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The argument is frequently made that the amyloid-β protein (Aβ) persists in the human
genome because Alzheimer’s disease (AD) primarily afflicts individuals over reproductive
age and, therefore, there is low selective pressure for the peptide’s elimination or
modification. This argument is an important premise for AD amyloidosis models and
therapeutic strategies that characterize Aβ as a functionless and intrinsically pathological
protein. Here, we review if evolutionary theory and data on the genetics and biology of
Aβ are consistent with low selective pressure for the peptide’s expression in senescence.
Aβ is an ancient neuropeptide expressed across vertebrates. Consistent with unusually
high evolutionary selection constraint, the human Aβ sequence is shared by a majority
of vertebrate species and has been conserved across at least 400 million years. Unlike
humans, the overwhelming majority of vertebrate species do not cease reproduction
in senescence and selection pressure is maintained into old age. Hence, low selective
pressure in senescence does not explain the persistence of Aβ across the vertebrate
genome. The “Grandmother hypothesis” (GMH) is the prevailing model explaining the
unusual extended postfertile period of humans. In the GMH, high risk associated
with birthing in old age has lead to early cessation of reproduction and a shift to
intergenerational care of descendants. The rechanneling of resources to grandchildren
by postreproductive individuals increases reproductive success of descendants. In the
GMH model, selection pressure does not end following menopause. Thus, evolutionary
models and phylogenetic data are not consistent with the absence of reproductive
selection pressure for Aβ among aged vertebrates, including humans. Our analysis
suggests an alternative evolutionary model for the persistence of Aβ in the vertebrate
genome. Aβ has recently been identified as an antimicrobial effector molecule of
innate immunity. High conservation across the Chordata phylum is consistent with
strong positive selection pressure driving human Aβ’s remarkable evolutionary longevity.
Ancient origins and widespread conservation suggest the human Aβ sequence is
highly optimized for its immune role. We detail our analysis and discuss how the
emerging “Antimicrobial Protection Hypothesis” of AD may provide insights into possible
evolutionary roles for Aβ in infection, aging, and disease etiology.
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The hallmark pathology for Alzheimer’s disease (AD) is
deposition of amyloid-β protein (Aβ) as β-amyloid senile
plaques. Accumulation of high β-amyloid burden is thought to
drive a succession of pathologies leading to neurodegeneration
and dementia. This model is called the “Amyloid Cascade
Hypothesis” (ACH) of AD. β-amyloid is generated in brain by
the ordered self-assembly of Aβ into fibrils containing monomer
units arranged as β-pleated sheets. Aβ fibrillization is widely
viewed as an intrinsically abnormal and exclusively pathological
activity. The Aβ peptide itself is most often characterized
as a functionless incidental product of catabolism. However,
evolutionary theory predicts negative reproductive selection
pressure would rapidly eliminate a non-functional and highly
pathogenic gene from the genome (Crow and Kimura, 1970).
A “Low Selection Pressure in Senescence” (LSPS) argument has
frequently been proposed to explain Aβ’s puzzling persistence
in the human genome despite the peptide’s supposed lack of a
physiological function and intrinsic pathogenicity. In the LSPS
model, Aβ is not purged from the human genome because AD
primarily afflicts individuals over reproductive age and, therefore,
there is low reproductive selective pressure for the peptide’s
elimination or modification. For over two decades the LSPS
argument has provided support for amyloidogenesis models that
ascribe amyloid generation in AD to an intrinsically abnormal
propensity of Aβ for unconstrained self-association. Here, we
present the first detailed evaluation of the LSPS argument. Our
analysis shows the LSPS model is not consistent with modern
evolutionary theory or data on the activities and genetics of Aβ.
Our findings suggest Aβ persists across the vertebrate genome,
not because of low reproductive selection pressure, but because
the peptide increases inclusive fitness. Our analysis adds to
mounting evidence suggesting an urgent need for revaluation
of prevailing AD amyloidogenesis and therapeutic models that
characterize Aβ as a functional less disease-causing catabolic by-
product (reviewed by Moir et al., 2018). We examine how the new
“Antimicrobial Protection Hypothesis” of AD (Moir et al., 2018)
provides a fresh interpretation of the ACH that is consistent with
preservation of Aβ in the vertebrate genome and the emerging
role of innate immunity in AD etiology.

Human reproductive senescence occurs much faster than
somatic aging and woman exhibit prolonged postreproductive
periods that can extend to more than 30 % of normal lifespan
(Peacock and Ketvertis, 2018). AD primarily afflicts individuals
in this postreproductive period. In the LSPS model, genes
mediating disease in humans are not subject to selection pressure
postreproduction. However, this model does not address Aβ’s
persistence in non-human genomes. The Aβ sequence is ancient
and highly conserved across vertebrates (Figure 1; Luna et al.,
2013). Recent findings suggest non-human vertebrates also suffer
excessive β-amyloid deposition and Alzheimer’s-like cognitive
impairment in senescence (Nakayama et al., 1999; Maldonado
et al., 2002a,b; Youssef et al., 2016). However, postreproductive
periods for the majority of iteroparous vertebrate species,
if present at all, are less than 5% of normal lifespan and
individuals continue to have offspring well into senescence
(Jones et al., 2014; Croft et al., 2015; Field and Bonsall,
2017). For some vertebrae species, reproductive success is

highest among older mothers (Reiter et al., 1981; Palumbi,
2004; Hixon et al., 2014). Thus, for most vertebrate species
reproductive selection pressure does not cease in old age when
pathologies associated with Aβ expression manifest. Nonetheless,
the human Aβ sequence is shared by 60–70 % of vertebrates
and has been conserved across at least 400 million years
(Luna et al., 2013). Aged individuals also indirectly contribute
to the reproductive success of kin in several ways (Roach
and Carey, 2014). Among social mammals, the presence of
aged mothers increases the reproductive success of daughters
(Fairbanks and McGuire, 1986; Lahdenpera et al., 2016; Lee
et al., 2016). The extensive habitat knowledge accumulated
by old individuals is also an important part of the survival
strategy of mammals living in close kin groups (McComb et al.,
2001; Modlmeier et al., 2014). Evolutionary theory predicts
functionless or harmful genes that reduce the support old
mothers provide for reproduction among kin will be selected
out of species genomes. However, Aβ remains widely expressed
with the human sequence greater than 95 % conserved across
mammals (Tharp and Sarkar, 2013). Thus, the LSPS model fails
to explain Aβ’s remarkable evolutionary persistence among non-
human vertebrates.

In the LSPS argument, reproductive selection pressure is
low for humans following the end of reproduction. To date,
only humans, killer whales (Orcinus orca) and short-finned
pilot whales (Globicephala macrorhynchus) have been found to
undergo menopause (Marsh and Kasuya, 1986; Olesiuk et al.,
1990). Menopause is thought to have evolved independently in
humans and toothed cetaceans because of important lifestyle
traits these species share, including highly social behaviors
focused around family groups with elevated local relatedness,
a long adolescence during which offspring learn diverse
survival skills and acquire local and often highly specialized
knowledge from their mothers and kin, and high maternal risk
associated with birthing in old age. Ongoing debate continues
to refine evolutionary theory on the origin of menopause
(Hawkes and Coxworth, 2013; Croft et al., 2015). However, a
broad consensus has emerged that postreproductive lifespan
in these species increases inclusive fitness. The most widely
accepted theory is known as the “Grandmother Hypothesis”
(GMH) and explains menopause as an adaptation mediating
extended kin networking in species for which reproduction
in senescence carries high risk (Williams, 1957). In this
model, postreproductive individuals rechannel reproductive
energy and resources (including experience and knowledge)
to grandoffspring. This provision of intergenerational care
promotes survival of descendants and increases species
evolutionary fitness. The GMH model has been confirmed
in whales where postfertile females play an important role in
increasing survival and reproductive success of descendants
and close relatives (Foster et al., 2012; Brent et al., 2015;
Croft et al., 2017). Delineating the benefits of grandparenting
in human societies has proved more challenging. However,
mounting data from both modern and less technological
advanced societies are consistent with reproductive benefits
for family groups that include grandparents (Hawkes, 2003;
Ragsdale, 2004; Shanley et al., 2007; Pavard et al., 2008;
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FIGURE 1 | Amyloid-β protein is an ancient and highly evolutionary conserved neuropepetide. Figure shows Aβ42 sequences across different vertebrate taxa.
Conserved (blue) and non-conserved (red) amino acid substitutions among non-human species are highlighted. Adapted from Luna et al. (2013).

Lahdenpera et al., 2012; Mace and Alvergne, 2012; Cyrus
and Lee, 2013; Hooper et al., 2015). Thus, inclusive fitness
theory (Kirkwood and Shanley, 2010) and data on human
reproduction are not consistent with low evolutionary
selection pressure for postreproductive individuals as posited
in the LSPS model. Rather, persistence of Aβ in the human
and vertebrate genomes suggests strong positive selection
pressures are driving the protein’s enduring and widespread
evolutionary conservation.

Aβ is generated by proteolytic cleavage of the amyloid-β
precursor protein (APP). Aβ generation requires the peptide’s
excision from APP by β-secretase (β-site APP cleaving enzyme
[BACE1]) and a γ–secretase complex. Aβ generation has
been confirmed in a range of sarcopterygians. Findings for
zebrafish (Danio rerio) and kokanee salmon (Oncorhynchus
nerka kennerlyi) are also consistent with generation of Aβ by
teleosts (Maldonado et al., 2000, 2002a,b; Nada et al., 2016;
Nery et al., 2017; Pu et al., 2017), despite analysis suggesting
fish APP lacks the classical BACE1 cleavage site found in
other vertebrates (Moore et al., 2014). Thus, most vertebrates

appear to actively generate Aβ from APP. Phylogenetic analysis
indicates the ancestral APP/Aβ gene arose with metazoic
speciation during the Ediacaran period (Tharp and Sarkar, 2013).
Early gene duplication lead to a family of three homologs
in vertebrate species: APP, amyloid precursor-like proteins
1 (APLP1), and amyloid precursor-like proteins 2 (APLP2)
(Wasco et al., 1992, 1993). The Aβ sequence is the most highly
conserved domain within the vertebrate APP family (Tharp
and Sarkar, 2013). APLP1 and APLP2 contain homologous
Aβ domains that are less evolutionarily conserved, varying
between each other and across species (Tharp and Sarkar, 2013).
The unique conservation of the Aβ domain is consistent with
an ancient and important physiological role for this peptide
sequence. Aβ is part of the APP transmembrane domain.
However, data suggest the apparent high evolutionary selection
constraint of human Aβ is not mediated by the domains
role as part of the APP holoprotein. The Aβ homolog regions
in APLP1 and APLP2 are distinct from the Aβ domain in
APP. Data from genetically modified cell and animal models
confirm that APP, APLP1, and APLP2 share activities and
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have partially overlapping functions (Muller et al., 2017). In
addition, murine APP contains a non-human Aβ sequence
but the protein appears to retain full functionality (Deyts
et al., 2016; Kaneshiro et al., 2018). These data suggest
the human Aβ sequence is sufficient, but not essential, for
functionality of the members of the APP protein family.
Thus, the evolutionary conservation of the Aβ sequence is
most likely linked to the actions of the excised peptide
rather than activities of the APP holoprotein. Rates of protein
sequence evolution depend primarily on the level of functional
constraint (Zhang and Yang, 2015). Protein evolution models
predict that optimized genes important for species fitness
show high sequence stability over large evolutionary periods
(Zhang and Yang, 2015). Proteins subject to low selection
pressure accumulate mutations and display genetic drift across
species (Boucher et al., 2014). Indeed, genetic drift mediated
by low selection pressure is thought to be key for the
generation of novel proteins (Boucher et al., 2014). Hence,
from an evolutionary perspective, high sequence conservation
and persistence among vertebrates across at least 400 million
years is consistent with a strong association between Aβ

expression and increased species fitness. Moreover, widespread
preservation of the human Aβ sequence among vertebrates (Luna
et al., 2013) does not support AD amyloidosis models that
characterize fibrillization as intrinsically abnormal. In contrast
to prevailing AD amyloidogenesis models, intergenetic data
suggest Aβ fibrillization is associated with high evolutionary
selective constraint, consistent with an important beneficial
role for β-amyloid generation in non-AD brain. However,
until recently it has been unclear what physiological role Aβ

fibrillization normally plays.
We (Soscia et al., 2010; Kumar et al., 2016; Eimer et al.,

2018), and other independent laboratories (White et al., 2014;
Bourgade et al., 2015, 2016; Spitzer et al., 2016), recently identified
Aβ as an antimicrobial peptide (AMP). AMPs are the primary
effector proteins of the innate immune system. The microbial
inhibitory activities of AMPs are critically important for host
immunity and they target bacteria, mycobacteria, enveloped
viruses, fungi, protozoans, and, in some cases, transformed or
cancerous host cells (Wiesner and Vilcinskas, 2010). However,
AMP activities are not limited to antibiotic-like actions. AMPs
often play multiple diverse roles in immunity. To greater or
lesser extents, all of the roles Aβ plays as an AMP are likely
to influence the peptide’s evolutionary conservation. Germaine
to AD, AMPs are potent immunomodulators (Steinstraesser
et al., 2011) and are sometimes called the alarmins because of
their cytokine-like proinflammatory activities. Consistent with
identity as an AMP, synthetic Aβ inhibits fungal, bacterial,
and viral pathogens in vitro (Soscia et al., 2010; White et al.,
2014; Bourgade et al., 2015, 2016; Spitzer et al., 2016). Most
recently, we have shown human Aβ expression in vivo protects
against pathogens in transformed 3D human neuronal cell
culture and transgenic C. elegans and AD mouse infection
models, doubling host survival in some cases (Kumar et al.,
2016; Eimer et al., 2018). Conversely, genetically modified mice
lacking APP or the secretases required for Aβ generation,
show attenuated infection resistance (Dominguez et al., 2005;

Kumar et al., 2016; Eimer et al., 2018). Amyloid fibrils
mediate the direct microbe inhibitory activities of Aβ. Aβ

oligomers first bind carbohydrate moieties on microbial surfaces.
Bound oligomers then provide a nidus and anchor for Aβ

fibril propagation. Growing Aβ fibrils capture, agglutinate,
and finally entrap microbes in a protease-resistant network
of β-amyloid. In the antimicrobial Aβ fibrilization model,
seeding of β-amyloid by pathogenic microorganisms is part
of a protective innate immune response to infection. In AD,
sustained activation of this pathway leads to amyloidosis and
pathology. However, Aβ fibrilization and amyloid generation per
se are not abnormal and mediate a protective immune pathway.
This newly identified role for β-amyloid is consistent with
our sequence evolution analysis that suggests Aβ fibrilization
mediates beneficial immune functions. Also consistent with
this emerging view of Aβ is the role peptide fibrillization
plays in mediating the protective antimicrobial actions of
classical AMPs, including lytic (Radzishevsky et al., 2008;
Sood et al., 2008; Chu et al., 2012; Kagan et al., 2012) and
agglutination/entrapment (Tsai et al., 2011; Chu et al., 2012;
Torrent et al., 2012) activities.

Findings from our phylogenetic analyses are consistent
with emerging data showing a role for Aβ fibrillization
pathways in innate immunity. This stands in stark contrast
to prevailing models that characterize fibrilization and
associated Aβ activities as intrinsically abnormal. The
view that Aβ activities are abnormal arose from an early
surmise about the peptide’s origins that, while plausible
at the time, has since proved inaccurate. Three and a half
decades ago when Aβ generation was first characterized,
intramembrane protein cleavage was viewed as an abnormal
and exclusively disease-associated pathway (Kang et al.,
1987). APP intramembrane cleavage and Aβ generation were
thought limited to AD brain (Sisodia et al., 1990). As an
abnormal catabolic product generated only under disease
conditions, Aβ was presumed to lack a normal physiological
function. However, intramembrane cleavage is now recognized
as a normal proteolytic pathway mediating generation of
diverse functional biomolecules (Rawson et al., 1997).
Furthermore, findings have confirmed Aβ is a widely and
constitutively expressed vertebrate neuropeptide (Figure 1;
Luna et al., 2013; Tharp and Sarkar, 2013). However, while
early assumptions about Aβ’s origin proved incorrect, the
amyloidogenesis models they helped engender remain
widely held. Moreover, the LSPS hypothesis continues to
be cited in support of these longstanding amyloidogenesis
models. However, as our analysis underscores, data
accumulated over the last three decades is inconsistent, not
only with early speculations on Aβ’s origin, but also the
longstanding LSPS argument.

Data are consistent with lifelong positive selection
pressure mediating conservation and persistence of Aβ in
the vertebrate genome. However, antagonistic pleiotropy
may also play a role in the etiology of patients with high
genetic risk for AD. In the antagonistic pleiotropy hypothesis,
a gene beneficial to evolutionary fitness early in life may
be detrimental in senescence- early benefits outweighing
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later costs (Williams, 1957). The E4 allele (APOE4) of the
apolipoprotein E gene is associated with enhanced β-amyloid
deposition and increased AD risk (Strittmatter et al., 1993).
An antagonistic pleiotropy model has been proposed for the
pathogenicity of APOE4 in inflammation-associated late-life
diseases, including AD (Jasienska et al., 2015), arteriosclerosis
(Mahley, 1988), multiple sclerosis (Chapman et al., 2001),
ischemic cerebrovascular disease (McCarron et al., 1999),
sleep apnea (Kadotani et al., 2001), and pathologies resulting
from traumatic brain injury (Friedman et al., 1999). APOE
is important for immunity and genetically modified mice
lacking the protein show attenuated pathogen resistance
(Miller and Federoff, 2008). All three human apoE isoforms
(apoE2, apoE3, and apoE4) modulate immunity but APOE4
carriers appear to have heightened immune responsiveness
(Vitek et al., 2009; Gale et al., 2014; van Exel et al., 2017;
Nam et al., 2018). The augmented innate immune response
associated with apoE4 expression is thought to exacerbate
inflammation-mediated pathologies (van Exel et al., 2017;
Corbett et al., 2018). However, in high pathogen environments
expression of apoE4 is associated with increased fertility and
juvenile survival compared to APOE2 or APOE3 carriers
(Oria et al., 2010; Vasunilashorn et al., 2011; Mitter et al.,
2012; Fujioka et al., 2013; Trumble et al., 2017; van Exel et al.,
2017). Inheritance of APOE4 is also associated with improved
cognitive function among populations with high parasite
burdens (Azevedo et al., 2014). Thus, a “hair-trigger” immune
response for APOE4 carriers may protect against infection
early in life. With regard to APOE4’s involvement in AD, an
antagonistic pleiotropy model is consistent with the recently
emerged innate immune role for Aβ fibrillization pathways. In
an AD antagonistic pleiotropy model, increased proclivity for
β-amyloid generation may be beneficial in young individuals,
providing APOE4 carriers with a more robust protective
response to neuroinfection. However, apoE4-enhanced Aβ

fibrillization may also promote amyloidosis, leading to harmful
AD pathology in late-life.

An antagonistic pleiotropy model for the role of apoE in AD
amyloidosis is consistent with etiology data and evolutionary
explanations for the protein’s involvement across multiple age-
dependent inflammation diseases (Corbett et al., 2018). However,
it is less clear if Aβ fibrillization itself should be considered as
antagonistic pleiotropy independent of APOE4. Three decades
of accumulated data link AD etiology to increased microbial
burden in brain. Recent findings on the protective immune
entrapment role of Aβ suggest elevated brain microbe levels
may mediate AD amyloidosis. If β-amyloid is helping protect
AD patients from chronic and potentially lethal neuroinfection,
then amyloidosis is playing a beneficial immune role in late life
and Aβ fibrillization activities do not satisfy classical criteria for
antagonistic pleiotropy. Rather, this suggests a model in which
β-amyloid deposition is an early innate immune response to
persistent immunochallenge. We call this the “Antimicrobial
Protection Hypothesis” of AD (Moir et al., 2018). Amyloid
generation in the antimicrobial protection model is an immune
defense pathway that entraps pathogens. Aβ fibrils generated
to trap microbes also drive neuroinflammatory pathways

that help fight the infection and clear β-amyloid/pathogen
deposits. In AD, chronic activation of this pathway (caused by
genuine infection or an incorrectly perceived immunochallenge)
helps drive the tauopathy and sustained neuroinflammation
pathologies that lead to neurodegeneration and dementia.
This model is consistent with the ACH in which amyloid
deposition drives a succession of pathologies that end in
dementia. However, in this model amyloidosis is not drive
by an intrinsically harmful and functionless propensity of Aβ

to self-associate as in prevailing models. The potential for
pathological outcomes from Aβ activities is consistent with
the protective/harmful duality shown for classical AMPs and
innate immune responses across multiple diseases (Shastri
et al., 2013). Furthermore, genetic data on the role of rare
mutations in FAD are also consistent with the antimicrobial
protection model. FAD mutations shift Aβ isoform ratios,
leading to amyloidosis (Tanzi, 2012). Mutation-mediated
changes in isoform expression among classical AMPs also
mediate disease pathology. For example, inherited mutations
that shift human β-defensin 1 isoform ratios enhance atopic
disorders, including asthma (Cagliani et al., 2008). Enhanced
amyloidosis associated with FAD mutations parallel the
mutation-induced upregulation of innate immune pathways that
mediate pathologies in inherited autoinflammatory syndromes,
including Familial Mediterranean fever, TNF receptor- associated
periodic syndrome, Muckle–Wells syndrome, Blau syndrome,
pyogenic arthritis, pyoderma gangrenosum and acne syndrome,
early-onset enterocolitis, autoinflammation and PLCγ2-
associated antibody deficiency and immune dysregulation,
and proteasome-associated autoinflammatory syndromes
(Martinon and Aksentijevich, 2015). The Antimicrobial
Protection Hypothesis provides a framework for rational
incorporation of the genetics and seemingly disparate pathologies
involved in AD neurodegeneration. The new model remains
broadly consistent with the ACH of AD. However, in the
antimicrobial protection interpretation of ACH, the modality
of Aβ’s pathological actions in AD is shifted from abnormal
stochastic behavior toward sustained innate immune activity.
Moreover, persistence of Aβ in the human genome is not
mediated by LSPS, but by the peptide’s lifelong contribution to
inclusive fitness.

A focus on Aβ fibrillization pathways advanced
our understanding of amyloidosis early in the modern
molecular/genetic era of AD research. Unfortunately, there
have been few attempts in the intervening years to critically
reevaluate longstanding amyloidosis models from this era
in light of emerging genetic and molecular data. The LSPS
argument is a conspicuous example of how seemingly plausible,
but ultimately deeply flawed models can persistence in the
absence of continuing critical reevaluation. Amyloidosis
driven by an intrinsically and exclusively pathological Aβ

peptide has been the dominant AD pathogenic model
for over three decades. This characterization of Aβ has
lead to an intense focus on strategies aimed at limiting or
eliminating the peptide. However, to date, this therapeutic
approach has been singularly unsuccessful. Prevailing
Aβ pathogenesis models are reminiscent of the parable

Frontiers in Aging Neuroscience | www.frontiersin.org 5 March 2019 | Volume 11 | Article 70

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00070 March 27, 2019 Time: 16:32 # 6

Moir and Tanzi The Aβ Fallacy

about the elephant and three self-proclaimed wise men. Each
blindfolded man touched a different part of an elephant
and loudly proclaimed three different, and equally wrong,
assertions as to the beast’s nature. Aβ activities are typically
considered as discrete abnormal pathways and variously
ascribed pathological roles in AD. A possible overarching
physiological function for the collective activities of Aβ

has rarely been considered. We believe the Antimicrobial
Protection Hypothesis can provide a rational framework for
incorporating seemingly independent findings on Aβ and
help advance a new understanding of AD amyloidogenesis.
We also believe a fuller appreciation of the ancient origin
and important role Aβ fibrillization plays in immunity will
prove important for the future development of effective AD
treatment strategies.
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