volumes and lower
estimated brain age. We also examined possible mediators,
including self-rated health, depressive symptoms, cognitive
functions and personality traits that were candidates for
explaining the hypothesized relationship between SA and brain
structures.

MATERIALS AND METHODS

Subjects
The participants in this study were subsampled from the
3rd wave Korean Social Life, Health and Aging Project
(KSHAP) which consisted of 591 older adults. KSHAP is
a community-based cohort study that collected data from
the entire population of older adults in Township K. In
all, 195 elderly individuals received thorough health survey,
psychosocial surveys and neuropsychological assessment. The
health survey was conducted in 2014, and both the psychosocial
survey and neuropsychological assessment were conducted in
2015. The following exclusion criteria were applied: psychiatric
or neurological disorders, vision or hearing problems, having
metal in the body that cannot be removed, hypertension and/or
diabetes that cannot be controlled with drugs and/or insulin,
and a history of losing consciousness due to head trauma.
Older adults with cognitive impairment were excluded using
neuropsychological tests and semi-structured interviews. The
details of the screening procedures are described in a previous
publication (Joo et al., 2017). The final data were comprised
of 68 subjects who did not meet any of the exclusion criteria
(mean age = 71.38, SD = 6.41, range = 59–84). MRI acquisition
was done in 2015, and subsequent analysis was blinded from
identification of all participants. The study was approved by
the Institutional Review Board of Yonsei University, and all
participants provided written informed consent to the research
procedures.

Subjective Age Groups
The following question was verbally asked to assess comparative
SA: ‘‘How old do you feel, compared to your real age?’’
(Westerhof and Barrett, 2005). Participants responded with one
of three categorized age identity options: ‘‘I’m younger than my
real age’’ (younger SA), ‘‘I’m the same as my real age’’ (same
SA) and ‘‘I’m older than my real age’’ (older SA; Boehmer,
2007). Among the subjects of KSHAP who did not have cognitive
impairment (n = 137), those who identified themselves as
younger SA were the greatest in proportion (40.1%), followed
by same SA (34.3%) and older SA (25.5%). The gender ratio did
not significantly differ among the three SA groups (χ2 = 4.324,
p = 0.112).

Cognitive Functions
The Mini-Mental State Examination for Dementia Screening
(MMSE-DS; Han et al., 2010), category fluency test (Kang
et al., 2012) and episodic memory and working memory
indices from the Elderly Memory Disorder Scale (Chey, 2007)
were used to assess cognitive functions. Category fluency test
asked participants to generate words from the two semantic
categories (i.e., supermarket and animal) each within a minute
(Kang et al., 2000). The episodic memory index was calculated
by adding the correct rates on the Long-Delay Free Recall
of the Elderly Verbal Learning Test (EVLT), Delayed Recall
on the Story Recall Test (SRT) and Delayed Reproduction
on the Simple Rey Figure Test (SRFT). The EVLT is a
nine-word learning test utilizing the California Verbal Learning
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Test paradigm (Chey et al., 2006). The SRT requires subjects
to recall a paragraph containing 24 semantic units (An
and Chey, 2004). The SRFT is a simplified version of the
Rey-Osterreith Complex Figure Test modified for the elderly
population (Park et al., 2011). All delayed recall subtests
were administered 15−30 min after the immediate recall
session. The working memory index was the sum of the
longest correct backward digit sequence repetition span and
longest correct Corsi-block tapping order (Song and Chey,
2006).

Health and Psychosocial Covariates
We assessed potential mediators and covariates that could
account for or confound the association between SA and
brain structural characteristics. The covariates were selected
on the basis of previously reported associations with self-rated
health (Stephan et al., 2015b), personality traits (Stephan et al.,
2012), cognitive functions (Stephan et al., 2014) and depressive
symptoms (Keyes and Westerhof, 2012). Participants rated
the level of their global health on a 5-point Likert scale:
poor, slightly poor, good, very good and excellent. Higher
values represented better self-rated health. Depressive symptoms
were measured using the 30-items Geriatric Depression Scale
(Yesavage et al., 1982), to which respondents indicated whether
they had experienced a given symptom during the past week
using a ‘‘yes’’ or ‘‘no’’, i.e., on a binary scale. The personality
traits of extraversion and openness were assessed using the NEO-
Five-Factors-Inventory (Costa and McCrae, 1992) on a 4-point
Likert scale, ranging from 1 (strongly disagree) to 4 (strongly
agree).

Voxel-Based Morphometry Analysis
Magnetic resonance imaging (MRI) scans were acquired in a
3Tesla MAGNETOM Trio 32 channel coil at Seoul National
University Brain Imaging Center. Whole-brain T1-weighted
magnetic-prepared rapid-gradient echo (MPRAGE) sequence
images were acquired for each subject, with the following
parameters: TR = 2300 ms, TE = 2.3 ms, FOV = 256 × 256 mm2,
and FA = 9◦. Whole-brain VBM analysis was carried
out to determine the association between regional gray
matter (GM) density and SA groups. The preprocessing of
imaging data was conducted using the Statistical Parametric
Mapping software (SPM12; Welcome Department of Imaging
Neuroscience, London, UK) implemented in Matlab Version
r2015b (MathWorks). T1 images were bias-corrected and
segmented into five tissue classes, based on a non-linearly
registered tissue probability map (Ashburner and Friston,
2005). The segmented native images were summed to infer
individual total intracranial volume (TIV). To spatially
normalize the GM image into the standard space with an
enhanced accuracy of inter-subject registration (Ashburner,
2007), we used diffeomorphic anatomical registration using
exponentiated lie algebra (DARTEL). A customized template
was created, and a deformation field was applied to previously
segmented GM images to warp non-linear transformation
to standardized MNI space. During the transformations,
the total amount of GM was preserved. All images were

smoothed using an 8-mm full width half-maximum Gaussian
kernel.

We first used F-contrast to test voxel-wise differences in
GM volume among the three SA groups. For exploratory
purposes, the F-test result was examined in a liberal cluster-
defining threshold (z = 2.33, k > 500). The main effect
of the F-map indicated differences in volumes of regional
GM among the three SA groups. Based on the directional
hypothesis that younger SA would be associated with larger
brain volumes, we additionally conducted three pairwise t-tests
(younger> same, same> older, younger> older). We identified
the post hoc test results based on whether the voxels above
cluster-level (cluster defining threshold of z = 3.09) or voxel-
level family-wise error (FWE) p < 0.05 were included in the
aforementioned clusters of F-test results. The cluster-level FWE
rate was estimated based on Gaussian random field theory. Each
VBM analysis was conducted after adjusting for age, gender,
education and TIV.

Age-Prediction Datasets
To estimate the degree of the age-related brain structural changes
that have occurred in an individual, we implemented out-of-
sample modeling and the prediction scheme that has recently
been used to estimate brain ages (Franke et al., 2010; Liem
et al., 2017; Rudolph et al., 2017). We utilized two publicly
assessable datasets which consisted of T1-weighted MRI images:
The Open Access Series of Imaging Studies (OASIS1) and
The Information eXtraction from Images (IXI2). The cross-
sectional (Marcus et al., 2007) and longitudinal datasets (Marcus
et al., 2010) of the OASIS consisted of 512 healthy adults
aged 18–94 (mean age = 51.64, SD = 24.91, female: 256).
Subjects diagnosed with dementia (clinical dementia rating
≥ 0.5) were excluded from the OASIS dataset. The IXI dataset
consisted of 545 healthy adults aged 19–86 (mean age = 48.78,
SD = 16.53, female: 342). To reduce non-linear age effects
in model construction (Fjell et al., 2013, 2014) and avoid
biased modeling in predicting subjects of KSHAP who have a
relatively old age range (59–84), we selected subjects above the
age of 40 as the training sample. The finalized age-prediction
data included 598 subjects (mean age = 63.28, SD = 12.97,
female: 383).

Age-Prediction Image Preprocessing
To apply a standardized preprocessing analysis pipeline
across different MRI scan protocols in both KSHAP and
the age-prediction datasets, we used a fully automated
preprocessing procedure implemented in CAT12 r1113
(Computational Anatomy Toolbox, Structural Brain Mapping
Group, Departments of Psychiatry and Neurology, Jena
University Hospital3). First, a spatial-adaptive non-local means
(SANLM) denoising filter (Manjón et al., 2010) was employed.
Segmentation algorithms based on the adaptive maximum a
posterior (AMAP) technique, implemented in CAT12, were
used to classify brain tissue into three classes: GM, white

1http://www.oasis-brains.org
2http://brain-development.org/ixi-dataset
3http://dbm.neuro.uni-jena.de/cat/
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matter (WM) and cerebrospinal fluid (CSF). Additionally,
partial volume estimation (PVE) was used to create a more
accurate segmentation for the two mixed classes: GM–WM
and GM–CSF. Projection-based estimation of cortical thickness
was conducted in the segmented images (Dahnke et al., 2012,
2013), which showed a comparable accuracy with other surface-
based tools (Righart et al., 2017). In total, 156 values were
extracted from CAT12 region of interest (ROI) analysis pipeline,
including 148 cortical thickness and averaged GM density
in eight bilateral subcortical structures (caudate, putamen,
amygdala and hippocampus). Cortical areas were defined
based on automatic parcellation of gyri and sulci (Destrieux
et al., 2010), while subcortical volumes were defined using
the Neuromorphometric atlas4. Identical procedures for
preprocessing and extracting ROI values were made using the
KSHAP data.

Partial Least Square Regression Modeling
To effectively summarize and explain age-related characteristics
of brain structure, we constructed a cross-validated partial
least square regression (PLSR) model using the Caret
package for R (Kuhn, 2015). PLSR reduces high-dimensional
data into orthogonal components that have the greatest
covariance with the output (the target of the prediction)
before multiple regression analysis is conducted. In contrast
to reducing dimensions with principal component analysis,
PLSR decomposes orthogonal components in a way that is
more relevant to the outcomes in the model construction
stage. The PLS method is utilized in neuroimaging studies to
effectively summarize the highly collinear data structures that
are observed across brain regions (McIntosh and Lobaugh, 2004;
Krishnan et al., 2011; Rudolph et al., 2017). In this study, the
PLSR model was constructed to find linearly combined latent
components highly predictive of the age of an individual. The
training and estimation procedure of the age-prediction model
was based on 156 ROI values from the open-access datasets
(n = 598).

4http://Neuromorphometrics.com

Cross-Validation of the Age-Prediction
Model
To construct a PLSR model applicable to the independent
data and to achieve generalizability, we optimized the number
of PLS components, using leave-one-out cross-validation
(LOOCV). Although sequentially adding more components
of latent variables would derive a more complex model in
explaining the given data, cross-validation procedures must be
applied to determine whether such a complex model ultimately
explains the novel data that are independent from training
data. Using the LOOCV procedure, we iteratively partitioned
the training data (n = 597) to construct a model and predicted
the left-out single-subject data. Each left-out procedure of
modeling and predicting was repeated 598 times. Within each
model, with differing number of components, the root mean
squared error (RMSE) of the iterated LOOCV procedures was
calculated. Examining the out-of-sample prediction error for
each PLS component, the PLSR model was optimized between
under-fitted and over-fitted models (Whelan and Garavan,
2014; Gabrieli et al., 2015; Rudolph et al., 2017). This approach
identified the optimal model that showed the lowest RMSE and
the greatest explained variance (R2) in predicting the age of the
left-out subject.

Statistical Analysis of Predicted Age
The brain ages of the individual subjects from the KSHAP
data (n = 68) were predicted based on the weights of the
cross-validated PLSR model, using the inputs for 156 brain
regional values. We examined bivariate correlations between
the real ages and predicted ages for the KSHAP data. Then,
we used analysis of covariance (ANCOVA) to compare the
differences in the predicted brain age between the SA groups,
adjusting for the linear effects of gender, education and age.
The adjusted mean of predicted age indicated the difference.
We additionally examined whether the ANCOVA result changed
when self-rated health, depressive symptoms, cognitive function
and personality traits were additionally included as covariates.
We determined the significance of the group difference at
p< 0.05 level.

TABLE 1 | Demographic, psychosocial and cognitive test characteristics of the participants.

Subjective age group Total Spearman’s correlation

Younger (n = 29) Same (n = 19) Older (n = 20)

Age 70.93 (6.32) 69.58 (5.96) 73.75 (6.54) 71.38 (6.41) 0.170
Gender 15:14 14:5 13:7 42:26 −0.136
Education 7.79 (4.47) 6.63 (3.11) 4.40 (3.05) 6.47 (3.95) −0.323∗∗

Depressive symptoms 11.45 (6.72) 10.42 (5.80) 14.90 (6.73) 12.18 (6.64) 0.198
Self-rated health 3.07 (0.96) 3.26 (1.19) 3.80 (1.06) 3.34 (1.09) 0.317∗∗

Extraversion 34.59 (3.59) 34.68 (3.93) 33.45 (4.51) 34.28 (3.95) −0.033
Openness 30.62 (3.73) 31.05 (3.29) 29.45 (3.80) 30.40 (3.64) −0.097
MMSE 26.90 (2.30) 27.63 (2.34) 25.00 (3.06) 26.54 (2.73) −0.232
Episodic memory 1.74 (0.55) 1.76 (0.39) 1.50 (0.41) 1.67 (0.48) −0.193
Working memory 1.02 (0.34) 1.11 (0.33) 0.80 (0.26) 0.98 (0.33) −0.248∗

Category fluency 29.52 (9.43) 30.37 (8.32) 25.15 (7.5) 28.47 (8.75) −0.145
Predicted brain age 73.24 (4.94) 75.03 (4.31) 77.15 (5.10) 74.89 (5.03) 0.413∗∗

Higher self-rated health denotes poorer health. MMSE, Mini-mental State Examination. Spearman’s rho indicates rank-order correlation from younger to older subjective
age. ∗∗p < 0.01, ∗p < 0.05.
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FIGURE 1 | Voxel-based morphometry (VBM) F-test result comparing three subjective age (SA) groups (younger, same and older) in Korean Social Life, Health and
Aging Project (KSHAP) data (n = 68). Significant group differences in regional gray matter (GM) density are visualized (p < 0.01, uncorrected, k > 500). Post hoc
pairwise t-tests of the three groups indicated whether family-wise error (FWE)-corrected (voxel-level or cluster-level p < 0.05) voxels were included in the initially
identified F-test clusters.

RESULTS

Rank-order correlation analysis showed that SA group was
positively (from younger to older) associated with fewer
years of education, lower working memory performance
and poorer self-rated health (Table 1). Group comparisons
specifically showed significant differences in chronological age
(same < older; p = 0.043), depressive symptoms (same < older;
p = 0.035) and MMSE-DS (younger, same > older; p = 0.013,
p = 0.002, respectively).

We then examined how SA was associated with regional
GM volume using VBM analysis. Group differences among SA
groups in the exploratory ANCOVA analysis showed differences
in regional volume in the right inferior frontal gyrus, right
superior temporal gyrus, bilateral striatum and left postcentral
gyrus (Figure 1, Table 2). A post hoc comparison between each
pair of groups identified four significant clusters among the

F-test results (voxel or cluster-level FWE p < 0.05). Pairwise
comparison showed that those with younger SA had especially
larger regional GM density compared to those in the same or
older SA group.

From the open-access database (n = 598), we constructed
a PLSR model of brain structural morphology predicting
chronological age. Models with sequentially added latent
variables (from 1 to 15 components) were cross-validated using
LOOCV. The model with five components had the greatest
accuracy in predicting left-out data (Figure 2; RMSE = 6.795,
R2 = 0.726). The PLSR models with more or less than
five components showed relatively larger RMSE and smaller
explained variance in predicting the left-out data, which
indicated that these were either under-fitted or over-fitted
models. The bilateral hippocampus, superior temporal gyrus,
and inferior prefrontal cortex had the highest average of all
coefficient weights, indicating the brain structures important

TABLE 2 | Voxel-based morphometry (VBM) result comparing three subjective age (SA) groups in Korean Social Life, Health and Aging Project (KSHAP) data (n = 68).

Cluster-level Peak-level MNI coordinates Post hoc
Brain regions p (FWE) k p (FWE) F x y z

R IFG (p. Opercularis) 0.424 1268 0.039 15.934 56 5 20 Younger > Same
R Superior temporal gyrus/Supramarginal gyrus 0.013 3455 0.050 15.486 56 −39 18 Younger > Same, Older
R IFG (p. Orbitalis)/Insula 0.016 3320 0.292 12.204 29 30 −8 Younger > Older
L Caudate nucleus 0.033 2855 0.624 10.474 −6 15 0 Younger > Older
L Postcentral gyrus 0.059 2487 0.654 10.339 −60 −18 21
R Hippocampus 0.898 643 1.000 6.804 36 −21 −12

Regional gray matter (GM) density with significant group differences (p < 0.01, uncorrected, k > 500). Post hoc pairwise t-test indicated whether family-wise error
(FWE)-corrected (voxel-level or cluster-level p < 0.05) voxels were included in the initially identified F-test clusters.
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FIGURE 2 | Averaged prediction error (root mean squared error, RMSE, upper panel) and variance explained (R2, lower panel) in every left-out training sample
(n = 598) across the number components. Partial least square regression (PLSR) model with five latent constructs showed the most accurate out-of-sample age
prediction.

in predicting the chronological age of the individuals in the
final cross-validated model (Table 3). From the cross-validated
PLSR model, the chronological age of the KSHAP subjects
(n = 68) were predicted with a moderate accuracy (Figure 3A,
R2 = 0.179, p = 3.32 × 104, Mean absolute error = 5.74).
Subjects in their 60 s had relatively higher predicted ages, whereas
those in their 80 s showed estimated ages lower than their real
ages.

The ANCOVA result showed a significant difference between
SA groups in the predicted age, when gender, education and
chronological age were adjusted for (F(2,62) = 4.441, p = 0.016,
η2 = 0.125). Spearman’s correlation analysis showed that ordinal
ranking from younger to older was positively associated with
predicted brain age when the effect of chronological age
was partialled out (ρ = 0.314, p = 0.009). As shown in
Figure 3B, a post hoc test showed significant differences in
predicted age between the younger SA group and the other
two groups (younger > same, p = 0.039; younger > older,
p = 0.009) but the difference between the same and older SA

was not significant (same > older, p = 0.558). We repeated
the ANCOVA tests by adding covariate terms for depressive
symptoms, cognitive functions, personality traits and self-rated
health, all of which had been found to be associated with SA
in previous studies. The ANCOVA results, however, remained
unchanged, even when each covariate was entered (ps < 0.05,
η2 = 0.105–0.142).

DISCUSSION

SA was associated with decreased regional GM volume and
predicted brain age as well. Our findings suggest that feeling
subjectively older than one’s age may reflect relatively faster
aging brain structures, whereas those who feel subjectively
younger would have better-preserved and healthier structures.
This study, to our knowledge, was the first attempt to examine
the neuroanatomical underpinnings of SA.

When we examined regional structural differences in GM
using VBM analysis, we found that the volumes of the
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TABLE 3 | Average coefficients of the weights in the age-prediction model.

Rank Brain regions Average Correlation
coefficients of coefficient (r)

PSLR components with age

1 L hippocampus −3.718 −0.635
2 R hippocampus −3.469 −0.613
3 L superior temporal gyrus −2.930 −0.501
4 R superior temporal gyrus −2.810 −0.595
5 R transverse temporal sulcus −2.152 −0.408
6 L inferior frontal gyrus opercularis −2.115 −0.616
7 R superior temporal gyrus −1.990 −0.433
8 R inferior frontal gyrus triangularis −1.953 −0.532
9 L superior temporal gyrus −1.899 −0.552
10 L inferior insula −1.872 −0.447
11 R inferior frontal opercular part −1.801 −0.535
12 R parahippocampal gyrus −1.796 −0.442
13 R inferior insula −1.667 −0.432
14 R superior temporal gyrus −1.662 −0.553
15 R inferior frontal triangular sulcus −1.619 −0.340
16 L parahippocampal gyrus −1.612 −0.407
17 L inferior frontal orbital part −1.609 −0.395
18 R middle frontal gyrus −1.582 −0.542
19 R superior temporal gyrus −1.431 −0.539
20 R inferior frontal orbital part −1.408 −0.329

Among 156 regions of interest (ROIs) of regional cortical thickness and subcortical
volumes, 20 ROIs with the highest weights are noted in descending order.

inferior prefrontal cortex, posterior superior temporal gyrus
and striatal region showed the strongest association with SA
groups. Previous studies have indicated that the volume of the
right insula is associated with metacognition and awareness
of task performance (Cosentino et al., 2015), and the right
posterior temporal gyrus plays an important role in processing
the awareness of one’s body and spatial representations (Karnath
et al., 2001; Blanke et al., 2002). Neural degradation in these
regions may affect how one tracks one’s physical state and
one’s perception of age-related changes. On the other hand,
the core mechanism of SA has been located in the fronto-
striatal dopaminergic system, which plays a central role in

explaining healthy brain aging and cognitive decline (Bäckman
et al., 2010). Meanwhile reduced brain volumes of the inferior
frontal cortex have been found to be associated with inefficient
functioning of inhibitory control processing (Turner and Spreng,
2012; Aron et al., 2014). The ability to inhibit or suppress
irrelevant or no-longer-relevant information has been proposed
as a core process in explaining the age-related cognitive
decline in a variety of tasks (Hasher and Zacks, 1988; Hasher
et al., 1991). The deficiency in tasks requiring the function
of cognitive control may have affected overall appraisal of
one’s state of cognitive aging. It is notable, however, that
other brain regions highly susceptible to aging (Fjell et al.,
2009b, 2014) did not show a prominent association with
SA in our results. That is, among the many brain regions
undergoing age-related structural changes, specific areas were
more relevant to explaining how older adults feel their own
process of aging. It should also be noted that interpretations
based on the variation of regional morphology and reverse
inferences should be made with great caution (Poldrack,
2006).

To clarify the age-relatedness of the association between
the brain structures and SA, we applied the out-of-sample
modeling procedure to derive an overall index of brain aging.
Since individual differences in brain structures can occur
not only due to age-related neurophysiological changes but
also from other pre-existing individual differences such as
personality traits (Kanai and Rees, 2011), the application of
the age-prediction modeling was crucial in interpreting the
neuroanatomical differences observed in the study. Importantly,
we found that age-related multivariate patterns expressed in
cortical thickness and subcortical volumes differed among the
SA groups. More specifically, the brain regions that were
highly predictive of chronological age were found to be
partly overlapping with the regions identified in the VBM
analysis, including the hippocampus, superior temporal gyrus
and inferior frontal cortex. Those who felt younger than their

FIGURE 3 | (A) PLSR model significantly predicting the real age of the KSHAP dataset (n = 68). (B) SA group differences in the predicted brain age. The group
means of predicted brain age are adjusted for gender, education and real age in analysis of covariance (ANCOVA). Asterisks denote significant differences between
groups. Error bars denote standard errors of the mean. ∗∗p < 0.01, ∗p < 0.05.
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real age also had younger brain structural patterns and vice
versa.

Our results may suggest that, in concert with the interoceptive
hypothesis (Diehl and Wahl, 2010), feeling younger or older
than one’s chronological age can be an indirect perception
of neurobiological aging rather than a psychological defense
against negative age stereotypes (Weiss and Lang, 2012) or
social comparison (Mussweiler et al., 2000). If individual
differences in SA result mainly from social impacts on
attitudinal representation, it is less likely that feeling younger
is associated with markers of neurobiological aging. Examining
the correlates of SA using objectively measured aging markers
other than self-reported measures may strengthen the validity
of the interoceptive hypothesis. Although previous studies
have already shown that those with older SA have poorer
biological aging markers (Stephan et al., 2015b,c), our findings
extend the hypothesis that older SA is associated with
greater progression of brain aging process and poorer brain
health. Significant tissue atrophy in the GM and older brain
age may be reflective of cerebrovascular risks (Seo et al.,
2012; Lockhart and DeCarli, 2014), and such changes may
cause older adults to appraise their deteriorated functions
as being a result of their aging (Vestergren and Nilsson,
2011).

Consistent with previous studies that have reported the
clinical significance of subjective perceptions of cognitive
decline (Rabin et al., 2017), subjective appraisal of one’s own
decline may provide information on neurobiological changes
not otherwise detectable with objective cognitive tests. If
feeling older in one’s SA is affected by decreased cognitive
function or cognitive efficacy (Boehmer, 2007; Schafer and
Shippee, 2010; Stephan et al., 2011), it is likely that the SA
reflects of pathological brain changes and subtle decreases
in the neural capacity that cannot otherwise be detected.
Diminished volumes of GM and older brain age may lead
to reduced processing efficiency in a variety of demanding
cognitive tasks, and this prolonged mismatch between reduced
neural resources and burdensome environmental demands
can create a subjective perception of aging. Individuals
with older SA feel older because they experience frequent
negative sensations as they make more cognitive efforts
in daily life compared to those who report younger or
same SA. Benign cognitive failures that occur daily tend
to be attributed to age-related changes among older adults
(Vestergren and Nilsson, 2011). It is possible that the effect
of brain aging may influence the awareness of age-related
change more directly than a mere appraisal of physical
health (Cole and Franke, 2017), as seen from our result,
which remained unchanged even when the effect of self-rated
health was accounted for. Even though we observed that
higher SA was associated with lower cognitive performance,
especially in working memory function, adjustment of these
differences did not change the relationship between the SA
and brain age. While we assumed that SA reflects a stable
and accurate perception of age-related changes in the brain,
another possibility considered in this study was that people
can feel older due to excessively self-referential and negative

emotional states (Reid and MacLullich, 2006; Rabin et al., 2017).
That is, when the experience of benign age-related cognitive
decline is overestimated, an older adult can perceive him- or
herself as older than their real age (Pearman et al., 2014;
Hülür et al., 2015). However, according to the results of
our study, neither self-rated health nor depressive symptoms
accounted for the significant difference in brain age. These
additional considerations may suggest that individual differences
in SA stably reflect a prolonged and accumulated status of
the brain aging to a certain degree that does not fluctuate in
temporary conditions (Hughes et al., 2013; Stephan et al., 2013;
Geraci et al., 2018).

Another notable finding was that the younger SA group
showed a significant difference in predicted brain age. Although
most previous studies have examined linear and continuous
effects of SA on various outcomes, our findings suggest that
feeling younger and feeling older may not be symmetric or linear
cognitive processes (Kotter-Grühn and Hess, 2012; Weiss and
Lang, 2012), and health consequences may also differ between
the two categorized groups. In our study, while older SA group
showed a tendency to have poorer cognitive function and exhibit
greater depressive symptoms, feeling younger was especially
associated with younger structural characteristics of the brain.

Several limitations should be noted. Although we constructed
an age-predicting model that accurately explains real age across
the left-out subjects at a comparable level with a previous
study (Franke et al., 2010), the age-prediction model showed
relatively lower accuracy among the KSHAP subjects. The low
correlation between real age and estimated brain age may be
explained by the fact that the predictive performance of external
validation is typically poorer than that of internal validation
because independent datasets do not guarantee homogeneous
sample characteristics, data collection protocols and modeling
parameters (Woo et al., 2017). Extensive screening procedures
that are based on the neuropsychological assessments could
have resulted in over-representing healthy older adults free from
severe neuropathology in our study than when they were in
the open access datasets. This in turn would have lowered the
slope between real age and estimated brain age. Moreover, cross-
sectional age effects can be underestimated especially when age
ranges are confined within the 60 s and the 80 s (Fjell et al., 2014).
If the KSHAP data had included midlife subjects, predicted ages
may have been more accurate across subjects. Another limitation
is the coarse measurement of SA. The low resolution in the
current categorical measure may have resulted in the loss of
information regarding the extent to which the participants feel
about their age within each categorized SA groups. In addition,
recent studies have underscored the multidimensional aspects of
SA (Diehl et al., 2014), and attempted to additionally separate
the concept of SA into negative stereotypes of aging (Levy
et al., 2016) and self-identification based on the social reference
group (Barak, 2009), other than interoceptive awareness. The
interpretation could have been clearer if we had questioned both
the aspects of social influence and of the internal awareness of
SA separately. Further investigation is required to distinguish
specific neural mechanisms of both interoceptive perception and
social influence. Lastly, although we have mainly interpreted the
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SA as being a result of age-related brain change, maintaining
younger SA may also lead to a lifestyle physically and mentally
more active, which leads to healthier brain. Future longitudinal
studies will further elucidate these temporal relationships.
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