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A functional brain network, termed the parietal memory network (PMN), has been shown
to reflect the familiarity of stimuli in both memory encoding and retrieval. The function of
this network has been separated from the commonly investigated default mode network
(DMN) in both resting-state fMRI and task-activations. This study examined the deficit of
the PMN in Alzheimer’s disease (AD) patients using resting-state fMRI and independent
component analysis (ICA) and investigated its diagnostic value in identifying AD patients.
The DMN was also examined as a reference network. In addition, the robustness of the
findings was examined using different types of analysis methods and parameters. Our
results showed that the integrity as an intrinsic connectivity network for the PMN was
significantly decreased in AD and this feature showed at least equivalent predictive ability
to that for the DMN. These findings were robust to varied methods and parameters. Our
findings suggest that the intrinsic connectivity of the PMN is disrupted in AD and further
call for considering the PMN and the DMN separately in clinical neuroimaging studies.

Keywords: Alzheimer’s disease, parietal memory network, default mode network, network integrity, independent
component analysis

INTRODUCTION

The default mode network (DMN) is the most frequently investigated functional brain network
in Alzheimer’s disease (AD), and the intrinsic connectivity of DMN has been reported disrupted
in a variety of resting-state fMRI studies (Greicius et al., 2004; Jones et al., 2011, 2016; Petrella
et al., 2011). The DMN connectivity disruption has also been identified in populations at risks
for AD, such as elderly people, mild cognitive impairment (MCI) patients, and APOE-ε4 allele
carriers (Sorg et al., 2007; Damoiseaux et al., 2008; Filippini et al., 2009; Petrella et al., 2011;
Binnewijzend et al., 2012). While an increasing number of studies have pointed to the DMN
for major functional network deficit in AD, the relationship between the functions of DMN and
the early symptoms of AD is still unclear. Clinically AD first targets recent memory function,
impairing the ability to remember recently acquired information, while DMN has been named after
its characteristics of showing deactivation in attention-demanding tasks, and its functions have been
demonstrated in vast cognitive domains (Andrews-Hanna et al., 2010; Raichle, 2015). The posterior
part of DMN (i.e., posterior cingulate/precuneus and bilateral parietal cortex) are often linked to
memory processing (Andrews-Hanna et al., 2010; Sestieri et al., 2011; Raichle, 2015), but the parietal
regions are functionally inhomogeneous and memory functions are not unique to the DMN regions
(Cavanna and Trimble, 2006; Cauda et al., 2010; Sestieri et al., 2017).
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Recently, a memory-related brain network has been separated
from the posterior part of the DMN, termed as the parietal
memory network (PMN, Gilmore et al., 2015). Studies have
demonstrated that the PMN’s activity is a reflection of the
familiarity of a stimulus in both memory encoding and retrieval,
and generally across task conditions (Nelson et al., 2013; Gilmore
et al., 2015; McDermott et al., 2017). The PMN has been
disassociated from the DMN in different types of memory
retrieval tasks (McDermott et al., 2009; Chen et al., 2017),
where successful recognition memory activates the PMN, while
autobiographical retrieval activates the DMN. The PMN includes
the middle cingulate cortex (MCC), the precuneus (PCU), and
the inferior parietal lobule/angular gyrus (IPL/AG). While these
regions are all adjacent to the DMN or even has been attributed
to the DMN in some studies (Littow et al., 2010; Damoiseaux
et al., 2012; Manoliu et al., 2014; La et al., 2015), the PMN could
be reliably separated from the DMN via different methods in
resting-state fMRI studies (Yeo et al., 2011; Hu et al., 2016).
Further, our previous study has demonstrated that the PMN
in resting-state has an obvious age-dependent inter-individual
variability, while the DMN does not exhibit age-dependence
(Yang et al., 2012, 2014).

The emergence of the PMN has raised our curiosity to
consider its role in AD. The double dissociation between the
PMN and the DMN in their roles in memory processing leads
to our hypothesis that the PMN is also impaired in AD. Further,
the spatial adjacency between the PMN and the posterior DMN
regions implies a possibility that the deficits previously we
attributed to the DMN may also be related to the PMN. The
robust separation of the PMN from the DMN in resting-state
fMRI provides a chance to examine this hypothesis.

We examined the above hypothesis by comparing the
integrity of the PMN between AD patients and healthy controls
(HCs) using independent component analysis (ICA). Two
commonly used group ICA algorithms were applied and the
effects of different model orders (MOs), which is an important
yet undetermined parameter in ICA setting, were explored. The
value of the PMN integrity in classifying AD patients was further
examined. All the analysis were also performed for the DMN,
which worked as a reference network.

MATERIALS AND METHODS

Participants
Seventy-nine subjects (36 AD patients and 43 HCs) who were
all Han nationality and right-handed participated in this study.
AD patients were recruited from a memory clinic of Xuanwu
Hospital (Beijing, China). HCs were recruited from a community
via advertisements. AD patients met the National Institute of
Neurological and Communicative Disorders and Stroke and
the AD and Related Disorders Association (NINCDS-ADRDA)
criteria for probable AD (McKhann et al., 1984) and the
diagnosis of AD was confirmed by more than two professional
neurologists. The inclusion criteria for HCs were no memory
complaints, no positive sign in the neurological exam. Subjects
would be excluded if they met the following conditions: the
history of stroke, drug or alcohol abuse, psychiatric disorder or

cognitive impairment caused by traumatic brain injury, central
nervous system diseases such as brain tumors, Parkinson’s
disease, encephalitis or epilepsy, and systemic diseases such
as thyroid disease, pernicious anemia, luetic brain disease or
Acquired Immune Deficiency Syndrome. All subjects underwent
the neuropsychological tests battery including clinical dementia
rating (CDR, Morris, 1993), Mini Mental State Exam (MMSE,
Folstein et al., 1975), Montreal Cognitive Assessment (MoCA,
Nasreddine et al., 2005), Auditory Verbal Learning Task (AVLT,
Schmidt, 1996) and activities of daily living (ADL) scale. This
study was carried out in accordance with the recommendations
of Medical Research Ethics Committee of Xuanwu Hospital,
Beijing, China with written informed consent from all subjects.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by
the Medical Research Ethics Committee of Xuanwu Hospital,
Beijing, China.

Data Acquisition
Imaging was performed on an 8-channel head coil, 3.0T Siemens
Trio system. T1-weighted structural images were collected with
magnetization prepared rapid acquisition (MPRAGE) gradient
echo sequence (echo time = 2.2 ms, repetition time = 1,900 ms,
inversion time = 900 ms, flip angle = 9◦, field of view = 256 mm,
matrix = 512 ∗ 512, voxel size = 0.5 ∗ 0.5 ∗ 1 mm3 and 176 slices).
Resting state images were acquired with a gradient echo planar
imaging sequence (repetition time = 2,000 ms, echo time = 40 ms,
flip angle = 90◦, field of view = 256 mm, matrix = 64 ∗ 64, voxel
size = 4 ∗ 4 ∗ 5 mm3, 28 slices, and 239 volumes). Participants
were informed to lie still with their eyes closed and remain awake.

Data Preprocessing
Structural images were first processed using Volbrain (Manjón
and Coupé, 2016) to extract the brain and segment the brain
into gray matter (GM), white matter (WM), cerebrospinal
fluid (CSF), and several subcortical structures including
the hippocampus. To improve image registration quality,
20 structural brain images (10 images from each group) were
randomly selected to build a sample-specific structural template
using ANTs (Version 2.1.0, Tustison et al., 2014) and the
following group analyses were performed in this customized
reference space.

Resting-state fMRI images were analyzed with FSL (Version
5.0.10, Jenkinson et al., 2012). The main procedures consisted of:
(1) removing the first five volumes; (2) head motion correction;
(3) slice timing correction; (4) grand mean scaling to 10,000; and
(5) high pass temporal filtering at 0.01 Hz. The fMRI images were
transformed into the customized reference space by a two-step
registration scheme using FSL and ANTs: the mid-time point
fMRI volume was registered to native space structural image with
boundary-based registration (BBR, Greve and Fischl, 2009); then
native space structural image was registered to reference space
with ANTs’ non-linear transformation. The format conversion
between FSL and ANTs were carried out using Convert3D
(Yushkevich et al., 2006). These transformed fMRI images were
further resampled into 3 ∗ 3 ∗ 3 mm3 resolution. We did
not perform nuisance regression (Bright and Murphy, 2015),
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because ICA could split brain networks and artifacts/noises
into different components, and thus reduce the influence of
non-neural signals for functional network analyses (Pruim et al.,
2015a; Du et al., 2016).

Brain extraction, segmentation, and registration accuracy
were visually checked. The head motion was lower than 3 mm
in translation and 3◦ in rotation, and the mean frame-wise
displacement (meanFD, Power et al., 2012) was lower than
0.5 mm in all subjects.

Functional Network Analysis
In previous AD-related studies, there were two commonly used
group ICA methods: template matching and dual regression
(Greicius et al., 2004; Binnewijzend et al., 2012). Both methods
need a set of group-level network templates, but they differ in
their ways of obtaining individual-level network spatial maps.
Template matching would perform ICA for each subject and
match individual-level ICs across subjects with the group-level
templates (Greicius et al., 2004; Esposito et al., 2008), while
dual regression would use the group-level templates as spatial
regressors and a two-step multiple linear regression to get the
individual-level spatial maps (Filippini et al., 2009; Nickerson
et al., 2017). There were other ways of doing group ICA but they
were less frequently used (Lee et al., 2008; Yang et al., 2012; Du
and Fan, 2013). We used both the template matching and dual
regression approaches in examining the functional networks.

Creation of Group-Level PMN/DMN Templates
Preprocessed fMRI images of all subjects were pooled to
create a sample-specific PMN/DMN templates using temporal
concatenation group ICA (TCGICA) implemented in MELODIC
(Calhoun et al., 2001; Beckmann and Smith, 2004; Beckmann
et al., 2005). Of note, the default MIGP data reduction was
disabled (Smith et al., 2014). Specifically, all individual fMRI
images were temporally concatenated and decomposed into a
set of group-level ICs. These components reflect the common
spatial patterns shared by all or part of subjects. Ninety-nine
components were automatically estimated using the Laplacian
approximation. ICs representing PMN and DMN were selected
by matching with previous templates (Yeo et al., 2011; Hu et al.,
2016) using spatial correlation accompanied by visual check. The
results were presented in Figure 1.

Template Matching
Preprocessed fMRI images of each subject were decomposed
into individual-level ICs using MELODIC in native space,
and these component maps were then transformed into the
reference space (Beckmann and Smith, 2004). The MO of
the ICA was automatically estimated for each subject using
the Laplacian approximation. Then the absolute Pearson’s
correlation coefficient between the individual-level ICs and the
PMN/DMN templates were computed. The components with
the highest correlation to each template were regarded as the
PMN/DMN in each subject. Specifically, a components-by-
templates correlation matrix was first computed, and the highest
correlation was identified to map a component to a template,
and the highest correlation was searched in the remaining pairs
to match the other template. The correlation was Fisher-Z

FIGURE 1 | Group-level independent components (ICs) representing parietal
memory network (PMN) and default mode network (DMN) overlaid above
customized structural template. In the third row, PMN is overlaid above DMN
to show their spatial overlapping and differences. The network maps are
thresholded to reveal their core regions. The brains are displayed in
radiological orientation (left is right).

transformed and termed as network integrity, as this measure
indexes the degree to which individual-level network matches to
a network template, with the assumption that the template should
reflect the ground truth of an integral (healthy and normally
functioning) network and a deviation from the network template
indicates there is a loss of integrity. The network integrity is a
robust indicator of a general deficit of the functional connectivity
within the intrinsic network, but this index cannot specify
whether the deficit is located in any specific core regions or the
functional connectivity linking the regions. This measure has
been commonly used in previous studies (Greicius et al., 2004;
Esposito et al., 2008; Du and Fan, 2013; Michael et al., 2014).

Dual Regression
Dual regression was performed using FSL’s dual_regression
script and all group-level IC maps were used as regressors.
Specifically, for each subject, the group-level ICs were used as
spatial regressors, and their contributions to the subject’s fMRI
data were estimated using a linear model. The contributions
were depicted using the corresponding time courses. In the
same manner, these time courses were further used as temporal
regressors and their contributions to the same fMRI dataset
were estimated and represented as a set of spatial maps, each
corresponding to a group-level IC. After dual regression, the
individual-level spatial maps representing PMN/DMN were
selected and the absolute Pearson’s correlation coefficients with
group-level ICs were computed (and Fisher-Z transformed) as
network integrity measures.

Statistical Analysis
The network integrity measures for the PMN and DMN were
compared using multiple linear regression between AD and
HC groups with age, sex, education years, mean FD and GM
volume as covariates. To characterize the diagnostic value of

Frontiers in Aging Neuroscience | www.frontiersin.org 3 March 2019 | Volume 11 | Article 67

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Hu et al. Parietal Memory Network in AD

network integrity in AD, we conducted a logistic regression with
either PMN’s or DMN’s network integrity, age, sex, education
years, meanFD, and GM volume as predictors, and evaluated the
performance of the model using leave-one-out cross-validation
(LOOCV, Kohavi, 1995). A receiver operating characteristic
(ROC) curve was calculated and the area under the curve (AUC)
was used to quantify the performance (Zweig and Campbell,
1993; Robin et al., 2011). Furthermore, a voxel-wise comparison
was made between groups in individual-level PMN/DMN maps
using permutation test (5,000 permutations) and threshold-free
cluster enhancement (TFCE) multiple comparison correction
(Smith and Nichols, 2009; Winkler et al., 2014). The PMN/DMN
templates were thresholded by controlling the local false-
discovery rate at p < 0.05 using mixture modeling (Beckmann
et al., 2005; Filippini et al., 2009) and the voxel-wise hypothesis
tests were only performed in the above-threshold brain regions.
Age, sex, education years, mean FD and GM volume were also
included as covariates in the voxel-wise comparison. The voxel-
wise analysis could reveal the local difference of a brain network,
while network integrity measures the network as a whole. All
statistical analyses were carried out in FSL and R (Version 3.4.4,
R Core Team, 2018).

Effects of Varied Model Orders
To examine the robustness of the findings, we replicated the
above analysis by setting the MO at 50, 60, 70, 80 and 90 in
both group-level ICA and individual-level ICA. Specifically, at
each level of MO, TCGICA was performed and PMN/DMN
templates were selected. For template matching, individual-level
ICA was also performed at that MO and individual-level
PMN/DMN was selected by matching the group-level
PMN/DMN templates. Network integrity measures were
computed and the corresponding statistical analyses were carried
out at each MO.

Verification Analysis
Inclusion of a Control Network
As we expected that both PMN and DMN should exhibit
decreased network integrity and voxel-wise functional
connectivity in AD, there might be a concern that whether
these decreases were specific to PMN/DMN or a widespread
phenomenon. To address this concern, we included the medial
visual network (MVN) as a control network and all analysis
performed on PMN/DMN were repeated for MVN. The MVN is
mainly composed of calcarine sulcus, lingual gyrus and cuneus.

Effects of Local Gray Matter Loss
In voxel-wise comparisons, we included global GM volume as
a covariate. In order to account for the local changes of GM
volume, we also repeated the voxel-wise analysis using voxel-wise
GM estimation instead of global GM volume as a regressor.
FSL’s FAST (Zhang et al., 2001) module was used to obtain the
GM partial volume estimation where the value of each voxel
represents the relative GM volume. Then the individual-level GM
maps were transformed into the standard space and modulated
by the Jacobian determinant of warp field (to compensate the
local volume changes caused by non-linear registration). The

modulated GM maps were used as a voxel-wise regressor for
voxel-wise functional connectivity comparisons.

Effects of Out-of-Sample PMN/DMN Templates
In the main analysis, we created sample-specific DMN and
PMN templates using all subjects, which could best represent
the network features of aged people. Here we also repeated
the network integrity analysis using out-of-sample and publicly
available PMN and DMN templates, to further confirm
the robustness of any findings. Two sets of PMN/DMN
templates were utilized, one of which is a 70-component ICA
decomposition1 from Smith et al. (2009), and the other one is
from our previous study (Hu et al., 2016), where the PMN and
DMN templates were made by using three different group ICA
algorithms2. For Smith’s templates, MVN was also included and
for Hu’s templates, only PMN and DMN were examined.

Effects of Nuisance Regression
Although previous studies (Bright and Murphy, 2015; Pruim
et al., 2015a) have pointed out that nuisance regression would
remove signals of interest (i.e., brain activity) besides noises
and reduce temporal degrees of freedom, nuisance regression
as a preprocessing step has been commonly used. We further
examined that whether including nuisance regression in data
preprocessing would change the results. Nuisance regression was
performed before temporal filtering. The nuisance regressors
include mean time series of WM and ventricle, Friston’s
24-parameter motion model and motion outliers. The WM
and ventricle masks were created by combining individual-level
segmentation results and tissue priors from Harvard-Oxford
Subcortical Atlas in FSL3. The volumes with FD higher than
0.5 mm were treated as motion outliers. Network integrity and
voxel-wise functional connectivity analyses of PMN/DMN/MVN
were performed for re-preprocessed data.

RESULTS

Demographics, Brain Volumetric and
Neuropsychological Assessments
The comparison results on demographics, brain volumetric,
and neuropsychological assessments are summarized in Table 1.
There was no difference in age, sex, and years of education
between the AD and HC groups. As expected, the AD
group showed decreased volumes of GM (p = 0.0052), WM
(p < 0.001) and hippocampus (p < 0.001), and increased
CSF volume (p < 0.001). The intracranial volume did not
differ significantly between groups. For the neuropsychological
assessments, the AD group showed worse performance on all
scales (p < 0.001). As for the mean FD, the mean (standard
deviation) was 0.23 (0.092) in AD and 0.23 (0.086) in HC, and
there was no significant difference between groups (t = 0.33,
df = 72.51, p = 0.74).

1http://www.fmrib.ox.ac.uk/datasets/brainmap+rsns/
2https://github.com/yangzhi-psy/PMN-and-DMN-ICA-template
3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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TABLE 1 | Demographics, brain volumetric and neuropsychological assessments.

Variables AD (N = 36) HC (N = 43) t/χ2 dfe pf

Demographics
Age in years 67.97 (7.96)a 66.86 (5.56) 0.71 60.98 0.48
Sex (male/female) 11/25 16/27 0.15 1 0.70
Education years 9.36 (4.53) 10.46 (4.72) 1.06 75.55 0.29
Brain volumetric
Intracranial volume (cm3) 1306.49 (108.22) 1345.36 (133.02) 1.43 76.95 0.16
Gray matter (%) 47.94 (3.04) 49.76 (2.49) 2.89 67.65 0.0052
White matter (%) 29.46 (2.98) 34.37 (3.32) 6.93 76.61 <0.001
CSF (%) 22.61 (4.29) 15.86 (3.61) 7.48 68.71 <0.001
Hippocampi (%) 0.45 (0.083) 0.58 (0.050) 8.43 55.08 <0.001
Neuropsychological assessments
CDR 0.5/1/2 (3/28/5)b 0 –
MMSE 16.89 (6.06) 28.23 (2.01) 10.75 41.45 <0.001
MoCAc 12.71 (5.40) 26.06 (3.04) 12.65 51.41 <0.001
AVLT-IRd 3.74 (3.38) 12.12 (2.61) 14.57 72.92 <0.001
AVLT-DRd 0.97 (1.69) 10.19 (2.78) 18.03 70.76 <0.001

aData presented as mean (standard deviation). bThree subjects had a CDR of 0.5, 28 subjects had a CDR of 1 and five subjects had a CDR of 2. cMissing data of nine subjects for
MoCA. dAuditory Verbal Learning Task-IR (AVLT-IR) and AVRT-DR represent immediate recall and delayed recall of AVLT. Missing data of one subject for AVLT. edf stands for degrees
of freedom. fFor continuous measures, group difference was assessed using two-sample t-test; A χ2 test was used to compare male/female proportion.

FIGURE 2 | Group difference revealed by network integrity analysis using template matching. (A) The difference between Alzheimer’s disease (AD) and healthy
control (HC) in PMN’s and DMN’s network integrity. Cohen’s d is shown above each of the boxplots. (B) Receiver operating characteristic (ROC) curves for classifying
AD from HC using PMN’s or DMN’s network integrity (leave-one-out cross-validated).

Functional Network Integrity Analysis
Template Matching
As presented in Figure 2 and Table 2, the mean (standard
deviation) of the PMN’s network integrity was 0.22 (0.13) for
the AD group and 0.39 (0.14) for the HC. Compared to the
HC, the AD group exhibited a significant decrease in the PMN’s
network integrity (p < 0.001) and the effect size (measured as
Cohen’s d) was 1.24. Furthermore, the logistic regression model

including the PMN’s network integrity had an AUC of 0.76. In
comparison, the DMN’s network integrity was 0.37 (0.10) and
0.44 (0.079) for the AD and HC groups respectively. The DMN’s
network integrity was also significantly decreased in the AD
group (p = 0.011), compared with the HC and the effect size is
0.76. The logistic regression model including the DMN’s network
integrity had an AUC of 0.67.

For voxel-wise comparisons, as shown in Figure 3 and
Table 3, we measured the ratio of significant voxels in above-
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TABLE 2 | Statistical analysis of network integrity for the PMN and DMN identified using template matching.

Variables AD HC t pc Cohen’s d AUC

MO = autoa

PMN 0.22 (0.13)b 0.39 (0.14) 4.57 <0.001 1.24 0.76
DMN 0.37 (0.10) 0.44 (0.079) 2.60 0.011 0.76 0.67
MO = 50
PMN 0.21 (0.11) 0.36 (0.13) 4.75 <0.001 1.26 0.77
DMN 0.42 (0.10) 0.45 (0.12) 0.92 0.36 0.29 0.61
MO = 60
PMN 0.24 (0.13) 0.39 (0.12) 4.14 <0.001 1.15 0.76
DMN 0.39 (0.10) 0.41 (0.13) 0.90 0.37 0.25 0.61
MO = 70
PMN 0.21 (0.12) 0.36 (0.15) 4.06 <0.001 1.12 0.75
DMN 0.42 (0.11) 0.48 (0.087) 2.07 0.042 0.57 0.63
MO = 80
PMN 0.24 (0.13) 0.40 (0.14) 4.13 <0.001 1.11 0.74
DMN 0.40 (0.10) 0.44 (0.091) 1.64 0.10 0.39 0.63
MO = 90
PMN 0.24 (0.14) 0.39 (0.16) 3.81 <0.001 1.05 0.73
DMN 0.40 (0.11) 0.47 (0.098) 2.37 0.021 0.64 0.65

aModel order (MO) level was automatically estimated or explicitly specified at 50–90. bData presented as mean (standard deviation). cThe degrees of freedom is 72.

FIGURE 3 | Voxel-wise difference between AD and HC in PMN and DMN
spatial maps identified using template matching. Significant clusters
(corrected p < 0.05) are overlaid above the PMN/DMN spatial maps. The
blue circles are used to mark small group difference.

threshold regions of each network. There were 401 significant
voxels in the PMN, which accounted for 23.03% of the
core regions of this network. Correspondingly, there were
11 voxels in the DMN, which accounted for 0.51% in
the network.

Dual Regression
As presented in Figure 4 and Table 4, the mean (standard
deviation) for the PMN’s network integrity was 0.27 (0.067) for
AD and 0.34 (0.063) for HC. There was a significant difference
between the AD and HC groups (p < 0.001) and the effect size
was 1.13. In addition, the AUC of PMN in ROC analysis is 0.76.
In comparison, the DMN’s network integrity was 0.29 (0.051) for
AD and 0.34 (0.048) for HC. The AD-HC group difference was
statistically significant (p < 0.001) and had an effect size of 1.11.
The AUC of DMN is 0.79. For voxel-wise comparisons, shown
in Figure 5 and Table 5, the PMN had five significant voxels and

a ratio of 0.29%, while the DMN had 17 significant voxels and a
ratio of 0.79%.

Effects of Model Order
The results of different MOs were presented in Tables 2–5. The
group-level PMN/DMN templates were presented in Figure 6.
For the network integrity comparison, both template matching
and dual regression obtained similar effect sizes and AUC for
PMN at different MOs. For the voxel-wise comparison, the
results of PMN were similar at varied MOs, while template
matching revealed much more significant voxels than dual
regression. In comparison, the DMN reflected more variability
in both the network integrity and voxel-wise comparisons among
MOs in both approaches. For instance, the standard deviation of
Cohen’s d at different MOs was 0.20 for the DMN and 0.080 for
the PMN in the template matching approach.

Verification Analysis
Inclusion of a Control Network
The group-level spatial maps of MVN were shown in
Supplementary Figure S1. The results of network integrity and
voxel-wise functional connectivity after including MVN were
displayed in Supplementary Tables S1–S4. Different from the
PMN/DMN and as expected, the MVN exhibited no significant
group difference in both network integrity and voxel-wise
functional connectivity.

Therefore, the decreases of PMN/DMN in network
integrity and voxel-wise functional connectivity were not
widespread phenomena.

Effects of Local Gray Matter Loss
The voxel-wise comparison results were shown in Figure 7,
Supplementary Figure S2 and Supplementary Tables S5, S6.
We observed that the inclusion of voxel-wise GM volume
would generally increase the size of the significant clusters
in both template matching and dual regression approaches.
These results together indicated that the functional network
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TABLE 3 | Voxel-wise comparison results for the PMN and DMN identified using template matching.

Variables Total voxel size Significant voxel size Ratio of significant voxels (%) Peak p value (corrected)

MO = autoa

PMN 1,741b 401 23.03 <0.001
DMN 2,144 11 0.51 0.019
MO = 50
PMN 2,943 252 8.56 <0.001
DMN 5,793 0 0 0.46
MO = 60
PMN 2,812 344 12.23 0.008
DMN 6,346 0 0 0.48
MO = 70
PMN 2,663 343 12.88 <0.001
DMN 4,264 0 0 0.064
MO = 80
PMN 2,448 215 8.78 <0.001
DMN 4,179 0 0 0.18
MO = 90
PMN 2,392 483 20.19 <0.001
DMN 2,409 0 0 0.12

aModel order (MO) level was automatically estimated or explicitly specified at 50–90. bTotal number of voxels in PMN/DMN networks after thresholded by controlling the local
false-discovery rate at p < 0.05.

FIGURE 4 | Group difference revealed by network integrity analysis using dual regression. (A) The difference between AD and HC in PMN’s and DMN’s network
integrity. Cohen’s d is shown above each of the boxplots. (B) ROC curves for classifying AD from HC using PMN’s or DMN’s network integrity (leave-one-out
cross-validated).

abnormality (our findings) was not fully determined by the
GM loss.

Effects of Out-of-Sample Templates
The spatial maps of Hu’s and Smith’s templates were shown
in Figure 8 and Supplementary Figure S3. The network
integrity results using out-of-sample templates were presented
in Supplementary Tables S7–S10. The group difference we

observed before still existed, which further confirmed the
robustness of our results. However, we also observed the
template-dependent effects. For instance, the individual-level
network integrity (correlation) using Smith’s templates was
much lower than the sample-specific templates. As neither of
the out-of-sample templates was built from aged subjects, these
systematic changes probably reflected the different network
topological properties in the elderly population.
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TABLE 4 | Statistical analysis of network integrity for the PMN and DMN identified using dual regression.

Variables AD HC t pc Cohen’s d AUC

MO = autoa

PMN 0.27 (0.067)b 0.34 (0.063) 4.52 <0.001 1.13 0.76
DMN 0.29 (0.051) 0.34 (0.048) 5.21 <0.001 1.11 0.79
MO = 50
PMN 0.36 (0.087) 0.46 (0.071) 4.86 <0.001 1.23 0.79
DMN 0.42 (0.086) 0.48 (0.076) 3.55 <0.001 0.83 0.72
MO = 60
PMN 0.35 (0.089) 0.44 (0.061) 5.11 <0.001 1.25 0.78
DMN 0.40 (0.082) 0.47 (0.064) 3.99 <0.001 0.89 0.72
MO = 70
PMN 0.33 (0.076) 0.41 (0.064) 4.96 <0.001 1.19 0.78
DMN 0.38 (0.071) 0.43 (0.057) 3.64 <0.001 0.83 0.72
MO = 80
PMN 0.31 (0.076) 0.39 (0.068) 4.70 <0.001 1.13 0.77
DMN 0.37 (0.066) 0.42 (0.066) 3.62 <0.001 0.80 0.70
MO = 90
PMN 0.29 (0.067) 0.37 (0.064) 4.90 <0.001 1.17 0.78
DMN 0.33 (0.059) 0.38 (0.051) 4.80 <0.001 1.03 0.77

aModel order (MO) level was automatically estimated or explicitly specified at 50–90. bData presented as mean (standard deviation). cThe degrees of freedom is 72.

FIGURE 5 | Voxel-wise difference between AD and HC in PMN and DMN spatial maps identified using dual regression. Significant clusters (corrected p < 0.05) are
overlaid above the PMN/DMN spatial maps. The blue circles are used to mark small group difference.

Effects of Nuisance Regression
The group-level spatial maps of PMN/DMN were presented
in Figure 9. The results of network integrity and voxel-wise
functional connectivity were shown in Supplementary
Tables S11–S14. After including the nuisance regression in
preprocessing, the group difference identified before could still
be identified.

Potential Sub-groups of AD
In Figure 2, AD patients appeared to have two clusters in
their PMN integrity, with a subset of seven patients exhibiting
typical HC integrity. As an exploratory analysis, we compared the
seven AD subjects and the remaining 29 patients in three types
of variables, including demographic (age/education), volumetric
(GM/WM/CSF/hippocampi volume) and neuropsychological
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TABLE 5 | Voxel-wise comparison results for the PMN and DMN identified using dual regression.

Variables Total voxel size Significant voxel size Ratio of significant voxels (%) Peak p value (corrected)

MO = autoa

PMN 1,741b 5 0.29 0.022
DMN 2,144 17 0.79 0.0050
MO = 50
PMN 2,943 4 0.14 0.039
DMN 5,793 41 0.71 <0.001
MO = 60
PMN 2,812 9 0.32 0.010
DMN 6,346 3 0.047 0.034
MO = 70
PMN 2,663 12 0.45 0.0070
DMN 4,264 58 1.36 0.0050
MO = 80
PMN 2,448 19 0.78 0.0020
DMN 4,179 86 2.06 <0.001
MO = 90
PMN 2,392 5 0.21 0.020
DMN 2,409 21 0.87 0.014

aModel order (MO) level was automatically estimated or explicitly specified at 50–90. bTotal number of voxels in PMN/DMN networks after thresholded by controlling the local
false-discovery rate at p < 0.05.

FIGURE 6 | Group-level spatial maps representing PMN and DMN at different model orders overlaid above customized structural template.

assessments (MMSE/MoCA/AVLT). Mean FD was included as
a covariate in all comparisons. Detailed statistics on all variables
could be found in Supplementary Table S15. The results showed
that the 7 AD subjects exhibited significantly higher GM/CSF
volumes (p = 0.0036/p = 0.013) and marginally significantly

higher MoCA and MMSE scores (p = 0.051/p = 0.099) than
the other 29 AD subjects. In other words, the 7 AD subjects
who had relatively higher PMN integrity also had less GM
atrophy and better cognitive performance than the other 29 AD
subjects. These results indicated that the integrity of PMN
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FIGURE 7 | Voxel-wise difference between AD and HC in PMN and DMN spatial maps identified using template matching at automatically estimated model order
(MO) after regressing out voxel-wise gray matter (GM) volume. Significant clusters (corrected p < 0.05) are overlaid above the PMN/DMN spatial maps.

(combined with template matching) is sensitive to the severity
of AD symptoms and could be used to detect sub-groups. As
the sample sizes of sub-groups were too limited to allow us
to establish a reliable association between these variables and
the properties of functional networks, these results should be
interpreted cautiously and need further validation.

DISCUSSION

In this study, we found that the PMN had significant lower
network integrity in AD, compared with HCs. The PMN
had a large effect size and exhibited at least equivalent
diagnostic ability to the DMN in identifying AD patients.
Further voxel-wise comparisons identified significant decreases
in functional connectivity in the core regions of the PMN.
These findings were robust at different MOs using two types
of group ICA methods. The DMN was analyzed as a reference
network, and as expected, exhibited decreased network integrity
and voxel-wise functional connectivity in AD group but showed
a higher variability across MOs in both methods.

ICA is the most commonly used technique to simultaneously
investigate multiple brain networks, which could decompose
the fMRI data into a set of inter-independent brain networks
en bloc in a data-driven manner (Hyvärinen and Oja, 2000;
Beckmann et al., 2005). Due to the inherent order ambiguity
of the ICA algorithm, how to apply ICA to multiple subjects
for group analysis has been an unsettled issue (Calhoun et al.,
2001). Template matching and dual regression are two types
of solutions to group ICA and have been commonly used

in AD-related studies. Briefly, both methods need a set of
brain network templates, but they differ in their ways of
obtaining individual-level network spatial maps. Specifically,
template matching aligns individual-level ICA results by
measuring the similarity to the templates, while dual regression
adopts a two-step multiple linear regression to reconstruct
individual-level time courses and spatial maps. For the dual
regression, the brain network templates are usually created
from the sample under study using TCGICA, which would
also generate components reflecting artifact/noise, besides brain
networks. These artifact/noise components are necessary for
dual regression to account for the variances from non-neural
sources (Griffanti et al., 2016; Nickerson et al., 2017). Previously,
template matching usually only needs the brain network
templates of interest (Greicius et al., 2004). For brevity and
comparability, here we also use the templates generated from
the TCGICA for template matching. These two methods
have advantages and disadvantages. For template matching,
there are no criteria to determine whether a component is
correctly matched to a template. Pearson’s correlation coefficient
is a commonly employed similarity measure for template
matching, which we adopted in the current study, but there
are risks that mismatch could happen, especially when the
similarity is low (Zuo et al., 2010). Another concern is the
component splitting problem, which means a component could
be split into several sub-components, especially in high MO
settings (Kiviniemi et al., 2009). Splitting of brain networks
is currently thought to reflect the refinement of network
functions. In template matching, component splitting could

Frontiers in Aging Neuroscience | www.frontiersin.org 10 March 2019 | Volume 11 | Article 67

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Hu et al. Parietal Memory Network in AD

FIGURE 8 | Out-of-sample PMN and DMN templates from Hu et al. (2016).

result in incomparability among individual-level ICA results to
some degree. In this study, we repeated analysis at different
levels of MOs, attempting to mitigate this problem. It is also
possible that the component splitting reflects the individuality
of brain network activities, which could be reliably detected
and vary from person to person. The biggest advantage
of template matching is that the individual-level ICA fully
preserves the variability of individuals, which are expected
to be large, especially in patient populations, because the
individual-level ICA maintains the data-driven property and
actually we should not make too many assumptions for brain
network patterns in real fMRI data. For dual regression,
the accuracy of the reconstructed individual-level spatial
maps and time courses would be degraded with increased
individual variability (Michael et al., 2014; Nickerson et al.,
2017). However, dual regression could make group comparison
straightforward and showed high test-retest reliability (Zuo
et al., 2010). There are theoretically improved group ICA
algorithms (Lee et al., 2008; Du and Fan, 2013), though
they are scarcely used in AD-related studies. In order to
make the results in the current study comparable to those
in previous studies, template matching and dual regression
were used.

The reliability of fMRI-based studies is a great concern
in recent years, therefore we tested many key factors which

could potentially influence the results. MO is an undetermined
parameter in the ICA algorithm, which could be the most
influential factor to any unreliable findings so that a wide
range of MOs were tested. Relatively high MOs were selected,
based on our previous finding that only in relatively high
MO, could PMN and DMN be robustly separated (Hu et al.,
2016). The variances explained by PMN could be unintentionally
removed in the PCA-based dimension reduction process, when
the MO is set at low level (for instance, at 20–30). Nuisance
regression is a common technique applied in the preprocessing
of resting-state fMRI data, in which WM/ventricle signals and
head motion parameters were regressed out before functional
network analyses. We did not perform nuisance regression
in the main analysis, because ICA could split brain networks
and artifacts/noises into different components, and thus reduce
the influence of non-neural signals for functional network
analyses (Salimi-Khorshidi et al., 2014; Pruim et al., 2015b).
ICA-based denoising has been demonstrated to outperform
nuisance regression and would be less likely to affect signals
of interest (Bright and Murphy, 2015; Pruim et al., 2015a).
We also included head motion parameter (i.e., mean FD)
as a covariate in statistical analysis to mitigate residual
head motion. In verification analysis, we also demonstrated
that the findings would not be significantly influenced by
nuisance regression. Another notable analysis detail is the
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FIGURE 9 | Group-level spatial maps representing PMN and DMN at different model orders after including nuisance regression in data preprocessing.

avoidance of spatial smoothing during the preprocessing. Spatial
smoothing could account for the registration inaccuracy and
anatomical variability and thus increase the signal-to-noise
ratio. However, common spatial smoothing implementation
using isotropic Gaussian kernel filter could potentially blur
signals from neighboring brain regions. Due to the anatomical
adjacency of PMN and DMN, we did not perform spatial
smoothing at the cost of decreased statistical power in the
group analysis.

In the current study, the network integrity was measured
by the similarity between individual-level networks and group-
level network templates. The group-level network templates
were made by combining both AD patients and HCs. Making
sample-specific group-level templates from all subjects is a
common practice for dual regression, which would generate
components representing both brain networks of interest and
of no interest, as well as artifacts/noises (Griffanti et al., 2016;
Nickerson et al., 2017). These components of no interest
are important to accurately reconstruct the individual-level
spatial maps. Although out-of-sample templates were used in
some studies (Jones et al., 2016), there was no systematic
examination on the influences of out-of-sample templates,

and thus unexpected results could occur. In order to make
results from different methods comparable, the group-level
network templates used in dual regression were also used
for template matching. This kind of group-level templates
is not optimal to detect group difference, but we replicated
the DMN’s abnormality in our sample, which has been
consistently observed in AD patients (Greicius et al., 2004;
Binnewijzend et al., 2012), indicating our results are valid (yet
conservative). In the verification analysis, we also demonstrated
that our results are still valid even if we adopted out-of-
sample templates.

Our results call for considering the PMN and the DMN
separately in clinical neuroimaging studies. The posterior parietal
cortex is not functionally homogenous and plays an important
role in episodic memory retrieval (Sestieri et al., 2017). The
PMN borders on the DMN in the posterior parietal cortex
anatomically, but the PMN is not a sub-component of the
(posterior) DMN. These arguments are supported by two lines
of previous studies (Gilmore et al., 2015): first, unlike the DMN,
the core regions of the PMN are consistently and simultaneously
associated with memory encoding and retrieval processes in
different task conditions (Kim, 2013; Gilmore et al., 2015). The
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activity of the PMN is a reflection of the subjective familiarity
of a stimulus (McDermott et al., 2017). Specifically, the PMN
deactivates in perceiving novel stimuli while activates in familiar
ones. This unique pattern differentiates the PMN from other
brain networks only involved in certain tasks or in either memory
encoding or retrieval. The double disassociation between the
PMN and the DMN has been observed in different types of
memory tasks (McDermott et al., 2009; Chen et al., 2017). In
this regard, the PMN shows a more direct relationship to the
early symptoms of AD than the DMN, as DMN is involved in
multiple but different cognitive functions. Second, the intrinsic
functional connectivity profile of the PMN is distinct from
that of the DMN. The PMN and DMN could be separated in
resting-state fMRI using graph theoretical methods, clustering,
and ICA (Power et al., 2011; Yeo et al., 2011; Yang et al., 2012,
2014; Hu et al., 2016). Unlike the DMN, which could be split
into sub-networks in high order model ICA, the PMN was
immune from the effects of high MO (Kiviniemi et al., 2009;
Hu et al., 2016). These evidence indicated that the PMN is
not a subordinate of the DMN but an independent functional
brain network. There has been a tendency to attribute any
medial and lateral parietal regions to the DMN in some studies,
even in situations where network analysis was not performed.
Due to the spatial proximity of the PMN and the DMN, it
is very likely that some findings located in posterior parietal
regions have been attributed to the DMN for interpretation.
It is also very possible that posterior parietal cortex contains
other functional networks, besides the PMN and the DMN.
Amyloid deposition, metabolism reduction, and atrophy are
also co-occurring in the posterior parietal cortex at the stage
of AD (Buckner et al., 2005). This line of evidence that has
been used to support the dysfunction of the DMN could
also support the dysfunction of the PMN, and needs further
clarification using fine-grained parcellation of the posterior
parietal cortex.

As AD is an irreversible process, much endeavor has been
made in seeking biomarkers to diagnose AD at an earlier stage. In
this study, we examined the ability of the PMN in discriminating
AD group from the HC group and found that the PMN had a
large effect size and at least equivalent predictability to the DMN.

Further study on the prodromal stage of AD and longitudinal
analysis are needed to clarify which brain network comes first,
although the PMN and DMN were both disrupted in AD. We
speculate that due to its close association with memory functions,
the dysfunction of the PMN may emerge earlier, with the decline
of memory performance before a clinical diagnosis of AD has
arrived. In addition, there are different methods for network
analysis besides ICA, which often make different assumptions on
data and have both advantages and disadvantages. Converging
evidence from different types of methods could further confirm
the findings of the current study.

In conclusion, the current findings show that the integrity of
the PMN is disrupted in AD, and that the PMN have a large
effect size and at least equivalent diagnostic ability to the DMN
in discriminating AD patients from HCs.
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