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Machine learning and pattern recognition have been widely investigated in order to
look for the biomarkers of Alzheimer’s disease (AD). However, most existing methods
extract features by seed-based correlation, which not only requires prior information
but also ignores the relationship between resting state functional magnetic resonance
imaging (rs-fMRI) voxels. In this study, we proposed a deep learning classification
framework with multivariate data-driven based feature extraction for automatic diagnosis
of AD. Specifically, a three-level hierarchical partner matching independent components
analysis (3LHPM-ICA) approach was proposed first in order to address the issues in
spatial individual ICA, including the uncertainty of the numbers of components, the
randomness of initial values, and the correspondence of ICs of multiple subjects,
resulting in stable and reliable ICs which were applied as the intrinsic brain functional
connectivity (FC) features. Second, Granger causality (GC) was utilized to infer directional
interaction between the ICs that were identified by the 3LHPM-ICA method and extract
the effective connectivity features. Finally, a deep learning classification framework
was developed to distinguish AD from controls by fusing the functional and effective
connectivities. A resting state fMRI dataset containing 34 AD patients and 34 normal
controls (NCs) was applied to the multivariate deep learning platform, leading to
a classification accuracy of 95.59%, with a sensitivity of 97.06% and a specificity
of 94.12% with leave-one-out cross validation (LOOCV). The experimental results
demonstrated that the measures of neural connectivities of ICA and GC followed by
deep learning classification represented the most powerful methods of distinguishing AD
clinical data from NCs, and these aberrant brain connectivities might serve as robust
brain biomarkers for AD. This approach also allows for expansion of the methodology to
classify other psychiatric disorders.
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INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disease
characterized by cognitive and intellectual deficits that are
serious enough to interfere with daily life. It usually starts
slowly and worsens over time by destroying brain cells, leading
to memory loss, problems performing familiar tasks, vision
problems, thinking, reasoning, and personality changes (Burns
and Iliffe, 2009; Querfurth and LaFerla, 2010). Gradually, bodily
functions are lost, ultimately leading to death (Alzheimer’s
Association, 2011). With the aging of the world population, AD
has become a serious problem to the health the elderly people
and a huge burden to the healthcare system. Nowadays, AD
can only be slowed down and delayed by drugs, and effective
treatment remains elusive (Jack et al., 2008). The diagnosis of
AD is usually based on cognitive impairments relating to daily
activities or positive physiopathologic markers of AD, such as an
abnormal level of amyloid beta and/or tau in the cerebrospinal
fluid (Dubois et al., 2014). Therefore, it is of great interest to
develop objective biomarkers of AD patients with the help of
neuroimaging studies in order to assist AD clinical diagnosis and
monitor the efficacy of treatment.

Brain imaging technology, combined with advanced signal
processing approaches, has been actively applied to investigate
the underlying biological or neurological mechanisms and
to discover differences between AD patients and normal
controls (NCs) for AD diagnosis or prognosis (Mirzaei et al.,
2016). Positron emission tomography (PET) accessed the
pathophysiologic markers of AD as reductions of glucose
metabolism in the parietal, posterior cingulate and temporal
brain regions of AD patients (Diehl et al., 2004). Additionally,
high resolution structural magnetic resonance imaging (sMRI)
studies have shown that neuroimaging measurements included
cortical thickness (Thompson et al., 2004; Lerch et al., 2008;
Desikan et al., 2009; Dickerson et al., 2009), gray matter density
(Dai et al., 2012; LiuM. et al., 2015; Liu et al., 2016), hippocampal
volume and shape (Colliot et al., 2008; Fan et al., 2008; Hua
et al., 2008; Chupin et al., 2009; Tsao et al., 2017). Histogram
characteristics of regions of interest (ROIs) in the whole brain
(Magnin et al., 2009) could be investigated as brain features
for the classification between AD and NC. Furthermore, the
measures of diffusion tensor imaging (DTI) such as fractional
anisotropy (FA) and mean diffusivity (MD), which indicated
white matter (WM) fiber tract integrity, have been reported
to discriminate AD from NC (Dyrba et al., 2013). Another
study reported that the WM tracts connecting brain regions
defined by 41 Brodmann areas were reconstructed as the
brain connectivity network and the graphs of the connectivity
matrices were described as feature vectors for the classification
of AD (Ebadi et al., 2017). Moreover, the absolute and relative
spectral power, distribution of spectral power, and measures of
spatial synchronization were calculated from recordings of the
electroencephalography (EEG) by following classificationmodels
for the clinical diagnosis of AD (Lehmann et al., 2007). The
lagged linear connectivity of predefined ROIs was also used as
an EEG marker of AD (Babiloni et al., 2016; Triggiani et al.,
2017).

Besides, resting state functional MRI (rs-fMRI) combined
with machine learning has played an important role in
identifying biomarkers of AD. Various classification features of
AD have been detected in previous studies, such as the amplitude
of low frequency fluctuations (Dai et al., 2012) or hippocampal
correlation of low frequency components (Li et al., 2002),
regional homogeneity (Dai et al., 2012), functional correlation
strength of 90 ROIs in terms of the automated anatomical
labeling (AAL) atlas (Dai et al., 2012), whole-brain (Chen et al.,
2011; Ju et al., 2017) or selected regional (Wang K. et al.,
2006) functional correlation connectivity matrices based on AAL
or other atlas (Khazaee et al., 2016), covariance connectivity
matrices (Challis et al., 2015), and graph-theoretical measures
(Dyrba et al., 2015; Khazaee et al., 2015, 2017). However,
most of the existing studies focus on seed-based correlation
analysis which needed a prior (such as atlas) and ignored the
relationship between voxels of brain images. The performance
of the seed-based correlation methods may be unstable due
to the different seeds or atlas as well as the error of the
registration processing (Wang et al., 2009; Zalesky et al., 2010;
Craddock et al., 2012). Therefore, as a multivariate data-driven
based method, independent component analysis (ICA) was
investigated to extract features for automatic classification of AD
in the study, which could identify the underlying data structure
by counting for the relationship between voxels and without need
of prior information.

ICA has been widely applied for analyzing neuroimaging
data (Calhoun et al., 2009) and acknowledged as one of the
two most commonly used methods in functional connectivity
(FC) studies (Zhang and Raichle, 2010). At present, there are
two kinds of ICA methods applied to fMRI: individual ICA and
group ICA. Previous studies have demonstrated that the AD
patients displayed lower FC within the default mode network
(DMN) identified by spatial individual ICA (Toussaint et al.,
2014) or group ICA (Binnewijzend et al., 2012). A recent study
reported that the FC matrices obtained by group ICA and the
graph properties can be applied for the classification of AD
(de Vos et al., 2018). However, compared with group ICA,
the specificity of the individuals can be preserved better in the
individual ICAmethod because a single temporally concatenated
data set of all subjects is decomposed into ICs in group ICA.
This leads to the possibility that the obtained ICs may not
be maximally spatially independent for single subjects and
degrades the precision of the identified functional brain network.
Therefore, this study focuses on the individual ICA in order to
extract the distinguishable features and predict the individuals
with AD. However, there are still some problems in individual
ICA method. First, the output order of ICs is uncertain,
leading to the difficult establishment of the correspondence
between the ICs or functional networks of multiple subjects.
Second, the number of components must be defined before
ICA is performed. Various brain functional networks might be
obtained when the specified number is different. Lastly, the FC
patterns resulting from multiple implementations of the same
ICA algorithm on the same fMRI data may be inconsistent
because of the randomness of the initial value in the ICA
algorithm.
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To address the issues mentioned above, we proposed a
three-level hierarchical partner matching ICA (3LHPM-ICA)
approach, which could identify the stable and reproducible
ICs across multiple individuals. Then the extracted FC features
were fused with the effective connectivity matrices computed
by Granger causality (GC). Finally, the two-dimensional feature
matrices were entered into the deep learning classifier to
distinguish AD from NC. The aim of the current study was to
detect the underlying fMRI data structure and biomarkers of AD
with the multivariate data-driven based feature extraction and
deep learning platform by counting for the relationship between
voxels without needing prior information.

MATERIALS AND METHODS

Participants
Thirty-four participants with mild AD (17 females, 17 males,
mean age 68.64 ± 9.85 years, education 11.47 ± 3.49 years)
were recruited from a memory outpatient clinic at the Huashan
Hospital of Fudan University. Thirty-four age-matched NCs
(13 females, 21 males, mean age 65.55 ± 8.98 years, education
11.31 ± 3.75 years) were recruited by public advertisement to
take part in the study. All AD participants fulfilled the following
clinical criteria: the National Institute of Neurological and
Communicative Disorders and Stroke/Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA; McKhann
et al., 1984) criteria for AD, Mini Mental State Examination
(MMSE) scores between 19 and 23 (inclusive), Clinical Dementia
Rating (CDR) scores (Morris, 1993) of 1.0, Hachinski Ischemic
Scale (HIS) scores less than 4.0 for the exclusion of vascular
dementia and mixed dementia, and there were not any
structural abnormalities other than atrophy in MRI scans. A
standard diagnostic examination that included physical and
neurological examination, medical history taking, extensive
neuropsychological assessments and screening laboratory tests,
was implemented for all patients. The mean MMSE score of
AD group in this study was 21.50 ± 1.61. All NC subjects
had normal neurological examinations, with a CDR score of 0
and independently functioning community membership with
no history of neurological or psychiatric disorders, cognitive
complaints, brain damage or psychoactive medication. All
participants were right-handed with ten or more years of
education. This study was carried out in accordance with
the recommendations of NINCDS-ADRDA, the Institutional
Review Board of Huashan Hospital of Fudan University with
written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the Institutional Review
Board of Huashan Hospital of Fudan University.

Image Acquisition
Imaging was performed on a Siemens Verio 3.0 Tesla MRI
scanner (Siemens, Erlangen, Germany). The head of each
participant was snugly fixed by using foam pads to reduce head
movements and scanner noise. Participants were instructed to
rest with their eyes closed but not to fall asleep during scanning.
Resting state fMRI data were acquired using a T2∗-weighted

echoplanar imaging (EPI) with blood oxygen level dependent
(BOLD) contrast pulse sequence. Thirty-three contiguous axial
slices were acquired along the anterior commissure-posterior
commissure (AC-PC) plane. The acquisition parameters were
as follows: matrix = 64 × 64, field of view (FOV) = 20 cm,
repetition time (TR) = 2,000 ms, echo time (TE) = 35 ms,
voxel size = 3.0 × 3.0 × 4.0 mm3, flip angle = 90◦, slice
thickness = 4 mm. The sequence took 6 min and 40 s, resulting
in a total of 200 volumes.

Image Analysis
Preprocessing
All preprocessing steps of the resting state fMRI images were
performed with SPM12 (Welcome Department of Imaging
Neuroscience, London, United Kingdom) implemented in
MATLAB. The functional scans were slice time corrected for
the interleaved acquisition, spatially realigned to the first scan
to correct for head movements, normalized to the Montreal
Neurological Institute (MNI) coordinate system and spatially
smoothed with an isotropic 8 mm full-width at half-maximum
(FWHM) Gaussian kernel.

Functional Connectivity Analysis Based on
3LHPM-ICA
In this study, a 3LHPM-ICA approach was proposed in order to
solve the problems of individual ICA method. These included
the uncertainty of the output ICs order, the selection of the
number of components, and the randomness of the initial value
in the ICA algorithm, which could identify the reliable and stable
ICs and obtain the intrinsic brain functional networks. Spatial
ICA was performed on the preprocessed fMRI images for each
participant. The obtained ICs were maps that were maximally
spatially independent for each subject and represented the brain
functional subnetworks. The mixing matrix represented time
courses of the ICs, which represented the changes of the brain
functional networks over time.

The number of ICs needs to be specified before ICA is
performed. One cannot, however, know a priori the single
number of components to generate with ICA that is ‘‘optimal’’ for
the identification of reproducible components across individuals.
Therefore, the principles of information criteria were applied
to determine the number of sets of ICs in this study. We
combined minimum description length (Calhoun et al., 2001)
and Akaike’s information criterion (Wang et al., 2011a) to
estimate the interval (lower and upper bounds) and step size
of the numbers of ICs. Additionally, the initial values of
the ICA algorithm are random, meaning that the objective
function in the ICA algorithm may fall into a different local
extremum. As a result, the inconsistent ICs may be produced
when the same ICA algorithm is performed on the same
subject with the same number of components. Accordingly,
in this study, the spatial ICA algorithm was run several
times with the estimated numbers of ICs on each individual
subject. Then the correspondence of ICs between different
subjects with a set of numbers of ICs was established by the
hierarchical partner matching method, which we proposed and
published previously (Wang et al., 2011a; Qiao et al., 2015,
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FIGURE 1 | The flowchart of the three-level hierarchical partner matching independent component analysis (3LHPM-ICA) algorithm.

2017). In detail, the proposed 3LHPM-ICA approach consists
of three levels as follows and its framework is shown in
Figure 1.

In the first level, in order to address the problem of the
randomness of the initial values in the ICA algorithm, we
inputted the fMRI data of each subject and performed spatial ICA
by P multiplied with the single number of ICs. Then the ICs of
the subject (denoted as subject Aj) were clustered by the density-
based clustering algorithm which had high efficiency and low
complexity (Rodriguez and Laio, 2014). Specifically, each IC was
considered as one point in the high dimensional space. The local
density of the point and its distance from points of higher density
were computed for each data point. Here, the Pearson correlation
coefficient was applied to measure the distance between two
points. Then, the local density and distance of all points were
sorted in descending order. The first K points were identified as
center points. After that, the distances from all other points to
the center points were calculated for group assignment. Finally,
a group map (GM) was generated by running one-sample t-tests
on each group of ICs.

In the second level, in order to solve the problem of the
correspondence of ICs across different individuals, the GMs of
all the subjects {A1, A2, . . ., AB} that generated with the same
single number of ICs were matched by the partner matching
method, which we proposed and published previously (Wang
and Peterson, 2008). The Tanimoto distance was used tomeasure
the similarity between GMs. Given a GMi of subject A1, the
indices of spatial similarity between GMi and all the GMs of
subject A2 were calculated. The GMj of subject A2 was selected,
which had the maximum similarity index with GMi of subject
A1 among all the GMs of subject A2. After that, the similarity
indices between GMj of subject A2 and all the GMs of subject
A1 were calculated. The GMk of subject A1 was selected which
had the maximum similarity index with GMj of subject A2
among all the GMs of subject A1. If k = i, then the matching
was bidirectional, and we considered GMi of subject A1 and
GMj of subject A2 to be partner matched. This procedure was
repeated to find all pairs of GMs that are bidirectionally matched

between subject A1 and A2. Similarly, the partner matching
method was performed to identify matching GMs across all the
subjects. A collection of GMs that match across subjects was
termed as a cluster. Finally, a cluster map (CM) was generated
by running one-sample t-tests on each cluster of GMs, which
represented a spatial pattern that tends to be present across
subjects.

In the third level, in order to figure out the correspondence
of ICs across different numbers, the CMs of all the subjects that
generated with the estimated multiple numbers of ICs L = {n1,
n2, . . ., nN} were clustered by the partner matching method,
identifying corresponding CMs across the different sets that
were obtained with different numbers of ICs. For each cluster
of CMs, the cluster with the highest Cronbach’s Alpha was
selected as the optimal cluster. The CMs were derived from GMs
and GMs were derived from ICs, thus the most reliable and
stable ICs could be obtained by backward tracing from optimal
clusters.

Effective Connectivity Analysis Based on Granger
Causality
GC has been widely applied to assess brain effective connectivity
in fMRI data analysis. Compared with the structural equation
model and dynamic causal model, GC analysis is very consistent
with the actual situation because it considers time and does not
require any prior knowledge (Goebel et al., 2003; Cohen Kadosh
et al., 2016). In this study, we computed the GC index (GCI) to
assess the causal influence between the ICs that were identified
by the 3LHPM-ICA method.

Let X(t) denote the zero-mean vector time course of an ICs
within region X, and Y(t) denote the zero-mean vector time
course of another IC within region Y. Then X(t) can be estimated
by applying an autoregressive (AR) model of order P as follows:

X(t) =
∑P

i = 1
αiX(t − i)+ εX (1)

where αi are coefficients of theARmodel and εX is the zero-mean
residual. The Y(t) is then added into the above AR model and
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X(t) can be estimated by

X(t) =
∑P

i = 1
αiX(t − i)+

∑P

j = 1
βjY(t − j)+ εXY (2)

where β j are coefficients of the AR model and εXY is the new
zero-mean residual. To assess whether the addition of Y(t)
improves the prediction compared with the use of X(t) alone, the
GCI from Y to X can be calculated by

GCIY→X = 1−
var(εXY)
var(εX)

(3)

where var(εXY ) and (εX) are the variance of the estimation errors
or residuals εXY and εX , respectively. If GCI(Y→X) is greater than
zero, the addition of the previous values of Y(t) into the right
side of Equation (1) significantly improves the prediction of the
current values of X(t) and we can deem that Y(t) Granger caused
X(t), that is, region Y has a causal influence and directional
interaction to region X.

In this way, a GCI matrix was obtained by repeating the
above procedure to all ICs for each subject. In the GCI effective
connectivity matrix, rows and columns of the matrix represented
different ICs. Each cell of the matrix represented a distinct
connection between two ICs corresponding to specific row and
column. The diagonal value of the matrix was NaN because
there was no meaningful directional interaction from one IC to
the same one. The GCI matrices of all subjects were computed,
which would be applied as an effective feature in the following
classifier.

Feature Fusion and Classification
The deep learning classification framework in this study consists
of four steps: multivariate analysis, feature extraction, feature
fusion and directed acyclic graph (DAG) network, as shown in
Figure 2. The details can be stated as follows. First, reproducible

ICs were obtained by performing 3LHPM-ICA on training
resting state fMRI data. Then the GCIs were computed to infer
directional interaction between these brain regions by extracting
the time course of each IC within each pattern. Second, the
z-score maps of the reliable ICs were then entered into a
two-sample t-test model implemented in the SPM12 factorial
module to detect group difference of the FC between AD
and NC. The ROIs with significant differences (p < 0.05,
uncorrected) between the two groups of the training set were
extracted as FC features for the pattern recognition analyses.
In addition, GC matrices computed by the time course of
significant ICs were selected as effective connectivity features.
Third, functional and effective connectivity features were fused
by replacing the diagonal values NaN in the GC matrices as
IC features. In this way, a matrix feature was obtained for each
subject. Finally, the two-dimensional characteristic matrices of
the training data were inputted into a deep learning classifier
model. Given test fMRI data, the same steps were conducted
and a feature matrix was entered into the pretrained network
for the prediction of AD/NC. A leave-one-out cross-validation
(LOOCV) strategy was applied to evaluate the performance of
the classifier.

A DAG network is a deep learning method which has its
layers arranged as a DAG and a more complex architecture
where layers can have inputs from, or outputs to, multiple
layers. In this study, we implemented the DAG network for
deep learning with the neural network toolbox in MATLAB
R2018a, as shown in Figure 3, which consisted of a main
branch with layers connected sequentially and a shortcut
connection that enabled the parameter gradients to flow more
easily from the output layer to the earlier layers of the
network. The main branch contained an image input layer, three
convolutional layers, three batch normalization layers, three
rectified linear unit (ReLU) layers, an average pooling layer, a

FIGURE 2 | The framework of the proposed deep learning classification algorithm based on 3LHPM-ICA and Granger causality (GC).
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FIGURE 3 | The architecture of the directed acyclic graph (DAG) network.

fully connected layer, a softmax layer and classification layer. The
shortcut connection contained a single one-by-one convolutional
layer that had an added benefit of not adding any extra
parameters or computational complexity. Batch normalization
layers between convolutional layers and ReLU layers normalized
the activations and gradients propagating through a network,
resulting in speeding up network training and reducing the
sensitivity to network initialization. The average pooling layer
was applied as a down-sampling operation that reduced the
spatial size of the feature map and removed redundant spatial
information.

RESULTS

ICA-Based Functional Connectivity
We performed the 3LHPM-ICA method on the training fMRI
data. The numbers of components were set to be 20 to 130, with
increments of 10 which were determined by information criteria.
In the first level, we performed 10 times ICA with the single
number of ICs on the fMRI data of each subject. The first K points
were identified as center points in the density-based clustering
algorithm. The K was set to be n plus 10 experimentally, where
n is the number of ICs. In the second level, we performed the
partner matching method on the training subjects with the same
single number of ICs. The numbers of the CMs were 29, 36, 46,
55, 62, 69, 77, 86, 95, 102, 113 and 122, while the numbers of
the ICs were 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 and
130, respectively. In the third level, 27 cluster of clusters were
obtained after performing the partner matching method. Three

artifactual cluster of clusters were excluded. Finally, 24 clusters of
ICs that were significantly reproducible in their spatial patterns
across individuals were identified. The general linear model in
SPM was utilized to perform a one-sample t-test on each of
the clusters to generate IC maps that represented FC features.
After that, the reproducible ICs of AD and NC were compared
in a second-level random effects analysis, covarying with age
and sex. Compared with NC, FC in AD was significantly
decreased in various cortical and subcortical areas related to
memory, emotion and cognition, including the middle frontal
gyrus (MFG), superior medial gyrus (SMG), middle orbital gyrus
(MOG), inferior frontal gyrus (IFG), supplementary motor area
(SMA), medial frontal gyrus (MedFG), hippocampus, insula,
putamen, anterior cingulate cortex (ACC), posterior cingulate
cortex (PCC), superior parietal lobule (SPL), superior temporal
gyrus (STG), and middle temporal gyrus (MTG; Figure 4,
Table 1).

GC Based Effective Connectivity
The effective connectivity was measured by computing the
GC of time courses of 24 ICs identified by 3LHPM-ICA. The
24 × 24 GCI matrix was obtained for each subject. The diagonal
of the GCI matrix was set to beNaN because there is no meaning
for the GC from brain area X to itself. Finally, the functional
and effective connectivity features were fused by replacing the
diagonal values of the GCI matrix with IC values in the z-score
IC maps.

Classification
We applied the DAG network for deep learning to classify
and predict the AD/NC. The image size at the input layer in
Figure 3 was 24 × 24 × 1. The filter size in the convolutional
layer ‘‘conv_1’’ was 5 × 5. The number of filters was 16, which
represented the number of neurons that connect to the same
region of the input. The filter size of ‘‘conv_2’’ and ‘‘conv_3’’ were
3 × 3 with 32 filters. The window size in the average pooling
layer ‘‘avpool’’ was 3 × 3 with stride (or step size) 2 × 2. The
filter size in the convolutional layer of the shortcut connection
‘‘skipConv’’ was 1 × 1 with 32 filters. The training lasted for
20 epochs. The batch size was 20. The iteration per epoch was
three and the total iteration was 60. The initial learning rate was
set to be 0.01. The learning rate was multiplied by a factor every
time a certain number of epochs had passed. The multiplicative
factor was 0.1 and the number of epochs between multiplications
was 10. The output was a 1× 2 vector containing the probabilities
of the test data belonging to AD or NC.

In every fold of LOOCV, the number of the training data
was 67 and the last one was used as testing data. In the training
stage, we performed 3LHPM-ICA and GC on the 67 training
data. The extracted features were then entered into the classifier
model. In the testing stage, the ICA was performed on the
testing data. Then the most similar ICs of the testing data
were selected by computing the Euclidean distance between
the ICs of the testing data and the reproducible ICs from the
training data. Finally, the ROIs of the selected ICs and GCIs
were entered into the classifier for the prediction of AD/NC. For
each subject, the 24 by 24 feature matrix was entered into the
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FIGURE 4 | Comparisons of functional connectivity (FC) between Alzheimer’s disease (AD) and normal controls (NCs). The first and fourth columns of three display
the random-effect group connectivity maps detected from the AD. Within each column of three, the first column is a coronal view, the second is a sagittal view, and
the third is an axial view. The second and fifth columns of three display the group connectivity maps detected from the NCs. Each row displays one group
connectivity map generated by applying a one-sample t-test to the clusters of ICs. Any two group connectivity maps within the same row across the first three and
second three columns (as well as the fourth three and fifth three columns) are significantly similar to one another in their spatial configurations. The third and sixth
columns of three display t-contrast maps comparing the group connectivity maps from the AD and control participants. MFG, middle frontal gyrus; MedFG, medial
frontal gyrus; SMG, superior medial gyrus; MOG, middle orbital gyrus; IFG pOp, inferior frontal gyrus (p. Opercularis); IFG pTri, inferior frontal gyrus (p. Triangularis);
SMA, supplementary motor area; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; SPL, superior parietal lobule, IPL, inferior parietal lobule; PCL,
paracentral lobule; STG, superior temporal gyrus; MTG, middle temporal gyrus; ITG, inferior temporal gyrus; PreCG, precentral gyrus; LG, lingual gyrus.

deep learning network. With LOOCV strategy, a classification
accuracy of 95.59% with a sensitivity of 97.06% and a specificity
of 94.12% was achieved. For comparison the classifiers, including
LeNet5 (LeCun et al., 1998), the kernel support vector machine
(SVM), the maximum uncertainty linear discriminant analysis
(MDLA; Dai et al., 2012) and autoencoder (AE), were also
performed. The deep neural network with stacked AEs consisted
of five layers: an input layer, two hidden layers, a softmax layer
and a classification layer. First, we trained the hidden layers
individually in an unsupervised fashion using AEs. Then we

trained a softmax layer and joined the layers together to form
a stacked network. Finally, a supervised fine-tuning stage was
applied to improve the classification performance by performing
backpropagation on the whole multilayer network. The numbers
of nodes were set to be 100 and 50 in the first and second
hidden layers, respectively. A Gaussian kernel with a width of
0.5 was used in SVM. Several types of features, including the
AAL atlas-based features, GC features and combined ICA and
GC features with different classifiers were also implemented.
The AAL atlas-based features were 90 × 90 matrices obtained
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TABLE 1 | Location and comparisons of independent component (IC) maps
between Alzheimer’s disease (AD) and normal control (NC).

Brain areas Location Peak location textitT

Side BA x textity textitz statistic

AD vs. NC (negative)
Middle frontal gyrus L 8 −42 26 43 −4.06
Superior medial gyrus L 10 −1 59 16 −4.05
Calcarine gyrus L 17 −1 −88 4 −4.00
Middle orbital gyrus L 10 −36 50 −2 −3.67
Inferior frontal gyrus R 44 60 20 19 −3.48

(p. Opercularis)
Inferior frontal gyrus L 45 −54 26 22 −3.28

(p. Triangularis)
Supplementary motor area R 6 3 5 52 −3.03
Precentral gyrus L 6 −39 −19 67 −3.08
Medial frontal gyrus L 11 −9 38 −11 −3.97

R 11 6 38 −14 −3.35
Insula L 13 −39 5 4 −2.56
Anterior cingulate cortex L 32 −1 41 22 −6.55
Posterior cingulate cortex L 23 −3 −46 28 −2.94
Hippocampus L 54 −27 −7 −20 −4.60
Amygdala L 53 −24 −1 −11 −3.86
Putamen L 49 −21 8 7 −2.92
Cuneus L 18 −3 −79 25 −2.48
Lingual gyrus L 18 −9 −52 1 −2.84
Superior parietal lobule L 7 −21 −64 55 −2.63
Inferior parietal lobule R 7 36 −43 46 −3.41
Paracentral lobule R 4 3 −37 64 −3.11
Superior temporal gyrus R 22 48 −34 19 −3.23
Middle temporal gyrus R 22 48 −11 −14 −3.35
Inferior temporal gyrus R 20 44 −67 −5 −2.35

All coordinates are in the Montreal Neurological Institute (MNI) ICBM 152 template.

by calculating the Pearson correlation coefficients between the
brain regions, excluding the cerebellum, that were defined with
AAL atlas. The upper triangular feature matrices were reshaped
as feature vectors when SVM and MDLA were performed. The
classification results are shown in Table 2. It can be seen that the
classification performance of the DAG network combined with
ICA and GC features is better than the values obtained with any
single type of features or other types of classifiers.

The weights of the features were computed by the coefficients
of the discrimination hyperplane, and the most discriminative
features for classification are shown in Figure 5. The connections

TABLE 2 | Classification performance of different methods with leave-one-out
cross validation (LOOCV).

Methods Accuracy Sensitivity Specificity

AAL atlas based+SVM 77.94% 73.53% 82.35%
AAL atlas based+MDLA 75.0% 79.41% 70.59%
AAL atlas based+LeNet5 79.41% 76.47% 82.35%
AAL atlas based+AE 80.88% 76.47% 85.29%
AAL atlas based+DAG 82.35% 79.41% 85.29%
GC+SVM 83.82% 85.29% 82.35%
GC+MDLA 82.35% 88.24% 76.47%
GC+LeNet5 85.29% 82.35% 88.24%
GC+AE 88.24% 82.35% 94.12%
GC+DAG 88.24% 91.18% 85.29%
ICA+GC+SVM 91.18% 88.24% 94.12%
ICA+GC+MDLA 89.71% 97.06% 82.35%
ICA+GC+LeNet5 92.65% 94.12% 91.18%
ICA+GC+AE 94.12% 97.06% 91.18%
ICA+GC+DAG 95.59% 97.06% 94.12%

with the largest weights are the most informative. It can be
seen that the IC activity in the MOG, IFG, MFG, ACC, insula,
hippocampus, STG, and the effective connections from IFG
to hippocampus, from ITG to precentral gyrus (PreCG), and
from MFG to hippocampus made larger contributions to the
classification.

DISCUSSION

In the current work, we presented a 3LHPM-ICA approach
which addressed the problems in spatial individual ICA
algorithm such as the uncertainty of the number of components,
the randomness of initial values, and the correspondence of ICs
among multiple subjects. Then, we applied the 3LHPM-ICA
method and GC on resting state fMRI data to investigate the
reproducible and stable ICs across individuals. We then obtained
the intrinsic brain functional and effective connectivity feature
matrices. A deep learning framework was finally investigated to
assess if these brain features can serve as biomarkers for AD.

We found significantly decreased intrinsic FC in AD patients
compared to NC in several subcortical regions including the
hippocampus, amygdala, insula and putamen. As one of the
earliest and most widely investigated brain regions in AD,
researchers have correlated alterations in hippocampal activity
and connectivity as well as shrinkage with the presence of AD,
which explains one of the early symptoms in the impairment
of memory, especially the formation of new memories in AD
patients (Wang L. et al., 2006; Allen et al., 2007; Mu and Gage,
2011; Smith et al., 2014). Amygdala atrophy in AD and its
relation to global illness severity have also been reported (Scott
et al., 1991; Barnes et al., 2006; Poulin et al., 2011), elucidating
the aberrant motor behavior, anxiety and irritability of AD
patients. Another positron emission tomographic study of AD
reported the cholinergic deficit in the amygdala, supporting
that the amygdala played an important role in the retention
of affective conditioning and/or memory consolidation and
cross-verified the role of the amygdala in the emotional and
behavioral symptoms of AD (Shinotoh et al., 2003). The
insula is a key region for cognition, emotion and sensory
processes which has been demonstrated with gray matter loss
(Guo et al., 2012), abnormal activities (Lin et al., 2017), and
disrupted connections in AD (Xie et al., 2012; Liu et al., 2018).
Furthermore, the reduced volumes of putamen, which was
correlated with impaired global cognitive performance, might
contribute to cognitive decline in AD (de Jong et al., 2008;
Roh et al., 2011). Consistent with the previous studies, our
findings of decreased brain connectivity in certain subcortical
areas indicated that these alterations might be related to the
memory, emotion, motor and cognition disorders present in AD
patients.

The loss of neurons and synapses in the cerebral cortex of
AD results in gross atrophy of the affected regions, including
degeneration in the temporal gyrus, parietal lobe, and parts of
the frontal cortex and cingulate gyrus. Neuropathological studies
have shown that AD-related degeneration begins in the medial
temporal lobe (Braak and Braak, 1995). The current finding of
decreased FC in the temporal gyrus is in line with previous
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FIGURE 5 | Feature weights in the classification.

reports of temporal gyrus atrophy (Farrow et al., 2007; Frisoni
et al., 2010; Ho et al., 2010) and FC anomalies (Toussaint
et al., 2014), leading to the memory and learning deficits that
are classically observed with early clinical manifestations of
AD. Our results also revealed disrupted resting state functional
connectivities in the DMN, which consists of the PCC, inferior
parietal lobe (IPL) and prefrontal cortex (PFC). The cortical
thinning (Dickerson and Sperling, 2009) and decreased intrinsic
brain activity (He et al., 2007; Wang et al., 2011b) and
connectivity (Greicius et al., 2004; Toussaint et al., 2014) of DMN
have been demonstrated inmany studies. Therefore, our findings
provide further evidence that the aberration of DMN may
result in the episodic memory, visual imagery and mentalizing
disorders in AD. Moreover, as part of the frontostriatal circuit
which is composed of the ACC, PFC and parts of the basal
ganglia, the ACC is involved in effort-based decision making
and executive functions (Stella et al., 2014; Theleritis et al.,
2014; Le Heron et al., 2018). Disruption of the FC in ACC
found in this study might play a pivotal role in apathy, such as
behavioral activation, social motivation and emotional sensitivity
disorders in AD patients. Therefore, the brain connectivity
alterations of the identified cortical and subcortical regions in
this study may be associated with the cognitive and functional
impairment of AD and potentially served as clinical biomarkers
of AD.

The two-dimensional features fused by the FC obtained
by 3LHPM-ICA and effective connectivity derived from GC

were then applied for classification in this study. Compared
with the traditional feature arrangement and fusion method,
which usually reshaped the two dimensional features into
a vector or concatenated different types of features into a
longer feature vector (Wang K. et al., 2006; Chen et al.,
2011; Dai et al., 2012; Dyrba et al., 2015; de Vos et al.,
2018), the two dimensional feature matrices and feature fusion
method used in this study preserved the spatial structural
characteristics of features and provided a more meaningful
way to combine various types of features for classification.
Moreover, the overfitting issue, which may be caused by
high-dimensional feature space in the traditional methods, could
be alleviated due to the two dimensions of features in this
study.

Advanced deep learning techniques have been successfully
applied for the diagnosis of AD based on PET and sMRI (Suk
and Shen, 2013; Liu S. et al., 2015; Ortiz et al., 2016; Lu
et al., 2018; Shi et al., 2018). A recent report constructed a
customized AE architecture with resting-state correlation based
FC to classify mild cognitive impairments from NCs (Ju et al.,
2017). However, different parcellation schemes may generate
different results. Therefore, compared with the correlation-
based method, the data-driven method in this study avoided
the problem whereby the brain parcellation methods may
affect classification performance. The connectivity patterns of
brain networks derived from ICA and GC were stable and
not influenced by different parcellation atlases. Moreover, we
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compared two kinds of deep learning algorithms with the same
inputted features. One was LeNet5 with sequential connected
layers and the other was the DAG network, which consisted
of sequential connected layers and shortcut connections.
Our results demonstrated that the DAG network has better
performance than the sequential network, possibly because
of the ‘‘skip’’ connections between layers with feed-forward
computations.

Several limitations of the present study should be noted. First,
the sample size in this study was not large and future work
should be done on a larger training sample in order to improve
the robustness and generalization of the classification model.
Second, multimodal neuroimaging features such as sMRI and
DTI should also be investigated in addition the resting state
fMRI, which may lead to higher classification accuracy. Third,
we used a binary classification for the prediction of AD/NC.
However, multi-class classification should be considered for its
clinical applications in the future because there are different
stages of AD such as MCI, LMCI and EMCI. Fourth, it would
be more comparable to compare the accuracy results with the
same benchmark datasets. Therefore, future work will focus
on the implementation of different models based on public
datasets such as ADNI. Finally, a light deep architecture with
two-dimensional input images was applied in this study. More
complicated deep learning models should be implemented such
as GoogLeNet, AlexNet, VGG, ResNet and 3D convolutional
neural networks, which may be more appropriate for big

data. Nevertheless, our results suggested that the functional
and effective connectivity features extracted by 3LHPM-ICA
and GC followed by deep learning classification represented
the most powerful method of distinguishing AD from healthy
data. Due to the flexibility of this technique, it has the
potential to be extended to other psychiatric disorders in the
future.
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