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In addition to extracellular β-amyloid plaques and intracellular neurofibrillary tangles,
neuroinflammation has been identified as a key pathological characteristic of Alzheimer’s
disease (AD). Once activated, neuroinflammatory cells called microglia acquire different
activation phenotypes. At the early stage of AD, activated microglia are mainly
dominated by the neuroprotective and anti-inflammatory M2 phenotype. Conversely, in
the later stage of AD, the excessive activation of microglia is considered detrimental and
pro-inflammatory, turning into the M1 phenotype. Therapeutic strategies targeting the
modulation of microglia may regulate their specific phenotype. Fortunately, with the rapid
development of in vivo imaging methodologies, visualization of microglial activation has
been well-explored. In this review, we summarize the critical role of activated microglia
during the pathogenesis of AD and current studies concerning imaging of microglial
activation in AD patients. We explore the possibilities for identifying activated microglial
phenotypes with imaging techniques and highlight promising therapies that regulate the
microglial phenotype in AD mice.
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INTRODUCTION

Alzheimer’s disease (AD), the most common cause of dementia, was first described by Dr. Alois
Alzheimer in 1907 (Vishal et al., 2011). From decades of research, it is thought that AD is caused
by neuronal and synaptic loss following deposition of extracellular β-amyloid (Aβ) plaques and
intracellular neurofibrillary tangles (NFTs) (Li et al., 2016). Paradoxically, none of the therapeutic
approaches targeting Aβ or NFTs have yet achieved satisfactory outcomes in AD patients. In
recent years, an increasing number of studies have recognized that neuroinflammation, mainly
driven by activated microglia, also contributes to AD pathogenesis (Calsolaro and Edison, 2016;
Ransohoff, 2016a; Bolos et al., 2017; Mathys et al., 2017; Venegas et al., 2017). Activated microglia,
just like macrophages in peripheral tissues, largely exist in two polarized states, namely the M1
phenotype and the M2 phenotype (Wes et al., 2016; Subramaniam and Federoff, 2017; Xu et al.,
2017). Although, it has been realized that a simple M1 or M2 phenotype may not capture the
whole status of activated microglia (Ransohoff, 2016b; Tang and Le, 2016; Plescher et al., 2018), this
classification serves as a crucial guide for microglia-targeted treatment in AD patients. Commonly,
the M1 phenotype is associated with the release of pro-inflammatory cytokines, such as tumor
necrosis factor (TNF)-α and interleukin (IL)-1β, whereas the M2 phenotype is accompanied by
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the production of anti-inflammatory molecules, such as IL-10
and IL-4 (Jimenez et al., 2008; Malm et al., 2015). In light of
the opposite states of microglial activation, microglia-targeted
therapies should be aimed at changing the microglial status.

However, status modifications of microglial cells are very
complex. Microglial activation is accompanied by many changes,
including morphology, secretory profile and proliferative
response (Streit et al., 2014), so altering the cell phenotype
involves diverse aspects of microglia. In addition, cumulative
evidence indicates that the neuroprotective M2 microglia
gather at the preclinical stage of AD, whereas the neurotoxic
M1 microglia peak at the clinical stage (Jimenez et al., 2008;
Sarlus and Heneka, 2017). Total microglia activation inhibition
will inevitably impair the beneficial function of M2 microglia,
thus this kind of treatment is inappropriate and inadvisable.
Immunotherapy that boosts or tempers inflammation should
be dependent on the microglial phenotypes during the specific
stages of AD in patients.

Because of the various survival times of microglia and the
complex stimuli in the microenvironment of the AD brain,
concurrent existence of both the M1 and M2 phenotypes in vivo
is common, and understanding which phenotype is dominant
at each phase is necessary to take appropriate therapeutic
measures. However, accurate biomarkers of the in vivo microglial
phenotype have not been discovered yet, and so it is difficult to
identify their exact subtypes. Thanks to the rapid development
of imaging technologies, imaging microglial activation in vivo
is already possible. Although this kind of technology is unable
to discriminate the exact phenotype of activated microglia, we
can distinguish the phenotype according to the disease stage.
Thus, this technique might be applied to direct the treatment of
AD patients in the hospital. Regardless of whether the result is
M1 or M2, an anti-microglia agent targeting the M1 phenotype
or a pro-microglia agent targeting the M2 phenotype would be
most beneficial for AD patients. In this review, we summarize
the critical role of microglial activation in the pathogenesis
of AD, review the published studies on imaging of microglial
activation, and highlight a novel therapeutic approach that exerts
neuroprotective effects by modulating microglial activation states
in AD patients.

PATHOLOGICAL SIGNIFICANCE OF
MICROGLIAL PHENOTYPES IN AD

Microglia are the resident macrophages in the central nervous
system (CNS), accounting for 10–15% of all cells in the brain
(Lawson et al., 1992). Normally, they exist in a quiescent
state, constantly monitoring their microenvironment, but can
be activated by surrounding stimuli. Amyloid plaques, the
pathological hallmark of AD, are able to attract and stimulate
microglia in vivo (Jung et al., 2015; Chen et al., 2016; Yin et al.,
2017). This activation process is diverse and includes microglial
proliferation, increased secretion of inflammatory factors, cell
surface receptor expression, and a morphological change from
ramified to amoeboid (Malm et al., 2015; Wolf et al., 2017). In
response to growing Aβ plaques, activated microglia can acquire

different phenotypes that play dual roles during AD pathogenesis.
The early activation of microglia that attempt to clear Aβ is
considered as protective and anti-inflammatory (Jimenez et al.,
2008; Shen et al., 2017), equivalent to the M2 phenotype.
Typically, M2-polarized microglia show enhanced phagocytosis
(Mandrekar-Colucci et al., 2012), upregulated expression of Ym1
and arginase 1 (ARG1) (Zhang et al., 2017), and increased
secretion of anti-inflammatory cytokines, such as IL-4, IL-10,
IL-13, and transforming growth factor-β (Butovsky et al., 2005;
Zhou et al., 2012). However, with continuous development of
AD pathology, microglia with an M2 phenotype may become
dysfunctional over time and be replaced by cells with an
M1 phenotype, which is detrimental and pro-inflammatory
(Bronzuoli et al., 2016; Figure 1). Accordingly, M1-polarized
microglia are associated with relatively poor phagocytosis and
increased secretion of pro-inflammatory cytokines, such as
IL-1, IL-6, IL-12, IL-18, and TNF-α (Malm et al., 2015).
In support of this idea, one study has demonstrated that
increased cortical and hippocampal neurodegeneration induces
a shift of activated microglia from M2 to M1 (Kumar et al.,
2016). Moreover, M2 microglia in amyloid precursor protein
and presenilin 1 (APP/PS1) mutant mice at 6 months of
age could, with ongoing Aβ accumulation, switch to an M1
microglial phenotype at 18 months of age (Jimenez et al.,
2008).

The pro-inflammatory factors released by M1 microglia have
many detrimental effects, resulting in the exacerbation of AD
progression. For example, IL-1, a promotor of IL-6 production
and microglial activation, is upregulated in AD mice and
believed to promote Aβ deposition (Heneka and O’Banion,
2007). Though a study has shown that IL-1β overexpression
decreases plaque area and frequency (Shaftel et al., 2007), it
should be noted that this study was performed in APP/PS1
mice only 6 months of age, which is regarded as an early
stage of AD progression. IL-6 has recently been found to be
a useful biological marker that significantly correlates with the
severity of cognitive impairment (Lai et al., 2017). Moreover,
some studies have suggested IL-6 is intimately associated with
amyloid precursor protein (APP) metabolism (Kalman et al.,
1997; Leblhuber et al., 1998; Cojocaru et al., 2011). TNF-α, a
dual factor relaying both neuron death and neuroprotection, has
been shown to be involved in AD-related neuroinflammation
and amyloidogenesis via β-secretase (Cheng et al., 2014). Further,
soluble TNF receptors promote the conversion from mild
cognitive impairment (MCI) to dementia in patients with MCI
(Buchhave et al., 2010; Diniz et al., 2010) and stimulate Aβ

production through activation of transcription factors (Buchhave
et al., 2010). In addition, increased levels of pro-inflammatory
cytokines including IL-1, IL-6, and TNF inhibit the phagocytosis
of Aβ in the brain of AD model mice (Stamouli and Politis,
2016).

Conversely, M2 microglia provide neuroprotective effects in
many ways. Firstly, the anti-inflammatory cytokines they secrete,
such as IL-4, IL-10, and TGF-β, suppress pro-inflammatory
cytokine production and action (Rubio-Perez and Morillas-
Ruiz, 2012). In addition, IL-4 inhibits IFN-γ and decreases the
expression of TNF-α and nitric oxide (Chao et al., 1993). Other
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FIGURE 1 | The transformation process of microglial phenotypes in Alzheimer’s disease (AD). In the early stage of AD, quiescent microglias are activated to the M2
phenotype by accumulating Aβ plaques; in the later stage, the M2 phenotype may be transformed to the M1 phenotype. Overall, the M2 phenotype is
neuroprotective and anti-inflammatory, whereas the M1 phenotype is detrimental and pro-inflammatory. Red line: degree of microglial activation.

studies have shown that IL-10 mediates enhanced neurogenesis
(Kiyota et al., 2012) and maintains neuronal homeostasis by
inhibiting apoptotic pathways (Strle et al., 2001). In addition,
ARG1 and Ym1, the typical biomarkers of M2 microglia, can
repair damage to the extracellular matrix (Varnum and Ikezu,
2012; Tang and Le, 2016). Further, the secretion of Aβ-degrading
enzymes, like insulin-degrading enzyme (Kawahara et al., 2014),
is enhanced, along with phagocytic activity (Mandrekar-Colucci
et al., 2012). In contrast, a few studies have revealed that anti-
inflammatory signaling might be detrimental in AD (Town et al.,
2008; Chakrabarty et al., 2012, 2015; Guillot-Sestier et al., 2015).
The underlying mechanism of this effect has not been explained
or demonstrated with solid support by the authors. Thus, further
studies about the unwanted side-effects of anti-inflammatory
cytokines are still required for AD.

Apart from the M1 and M2 phenotypes, some new microglial
activation phenotypes have been recently identified. For example,
disease-associated microglia (DAM), a newly identified subset
of microglia, have been demonstrated to have a unique
transcriptional and functional signature (Keren-Shaul et al.,
2017). In the study, the authors characterized the involvement of
microglia in a mouse model of AD by using single-cell sorting,
revealing that DAM are activated through a two-step process;
that is, from homeostatic microglia to an intermediate state and
finally to a fully activated DAM state. The first step is TREM2-
independent, whereas the second step is TREM2-dependent.
DAM are associated with sensory mechanisms, phagocytosis and
lipid metabolism, so Keren-Shaul et al. (2017) suggest that the
microglia have the potential to restrict AD progression. However,
it remains contentious whether microglia’s role is protective
or injurious (Brown and St George-Hyslop, 2017). Further

study needs to test whether DAM depletion affects disease
progression in AD and whether excessive microglial phagocytosis
is deleterious. In addition, using ultrastructural analysis, another
study has identified a new microglial phenotype, named dark
microglia, that also plays a significant role in the pathological
remodeling of neuronal circuits in APP/PS1 mice (Bisht et al.,
2016). These phenotypes will need to be better understood for
the development of new microglia-targeted treatments.

THE THERAPEUTIC EFFECTS OF
DRUGS THAT ACT ON MICROGLIA IN AD

Despite decades of study, currently there are still no effective
therapies available for AD patients, and this mainly arises from
incorrect treatment targets. Past studies have focused extensively
on reducing Aβ or tau levels. In recent years, research on
microglia as potential targets for AD treatment have gained
attention, especially strengthened by a recent discovery in a
genome-wide association study (Sims et al., 2017), which found
that microglia with variants in PLCG2, ABI3 and TREM2 genes
contribute directly to the development of AD. Similarly, a review
elucidated that several genes expressed in microglia, including
APOE, TREM2, CD33, GRN and IL1RAP, alter AD risk, and
therefore could be considered as microglial therapeutic targets
(Wes et al., 2016). In addition, microglial functions are largely
affected by aging. In the aged brain, microglia are chronically
impaired and dysfunctional, transforming into an M1 phenotype,
as evidenced by reduced process motility, aberrant morphology,
and decreased phagocytic ability (Miller and Streit, 2007; Damani
et al., 2011; Daria et al., 2017). However, such microglial
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dysfunction might be reversible (Daria et al., 2017), and the
restored microglia may be able to remodel the disease pathology
in several ways, including phagocytosis of Aβ plaques, secretion
of Aβ-degrading enzymes and neurotrophic factors, inhibition
of the release of pro-inflammatory factors, and promotion of
endogenous neurogenesis (Serini and Calviello, 2016; Shen et al.,
2017). Moreover, M2 microglia have the ability to promote
remyelination in the CNS (Miron et al., 2013).

Therefore, therapies should reflect the disease stage of a
patient and be more specific, such as enhancing the M2
phenotype in the early stage by suppressing activation of M1
or boosting the switch from M1 to M2. Firstly, as stated above,
microglia predominantly adopt the M2 phenotype in the early
stage, which is beneficial and anti-inflammatory. Thus, early
interventions aimed at suppressing overall microglial activation
are destructive and should be avoided. Rather, treatment options
that increase M2 microglia could promote a neuroprotective
effect and contribute to the survival of neurons. For example,
a study by Jin et al. (2017) has reported that peritoneal dialysis
can enhance the Aβ phagocytosis function of microglia in
APP/PS1 mice and reduce amyloid-beta plasma levels in humans.
Secondly, M1 cells are typically detrimental. They can produce
a lot of pro-inflammatory factors like nitric oxide, IL-1, IL-6,
and TNF (Koning et al., 2009). M1 cells predominate in the
later stage of AD and greatly aggravate disease progression.
Therefore, treatments that interfere with the activation of M1
may be effective in halting lesion development. An increasing
number of studies have shown that regulating the ratio of M1/M2
or switching the detrimental M1 phenotype toward the beneficial
M2 phenotype can produce a good clinical outcome (Biagioli
et al., 2017; Chen et al., 2017; Yao et al., 2017). We recommend
that such treatment should be started as early as possible and
would be best during the time right when M2 microglias are
transitioning to M1 microglia. To sum up, these therapeutic
approaches focus on not only decreasing the harmful effects
but also enhancing the beneficial effects of neuroinflammation
by modulating the ratio of M1/M2. Such microglia-targeted
therapies are potential avenues for AD treatment.

CURRENT IMAGING OF MICROGLIA
IN VIVO IN AD PATIENTS

Undoubtedly, activation of microglia plays a significant role
in the underlying pathology of AD. Because of dynamic and
context-dependent properties, microglial phenotypes are hard
to identify. Understanding which phenotype dominates in vivo
at specific times will definitely help in the selection and
implementation of efficacious therapeutics. Imaging microglial
activation in vivo is a new research field that is providing a
better understanding of their function over time. Many imaging
techniques have been studied for microglial visualization, such
as confocal microscopy, multiphoton microscopic imaging,
magnetic resonance imaging (MRI), and Positron emission
tomography (PET) (Venneti et al., 2009). The detailed analyses
of each technique have been well-reviewed by Venneti et al.
(2009). In the following paragraphs, we mainly aim to review

the possibility of imaging microglial activation in AD patients
using MRI and PET, which have the potential for further in vivo
application in human beings.

High-field MRI scanners, particularly 7 T MRI, have been
increasingly used as powerful tools for AD studies in vivo.
The main neuroimaging biomarkers of 7 T MRI that have
been identified for AD patients are neuroanatomical atrophy,
molecular characterization of hypo-intensities and micro-infarcts
(Ali et al., 2015). Recent studies have shown colocalization of
ferritin with microglia in AD patient samples (van Duijn et al.,
2013; Kwiatek-Majkusiak et al., 2015), and high-field MRI is quite
sensitive to microscopic iron. Thus, it might be possible to detect
microglial activation by ultra-high resolution MRI. For instance,
a study by Zeineh et al. (2015) has demonstrated that there are
numerous small MR hypo-intensities within the hippocampus
in late-stage AD specimens but not in controls, indicating
small hypo-intensities are imaging features of activated iron-
containing microglia. Interestingly, another study that assessed
metabolite levels using magnetic resonance spectroscopy found
that macromolecule and lipid levels (ML9) might represent a
biomarker related to the microglial phenotype in mice (Pardon
et al., 2016), which thus might help distinguish microglial
activation in AD mouse models. Both the above-mentioned
studies have successfully explored the visualization of microglial
activation with high-field MRI in mouse or human brain
specimens, laying the foundation for future in vivo application
in human beings.

Compared with MRI, imaging of microglial activation using
PET is much more practical and has been greatly studied in
AD patients. Table 1 provides a list of most of the studies
that have been published in the PUBMED database with the
key words of “microglia,” “phenotype,” “PET,” and “Alzheimer’s
disease.” The 18 kDa translocator protein (TSPO) is the main
target for PET studies, and is mainly expressed by activated
microglia (Cosenza-Nashat et al., 2009). Though it has been
reported that TSPO is expressed both in brain microglia and
blood immune cells (Kanegawa et al., 2016), a study by Narayan
et al. (2017) has demonstrated that TSPO is downregulated in
blood macrophages. In addition, another study has reported the
presence of monocyte-derived macrophage infiltration in a very
aged mouse model of AD (Martin et al., 2017). There is evidence
that TSPO radioligand binding correlates with the abundance
of activated microglia (Chen and Guilarte, 2008; Venneti et al.,
2008). To date, many kinds of TSPO PET tracers have been
used; [11C]-PK11195 is representative of the first generation of
PET tracers and has been most widely used. Nevertheless, [11C]-
PK11195 has several limitations, including low brain uptake,
low bioavailability and high lipophilicity (Ching et al., 2012).
In comparison, the second generation of TSPO ligands, such as
[11C]-PBR28 (Kreisl et al., 2010), [18F]-DPA-714 (Golla et al.,
2015) and [11C]-DPA-713 (Endres et al., 2009), exhibit higher
affinity and better kinetic characteristics. However, they are
sensitive to a polymorphism of the TSPO gene (Ala147Thr)
(Owen et al., 2012). The genotypic status of the patients could
be classified into low, high, and mixed affinity binders based on
this polymorphism (Lagarde et al., 2018). In Table 1, there are
three clinical studies that have used the second generation of
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TABLE 1 | Clinical studies of microglial activation by PET imaging in AD patients.

Subjects Age Tracer(s) Binding change (PET) Reference

8AD; 15control; 1MCI AD:
66.1 ± 5.3 years
MCI:
75 years

[11C] (R)PK11195 Increase in MCI and AD Cagnin et al., 2001

22AD; 14MCI MCI:
66.6 ± 9.6 years
AD:
64.9 ± 6.4 years

[11C] (R)PK11195 and
[11C]-PIB

Increase in MCI and AD Okello et al., 2009

10AD; 6control AD:
71.8 ± 9.9 years
Control:
64.5 ± 5.5 years

[18F]-DPA-714; No TSPO
genotyping

Not significant between AD and
control

Golla et al., 2015

26AD; 38 MCI; MCI:
67.8 ± 9.1 years
AD:
68.3 ± 12.1 years

[18F]-DPA-714 and [11C]-PIB;
With TSPO genotyping

Increase in both MCI and AD Hamelin et al., 2016

7AD; 8MCI MCI:
62.6 ± 7.5 years
AD:
65.1 ± 6.3 years

[11C]-DED Increase in MCI and AD; most
in MCI

Carter et al., 2012

10AD; 7MCI; 10control MCI:
67.1 ± 9.9 years
AD:
70.2 ± 7.4 years

[11C]-DAA1106 Increase in MCI and AD Yasuno et al., 2012

19AD; 10MCI AD:
63.1 ± 8.8 years
MCI:
72.6 ± 9.7 years

[11C]-PBR28; with partly TSPO
genotyping

Increase in AD;
early-onset > late-onset;
age-dependent

Kreisl et al., 2013

19AD; 10MCI; 21control AD:
69 ± 8 years
MCI:
72 ± 6 years

[11C] (R)PK11195 Subtle increase in AD; no in
prodromal

Schuitemaker et al., 2013

8AD; 14control AD:
66 ± 4.8 years
Control:
65 ± 5.5 years

[11C] (R)PK11195 Increase in AD; age-dependent Fan et al., 2015

8AD; 17MCI MCI:
61.9 ± 6.4 years
AD:
63.0 ± 6.5 years

[11C]-DED Increase in AD and MCI; higher
in MCI; decline with age

Rodriguez-Vieitez et al., 2016

8AD; 8MCI MCI:
67.7 ± 6.6 years

TSPO-[11C] (R)PK11195;
[11C]-PIB

Increase in MCI and AD;
longitudinal reduction in MCI;
longitudinal increase in AD

Fan et al., 2017

AD, Alzheimer’s disease; MCI, mild cognitive impairment; PET, positron emission tomography; TSPO, 18-kDa translocator protein; [11C]-DED, [11C]-deuterium-L-deprenyl;
[18F]-DPA-714, [18F]-dimethylpyrazolo pyrimidine acetamide; [11C]-PIB, [11C]-Pittsburgh compound B; [11C]-PBR28, [11C]-peripheral benzodiazepine receptor 28; y,
years; m, months.

TSPO ligands that require genetic information, including [11C]-
PBR28 and [18F]-DPA-714. Among them, the studies with TSPO
polymorphism genotyping have excluded the individuals with
low affinity binders (Kreisl et al., 2013; Hamelin et al., 2016),
so their results are more valuable than those that lack TSPO
genotype information (Golla et al., 2015).

It should be noted that none of the current TSPO ligands are
specific tracers of M1 or M2 microglia. This may be because
no clear target of specific subtypes of activated microglia has
been discovered to develop PET tracers (Vivash and O’Brien,
2016). Recently, some subtypes of purinergic receptors have been
increasingly considered as specific markers of the M1 or M2

status of microglial cells in preclinical research. For example, PET
tracers labeled with [11C] were demonstrated to have a highly
specific affinity with purinergic receptor subtype 7 (P2X7R, a
molecular target for pro-inflammatory microglia) in an animal
model (Ory et al., 2016; Territo et al., 2017). Furthermore, a study
by Beaino et al. (2017) has demonstrated that P2X7R is associated
with a pro-inflammatory phenotype of human microglia, and
P2Y12R is associated with an anti-inflammatory phenotype in
postmortem tissues of multiple sclerosis patients, suggesting
P2Y12R and P2X7R are promising targets for discriminating
microglial phenotypes in vivo by PET imaging. Controversially,
P2Y12R is considered a marker of homeostatic microglia that is
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downregulated in neurodegenerative disease status (Keren-Shaul
et al., 2017; Zrzavy et al., 2017). Importantly, P2X7R and P2Y12R
have been investigated in only animals and postmortem tissues,
and their feasibility and practicability in AD patients are still
unknown.

Nonetheless, we have gained many useful insights from
the previous clinical studies. Most clinical studies have shown
increased TSPO ligand binding in both AD patients and patients
with MCI (Cagnin et al., 2001; Okello et al., 2009; Yasuno et al.,
2012; Kreisl et al., 2013; Hamelin et al., 2016), indicating high
microglial activation during the two conditions. MCI is defined
as a transitional stage between normal function and dementia,
which is not severe enough for a diagnosis of AD. Thus, in vivo
detection of microglial activation by PET might be quite helpful
in the early assessment of neuroinflammation for MCI patients.
Moreover, a study by Fan et al. (2017) showed a longitudinal
reduction of TSPO binding after the first peak of microglial
activation in MCI patients and a longitudinal increase after the
second peak of microglial activation in AD patients. The outcome
of this study might be illustrated in Figure 1, which elucidates the
discrepancies among the studies in Table 1. These differences,
such as the age-dependent increase of TSPO ligand binding in
one study (Fan et al., 2015), and its decline with age in another
(Rodriguez-Vieitez et al., 2016), might stem from examination at
different time points. The transition from M2 to M1 microglia
in the progression of AD has also been identified in PET clinical
studies; for example, the microglial activation detected by PET
seems to play a protective role at the preclinical stage in AD
patients (Hamelin et al., 2016; Fan et al., 2017). Combined
with neurological examinations, including Mini-Mental State
Examination scores, detecting microglial activation in vivo could
indirectly indicate the current phenotype status based on the
specific stage, as the M2 phenotype peaks in the MCI stage
and the M1 phenotype dominates in the symptomatic AD stage.
In short, by imaging microglial activation, it may be possible
to indirectly identify the phenotype of activated microglia
to help implement more specific and effective therapeutic
approaches.

MICROGLIA-TARGETED THERAPIES IN
AD MODEL MICE

Recently, an increasing number of anti-AD therapies targeting
microglia have been discovered in AD animal models. Here, we
categorize these new drugs or therapies into three types based
on their effects on microglia: M2 enhancement, M1 suppression,
and M1/M2 switching. For example, a recent study has shown
that deferoxamine treatment induces M2 activation of microglia
and significantly ameliorates Aβ deposition in the hippocampus
of 12-month-old APP/PS1 mice (Zhang and He, 2017). In this
study, deferoxamine was also found to inhibit M1 activation of
microglia and apoptosis in the brain. Thus, it is conceivable that
enhancement of the M2 phenotype may be beneficial for AD
treatment in the early stage.

Anti-inflammatory strategies have been proposed because the
neuroinflammatory response is considered as a key factor in

the pathogenesis of AD. However, it needs to be noted that
anti-inflammatory strategies should mainly be targeted at the
detrimental M1 phenotype rather than the neuroprotective M2
phenotype. For example, minocycline has recently been shown
to inhibit the pro-inflammatory phenotype of microglia and
enhance phagocytosis of Aβ deposits (El-Shimy et al., 2015).
Besides M1 suppression and M2 enhancement, shifting the M1
phenotype to the M2 phenotype has been the most proposed
as a potential therapeutic direction for AD treatment. An
increasing number of drugs have been identified that modulate
the transition of M1 to M2 in AD model mice, including
Lipoxin A4 (Medeiros et al., 2013), IL-33 (Fu et al., 2016),
GW2580 (Olmos-Alonso et al., 2016), EGb761 (Wan et al.,
2016), and Iso-α-acids (Ano et al., 2017). This kind of regulation
could generate multiple beneficial effects. They reduce the
level of pro-inflammatory cytokines and increase the level of
anti-inflammatory factors; additionally, microglia of the M2
phenotype have been demonstrated to have improved phagocytic
function and reduce Aβ deposits. All of these effects correlate
with an improved performance in cognition and memory,
implying that shifting the microglial M1 phenotype to an M2
phenotype is a promising approach for treatment of AD patients.

Beyond the above drug explorations, in recent years, stem
cell transplantation has been shown to effectively prevent
memory impairment and improve cognitive function in AD
model mice (Lee et al., 2010, 2016; Kanamaru et al., 2015).
The mechanisms involved in stem cell therapies are diverse
and mainly include neuronal replacement (Abdel-Salam, 2011),
neurotrophic support (Marsh and Blurton-Jones, 2017), and
immunomodulation (Shen et al., 2017). Immunomodulation,
particularly the effect on microglia, plays a key role during stem
cell transplantation for AD (Shen et al., 2017). For example,
adipose-derived mesenchymal stem cell therapy can induce
activated microglia into an alternatively activated phenotype
in AD model mice (Ma et al., 2013). Another study has
found that neural stem cell treatment in APP/PS1 mice
significantly improves cognitive deficits via suppression of
microglial activation (Zhang et al., 2016). In addition, bone
marrow-derived mesenchymal stem cells promote microglial
activation and reduce the level of Aβ deposits in the brain of
an acutely induced AD model (Lee et al., 2009). These results
demonstrate that stem cell therapies cannot only enhance M2
microglia but also suppress M1 microglia and shift the M1
phenotype to M2, indicating that stem cell transplantation may
have a beneficial effect regardless of the treatment time point.
However, when to implement this kind of therapy for the most
beneficial effect is still an open question that requires further
study.

Microglia-targeted therapies in AD also include genetically-
defined therapeutic targets (Wes et al., 2016), treatments to
restore the homeostatic microglial phenotype (Ofengeim et al.,
2017) and treatments that increase Aβ uptake by microglia
(Frenkel et al., 2013; Maezawa et al., 2018; Rangaraju et al., 2018).
These approaches, though not purported to be associated with
M2 enhancement, M1 suppression or the switch from M1 to M2
microglia, have attempted to modify microglial function from the
disease state toward a more anti-inflammatory tone.
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CONCLUSION

In summary, microglial activation plays a significant role in the
underlying pathology of AD. Typically, activated microglia adopt
a protective M2 phenotype at the early stage and a detrimental
M1 phenotype at the later stage of AD progression. Current
imaging methodologies, such as MRI and PET, are able to detect
microglial activation in vivo. Although there are currently no
specific biomarkers for M1 or M2 microglia in clinical studies,
increasing evidence suggests PET may be a useful tool to assess
the extent of microglial activation in AD patients. Thus, together
with behavioral function scoring, imaging of microglial activation
may help clinicians indirectly identify the current microglial
phenotype. After clarification of the phenotype of activated
microglia, a directed therapy targeting that specific microglial
phenotype should then be implemented, such as M1 suppression,
M2 enhancement or M1/M2 switching. Further work is needed
to develop feasible innovative PET tracers that can accurately
recognize the specific phenotype of activated microglia in AD
patients. Some subtypes of purinergic receptors, such as P2X7R
and P2Y12R, have been validated as promising PET imaging

targets for microglia phenotypes in preclinical studies. These
studies will be extremely important for microglia-targeted AD
therapies, given that microglial phenotypes vary according to
disease stage.
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