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Alzheimer’s disease (AD) is a progressive neurodegenerative disease. The study of
blood-based biomarkers has lasted for a long time in AD, because it supports the
concept that peripheral changes are involved in AD pathology. But it is still unclear
how peripheral blood is involved in the temporal characteristic molecular mechanisms
of AD from aging to mild cognitive impairment (MCI) and which cells are responsible
for the molecular mechanisms. The main purpose of our study is to gain a systematic
and comprehensive understanding of temporal characteristic networks of peripheral
blood in AD using whole blood samples with 329 case-control samples, including
104 normal elderly control subjects (CTL), 80 MCI who are susceptible to AD,
and 145 AD, by the weighted gene co-expression network analysis (WGCNA). The
module-trait relationships were constructed and module preservation was validated
with independent datasets GSE63061, GSE97760, GSE18309, GSE29378, GSE28146,
and GSE29652. Our results indicate that the down-regulated protein modification and
ubiquitin degradation systems, and the up-regulated insulin resistance both play a
major role in MCI, while the up-regulated inflammatory cascade dominates in AD,
which is mainly mediated by monocytes, macrophages. Although there is mixed
activation of M1 and M2 macrophages in all stages of AD, the immune neutral state
or M2 polarization may predominate in MCI, and M1 polarization may predominate in
AD. Moreover, we found that TRPV2, NDUFV1, ATF4, HSPA8, STAT3 and LUC7L3 may
mediate the pathological changes in MCI, while SIRPA, LAMP-2, NDUFB5, HSPA8,
STAT3 and FPR2 may mediate the conversion from MCI-AD or the pathological
changes in AD, which provide a basis for the treatment based on the peripheral
blood system. In addition, we also found that the combined diagnosis based on a
panel of genes from the red, blue, and brown modules have a moderate diagnostic
effect on distinguishing MCI and AD from CTL, suggesting that those panels of genes
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may be used for detection of MCI and prediction of this conversion from MCI to AD. Our
research emphasizes that pathological changes, based on temporal characteristics of
peripheral blood, provide a theoretical basis for targeted peripheral treatment based on
appropriate times and identified several diagnostic markers.

Keywords: Alzheimer’s disease, mild cognitive impairment, WGCNA, time serial expression analysis, peripheral
blood, receiver operating characteristic curve

INTRODUCTION

Alzheimer’s disease (AD), the most common type of dementia,
affects more than 50 million people worldwide (Hodson,
2018). More importantly, the prevalence of AD is expected
to triple in the next 40 years, which will place a heavy
burden on society and the healthcare system (Hebert et al.,
2013). The amyloid cascade hypothesis still dominates the
etiology of AD, which reveals the temporal characteristics of
AD brain pathological changes: that β-amyloid (Aβ) deposition
occurs early, followed by changes in brain function and
metabolism, and alterations in biomarkers of neurodegeneration,
such as tau-mediated neuronal injury and structural changes,
eventually lead to cognitive impairment (Mattsson et al.,
2009; Jack et al., 2010; García-Ribas et al., 2014). Clinically,
AD is divided into three different stages: asymptomatic or
pre-clinical stage, mild cognitive impairment (MCI), and AD
stage (Dubois et al., 2010; Gold and El Khoury, 2015). It
is universally accepted that AD has a long preclinical or
asymptomatic stage, which starts approximately 15–20 years
before the onset of clinical symptoms (Sperling et al., 2011).
Meanwhile, the failures of all phase III clinical trials targeting
protein-modified drugs for AD may suggest the fact that
the enrolled participants are really too advanced to obtain
clinical benefit (Egan et al., 2018; Honig et al., 2018). Thus,
early diagnosis and treatment are important for delaying the
progression of AD.

Although accurate diagnosis has been achieved by novel
CSF biomarkers (Clark et al., 2003) or positron emission
tomography Aβ trace (Schoonenboom et al., 2008), which are
both too invasive or expensive to be used in large-scale clinical
screening. Thus, peripheral blood is prioritized to identify
reliable biomarkers for early diagnosis of AD. In fact, the study
of blood-based biomarkers has been going on for a long time
in AD, because it supports the concept of peripheral blood
involvement in AD pathology, even prior to the occurrence of
recognizable symptoms (Gladkevich et al., 2004; Rye et al., 2011).
AD patients present mitochondrial dysfunction (Lombardi et al.,
1999; Lunnon et al., 2012) in both the central nervous system
(CNS) and periphery systems. In addition, the expression of
some genes from the peripheral blood may be correlated with
the burden of Aβ in brain (Avagyan et al., 2009). However,
molecular mechanisms involved in temporal characteristics of
AD and diagnostic markers based on the peripheral blood have
not been extensively investigated. Therefore, the peripheral blood
may provide an ideal ‘‘window’’ for the CNS to identify some
genes involved in the pathogenesis, diagnosis, and progression
of AD.

Weighted gene co-expression network analysis (WGCNA), a
bioinformatics analysis method, has been proven to effectively
detect the complex module-trait relationships (Langfelder
and Horvath, 2008). The distinct advantage for WGCNA
is that it can cluster genes into a model or network
according to weight correlation coefficient between genes, and
then analyses the correlation between modules and sample
characteristics (including clinical features, surgical methods,
treatment methods, etc.). WGCNA built a bridge between
sample characteristics and changes in gene expression, providing
insights into a systematic signaling network that may be
associated with interested phenotype (Liao et al., 2017;
Ma et al., 2017).

This study aimed to gain comprehensively molecular
insights into the peripheral whole blood involved in temporal
characteristics of AD, to identify responsible cells involved in
these molecular mechanisms, and to find key genes involved
in diagnosis and intervention of AD at an early stage.
We constructed module-trait relationships by WGCNA using
329 samples including 104 control subjects (CTL), 80 MCI who
are susceptible to AD, and 145 AD. Then, we identified seven
modules associated with different stages of AD and module
preservation for each of the seven modules was validated with
independent datasets. Next, we tested the overlap between the
module and cell signature gene lists using GeneOverlap and
performed functional enrichment analysis. Finally, we obtained
the hub genes of modules using cytohubba plugin in Cytoscape
and performed receiver operating characteristic curve analysis to
detect its diagnostic power.

MATERIALS AND METHODS

Microarray Data Processing
The human whole blood mRNA expression dataset
GSE63060 provided by AddNeuroMed Cohort, which is a large
cross-European prospective biomarker study, was downloaded
from the Gene Expression Omnibus (GEO) database (Barrett
et al., 2013). Approximately 2.5 ml whole blood was collected
in a PAXgene blood RNA vacutainer tube and held at −20◦C
for 24 h, then at −80◦C until RNA extraction. In total, 329
case-control samples were included with 104 CTL, 80 MCI who
are susceptible to AD, and 145 AD. Human whole blood mRNA
were hybridized on Illumina HumanHT-12 V3.0 expression
bead chip and expression profile data was generated using
the limma package in R. The remaining 325 samples were
included in the subsequent WGCNA after detecting the outliers.
Probes with the first 25% coefficient of variation were used for
WGCNA analysis.
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Weighted Gene Co-expression Network
Analysis (WGCNA)
To provide a comprehensive analysis of the human whole blood
for AD, we constructed a weighted gene co-expression network
using the WGCNA package in R. Details are as follows. First,
the raw file was converted into expression profile data by the
limma package, then the probes with the first 25% coefficient of
variation and the included individuals were selected, in which
the latter was decided using a sample cluster tree to remove
the outliers. Second, soft threshold was obtained based on the
connections between genes obeying the scale-free networks.
Third, the correlation matrix and the adjacency matrix were
constructed. Next, the hierarchical clustering tree was established
based on similar expression patterns using the dynamic tree cut
method. Finally, the module trait relationships were formed and
the modules closely related to the traits were identified, then
the corresponding module gene information was extracted for
further analysis.

Module Preservation Analysis
In order to validate the reliability of the identified modules
associated with different stages of AD, we performed the
module preservation analysis using peripheral whole blood
or blood monocyte datasets, including GSE63061, GSE97760,
and GSE18309, and hippocampal datasets, including GSE29378,
GSE28146, as well as astrocytes enriched samples GSE29652. The
details of the above datasets are shown in Table 1. Included
probes with the first 25% coefficient of variation in dataset
GSE63060 were used as an input to assess the extent of module
preservation in each dataset. The extent of module preservation
was quantified by a Zsummary value provided by Langfelder et al.
(2011), in which Zsummary < 2 indicates without preservation,
2 < Zsummary < 10 indicates weak-moderate preservation, and
Zsummary > 10 indicates high preservation.

Cell Signature Modules and Functional
Enrichment Analysis
Cell signature gene lists were downloaded from the literature
of Aran et al. (2017) and Wang et al. (2017), and were
used to identify the modules specific to cell signature by
GeneOverlap (Zougman et al., 2011) in R. The overlap
between modules related to different stages of AD and cell
signature gene lists was identified by Fisher’s exact test and
p-value < 0.05 was used to determine cell signature modules
with statistical significance, in which a P value closer to zero

means the overlap is more important, otherwise it means
no correlation. Then, all the above modules were used to
perform functional enrichment analysis using the Database for
Annotation, Visualization and Integrated Discovery (DAVID).
GO terms and KEGG pathways (Ashburner et al., 2000) were
selected with P-Value < 0.05 and the top records were extracted
for further analysis.

Identification of Hub Genes and
Receiver Operating Characteristic Curve
Analysis (ROC)
Hub genes with the largest intra-module connectivity were
identified and visualized by Cytoscape, in which those hub genes
were ordered by the degree of intra-module connectivity. The
top 15 hub genes from each module were used to perform
the receiver operating characteristic curve analysis using IBM
SPSS statistics 22 in datasets GSE63060 and GSE63061, in
which the former is the training dataset and the latter is the
validation dataset.

RESULTS

Modules Associated Different Stages of AD
After removing outliers, a total of 325 samples, including
104 CTL, 80 MCI who susceptible to AD, and 141 AD, were
used to perform the co-expression network using 7,764 genes by
WGCNA package in R. First, we have chosen the power 7 as the
soft-threshold, in which the connections between the genes in
the network were close to the scale-free network where scale-free
topology fit index was up to 0.9 and the average connectivity
degree was near to 0 (Supplementary Figure S1). We further
validated whether the network constructed using our selected
power value follows the scale-free network (Supplementary
Figure S2). Second, the co-expression modules were constructed
and 16 distinct modules were identified (Supplementary
Figure S3). Then, in order to identify modules associated
with different stages of AD, we constructed the module-trait
relationships (Figure 1). There were multiple modules related to
different stages of AD. For example, the blue and brownmodules
had similar changes in MCI and AD compared with CTL. The
black, yellow, and turquoise modules were significantly related
to the MCI, which may participate in the pathogenesis of early
stage AD. The pink and red modules were specifically related
to the advanced stage of AD which may be involved in the
progression and transition of MCI to AD. The ME expression

TABLE 1 | Baseline characteristics of datasets.

Study GEO accession Platform ID Sample type Cases/controls

Number Age (±SD) Gender (F/M)

Timmons GSE63060 GPL6947 Whole blood 329 74.2 (6.5) 200/129
Timmons GSE63061 GPL10558 Whole blood 388 77.2 (6.8) 135/253
Fu GSE97760 GPL16699 Whole blood 19 75.7 (12.7) 19/0
Chen GSE18309 GPL570 Peripheral blood mononuclear cells 9 - -
Miller GSE29378 GPL6947 Hippocampus 63 79.2 (8.3) 25/38
Blalock GSE28146 GPL570 Hippocampus 30 86.3 (7.7) 18/12
Heath GSE29652 GPL570 Human (Astrocyte) 18 - -
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FIGURE 1 | Module–Trait relationships. Correlation between module
eigengene (ME) expression levels and control subjects (CTL), mild cognitive
impairment (MCI), Alzheimer’s disease (AD) and Age in each module. Pearson
correlation is reported with the p-value given inside the bracket.

level (Figure 2) of each module associated was with different
stages of AD, indicating obvious inter-stage differences in the
ME expression level. In addition, we plotted a scatterplot of
GS vs. MM for above modules, respectively, to again validate
the correlation between module and different stages of AD
(Supplementary Figure S4).

Module Preservation Analysis
We performed the module preservation analysis using
peripheral whole blood or blood monocyte datasets, including
GSE63061, GSE97760, and GSE18309, and hippocampal
datasets, including GSE29378 and GSE28146, as well as
astrocytes enriched samples GSE29652. Our results suggest
that modules associated with different stages of AD show
moderate-high preservation in datasets of peripheral whole
blood or blood mononuclear cells and brain (Figure 3). Details
are as follows. Our results from datasets of peripheral whole
blood and hippocampus show that most of the modules
associated different stages of AD present mediate-high
preservation, suggesting peripheral blood might reflect the
pathology of AD. Our result from a dataset of blood monocytes
indicates that the blue, brown, black, pink, red modules
show high preservation, while yellow and turquoise show
weak-preservation.

Cell Signature Modules and Functional
Enrichment Analysis
We analyzed the overlap of modules associated with different
stages of AD and cell signature genes (Figure 4). The yellow,
turquoise, and black modules are mostly linked to monocytes,
macrophages, Th1.cells, and microglia. Functional enrichment
analysis of those modules shows that the GO terms were
mainly enriched in the cellular metabolic and catabolic process,
protein modification and protein ubiquitination process, RNA
processing, ribonucleoprotein complex biogenesis, cellular
response, and adhesion; and that the KEGG pathways were
mainly focused on metabolic pathways, NF-kappa B signaling
pathway and different neurodegenerative diseases. The blue and
brown modules are also mainly correlated with monocytes and
macrophages. Functional enrichment analysis shows that the GO
terms were enriched in protein phosphorylation, modification
and transport, cellular response to lipopolysaccharide and
positive regulation of interleukin-4 production, translation,
antigen processing, and presentation of exogenous peptide
antigen via MHC class I, and TAP-dependent and ATP
synthesis coupled proton transport. Functional enrichment
analysis also shows that the KEGG pathways were focused
on pentose phosphate pathway, endocytosis and insulin
resistance, oxidative phosphorylation and neurodegenerative
diseases. The Pink and red module are mainly linked to
microglia and macrophages. Finally, functional enrichment
analysis shows that the GO terms were mainly enriched in
translation process, SRP-dependent co-translational protein
targeting to membrane, negative regulation of NF-kappa
B transcription factor activity and apoptotic process, and
inflammatory responses such as inflammatory cytokine
secretion and inflammatory associated signal cascade; and
that KEGG contained Toll-like receptor signaling pathway,
Fc gamma R-mediated phagocytosis, TNF signaling pathway,
NOD-like receptor signaling and MAPK signaling pathway,
leukocyte transendothelial migration, phagosome, HIF-1
signaling pathway and different neurodegenerative diseases. It is
worth noting that yellow, turquoise, blue, and black modules are
simultaneously related toM2macrophages andM1macrophages
or Th1 cells. There was no correlation between each module and
erythrocytes, platelets, B cells, astrocytes, or neurons. All of the
above GO terms and KEGG pathways of different modules were
depicted in Table 2.

Identification of Hub Genes and Receiver
Operating Characteristic Curve Analysis
The modules correlated with different stages of AD were
visualized by Cytoscape and the hub genes calculated by
cytohubba plugin in Cytoscape (Figure 5). All the above hub
genes were used to perform ROC analysis to determine the
diagnostic power for distinguishing AD and MCI from control.
Our results show that the AUC of the combined diagnostic effect
of all hub genes from each module is significantly higher than
that of a single hub gene. The results of the former are shown in
Table 3, and of the latter are shown in Supplementary Figure S1.
To blue, brown, and pink modules, the AUC of combined
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FIGURE 2 | Mean eigengene (ME) expression values across different stages. The samples are grouped in to Control (CTL, red), mild congnitive impairment (MCI,
yellow) and Alzheimer’s disease (AD, green). (A) Blue, (B) brown, (C) yellow, (D) turquoise, (E) black, (F) pink, (G) red.

diagnosis of all hub genes for differentiating AD and MCI from
control were all more than 0.8 in the training dataset, while
more than 0.7 in the validation dataset. However, with the
exception of PRRC2A (0.749, 95%CI (0.679–0.820), the ROC
of a single hub gene never reached 0.7. For turquoise, pink,

and yellow modules, the AUC of combined diagnosis of all hub
genes for differentiating AD and MCI from control were all
more than 0.7 in the training dataset, while more than 0.6 in
the validation dataset. However, the AUC of only WDR6 (0.735,
95%CI (0.663–0.806) was more than 0.7.
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FIGURE 3 | Module persevation analysis. The module preservation analysis was performed using peripheral whole or blood or blood monocytes datasets including
(A) GSE63061, (B) GSE97760, and (C) GSE18309 and hippocampal datasets including (D) GES29378 and (E) GSE28146 as well as astrocytes enriched
samples (F) GSE29652. Zsummary < 2 represents without preservation, 2 < Zsummary < 10 represents weak-moderate preservation, Zsummary > 10 represents
high preservation.

DISCUSSION

Modules associated with MCI were the yellow, turquoise, and
black modules, which are mainly enriched in monocytes,
macrophages, Th1 cells, and microglia, mediating the
down-regulation of metabolic and catabolic process,
ubiquitin-mediated proteolysis, and NF-kappa B signaling
pathway, as well as the up-regulation of RNA processing,
ribonucleoprotein complex biogenesis, and RNA transport,
et al. Specifically speaking, the yellow and turquoise modules
with moderate-high preservation in validation datasets (except
for monocyte dataset) suggest that RNA metabolism and

inflammatory signaling pathway were down-regulated in both
microglia and peripheral blood monocytes and macrophages,
while ubiquitin-mediated proteolysis and protein modification
process were down-regulated in peripheral blood monocytes
and macrophages. The black module with high preservation
in peripheral whole blood or monocyte datasets indicates that
ribonucleoprotein complex biogenesis and RNA processing
were up-regulated in regulatory T cells and Th1 cells. It is worth
emphasizing that those modules are almost simultaneously
involved in M1 and M2 macrophages or regulatory T cells
and Th1 cells, which suggests that mixed activation of the
peripheral blood immune system may exist in MCI. In these
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FIGURE 4 | The overlap between cell-signature genes and module associated with dfferent stages of AD. The P value is closer to zero that means the more
important of the overlap.

TABLE 2 | Enrichment of Gene Ontology (GO) terms and KEGG pathways associated with mild cognitive impairment (MCI) and Alzheimer’s disease (AD)-specific
modules.

Module (genes) Biological process KEGG pathway

Black (492) RNA processing (1.7E-8), ribonucleoprotein complex biogenesis (8.8E-8),
regulation of cell cycle (4.8E-7)

RNA transport (1.3E-5)

Blue (998) leukocyte activation (2.0E-28), vesicle-mediated transport (4.6E-28),
leukocyte activation involved in immune response (1.2E-27)

Lysosome (2.5E-8), Autophagy (4.2E-7), Endocytosis (1.6E-7),
Pentose phosphate pathway (4.1E-7), Insulin resistance (6.2E-6)

Brown (987) translation (3.1E-24), antigen processing and presentation of exogenous
peptide antigen via MHC class I, TAP-dependent (2.4E-8) SRP dependent
cotranslational protein targeting to membrane (1.9E-21)

Ribosome (7.6E-30), Oxidative phosphorylation (2.4E-21)
Parkinson’s disease (3.3E-13), Alzheimer’s disease (7.9E-12)

Pink (404) cytokine secretion (4.69E-5), positive regulation of oxidative
stress-induced neuron death (5.2E-5), production of molecular mediator
involved in inflammatory response (6.0E-5)

NOD-like receptor signaling pathway (4.3E-5), Fc gamma
R-mediated phagocytosis (3.2E-4), Phagosome (8.0E-5), TNF
signaling pathway (1.2E-4)

Red (565) peptide biosynthetic process (3.4E-15), protein targeting to ER (3.6E-15),
SRP-dependent cotranslational protein targeting to membrane (1.4E-5)

Ribosome (2.1E-16), Leukocyte transendothelial migration
(1.2E-2), Phagosome (2.2E-2), Parkinsons disease (2.2E-2)

Turquoise (1140) RNA processing (3.4E-19), mRNA metabolic process (1.3E-17), RNA
splicing (1.3E-13), cellular response to glucose starvation (6.92E-05)

Metabolic pathways (2.1E-3), NF-kappa B signaling pathway
(5.3E-3), Spliceosome (5.6E-3)

Yellow (874) cellular catabolic process (2.4E-10), cellular catabolic process (6.6E-10),
protein modification process (1.3E-8)

Ubiquitin mediated proteolysis (3.6E-5)

modules, we found that a part of the hub genes may be involved
in the pathology, development and diagnosis of AD. For
example, Enoyl-CoA hydratase 1 (ECH1), a member of the
hydratase/isomerase superfamily, was proven to be a promising
marker for early diagnosis of AD (Long et al., 2016). TRPV2,
one of the receptors for cannabidiol, may be involved in
neuroprotective and immunomodulatory effects (Noreen et al.,
2018). NDUFV1 was validated to be involved in the pathogenesis
of AD (Zhang et al., 2015). ATF4, a required element for the
activity of PS1 promoting the production of Aβ, was proven
to be a potential therapeutic target for AD (Wei et al., 2015).
LUC7L3, the BAD domain of U1-70K interacting with Tau
from AD brains, mediates co-aggregation with the pathological
AD-specific Tau isoforms (Bishof et al., 2018). All of the above
results suggest that the upregulation of protein synthesis level
and downregulation of protein modification may promote
protein aggregation. Meanwhile, the down-regulation of
ubiquitination process exacerbates the accumulation of protein
aggregation. These two processes result in an imbalance in
production and clearance of protein aggregation, synergistically
promoting the deposition of protein aggregation. It is well
known that the neurodegenerative diseases are characterized

by the accumulation of protein aggregates in distinct brain
areas (Gerakis and Hetz, 2018) and are now defined as protein-
misfolded disorders (PMDs) (Beal, 2002; Ren et al., 2014; Boland
et al., 2018). The misfolded proteins can be refolded to restore
the protein’s normal conformation by protein modification.
Alternatively, if they cannot be refolded, they will be transported
to the intracellular degradation system that includes the
ubiquitin proteasomal system (UPS), autophagy-lysosomal
pathway (ALP), and the interaction of molecular chaperones
with UPS or ALP (Tramutola et al., 2016; Zhang et al., 2017) for
degradation. Any disturbance to these systems causes proteins
to accumulate, resulting in the pathological process of AD.
Once the protein modification and ubiquitination degradation
process malfunctions, uncontrolled abnormal deposition of
protein occur.

Modules associated with AD were the red and pink modules,
which are mainly enriched in microglia, monocytes, and
macrophages, mediating the down-regulation of the ribosome,
peptide biosynthetic process, and leukocyte transendothelial
migration, as well as the up-regulation of cytokine secretion,
NOD-like receptor signaling pathway, Fc gamma R-mediated
phagocytosis, TNF signaling pathway, and positive regulation
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FIGURE 5 | Hub genes from each module associated with different stage of
AD. Hub genes with the largest intra-module connectivity was identified by
cytohubba plugin in Cytoscape an ordered by the degree of intra-module
connectivity. The gradient from orange to red represents the correlation from
low to high. (A) Blue, (B) brown, (C) yellow, (D) turquoise, (E) black, (F) pink,
(G) red.

of oxidative stress-induced neuron death. Specifically speaking,
the red module with moderate-high preservation in validation
datasets suggests that ribosome, peptide biosynthetic process,
and leukocyte transendothelial migration were down-regulated
in both microglia and peripheral blood monocytes and
macrophages. The pink module has moderate-high preservation
in peripheral whole blood or mononcyte datasets but weak
preservation in hippocampus datasets, suggesting that the
inflammatory pathway and oxidative stress-induced neuron
death were up-regulated in both microglia and peripheral blood
monocytes and macrophages. In these modules, we also found
that some hub genes may play an important role in the
progression of the disease. For instance, SIRPA, a receptor

for macrophage CD47, regulates phenotypic polarization of
macrophages by tumor necrosis factor (Ye et al., 2016; Alvey
et al., 2017). LAMP-2 regulates Aβ degradation (Ma et al.,
2017) and can serve as a potential AD-specific marker in
cerebrospinal fluid (Armstrong et al., 2014). NDUFB5 genes
may predict the occurrence and development of AD (Wang
et al., 2017). FPR2 regulates microglia/macrophages polarization
in response to different inflammatory stimuli (Slowik et al.,
2012; Yu and Ye, 2015). All of the above results may reflect
the phenomena that inflammatory activation of microglia and
monocytes/macrophages predominates in the AD stage The
existence of age-dependent phenotypic change of microglial
activation has been demonstrated in an animal model, switching
from an alternative activation state with a phagocytic capability
to a classically activated phenotype with pro-inflammatory
cytokine production (Jimenez et al., 2008). This switch
coincided with high levels of soluble Aβ oligomers and a
significant pyramidal neurodegeneration (Goldeck et al., 2016).
Meanwhile, this switch was validated in subjects with MCI
or AD at baseline and follow-up was completed using 11C-
(R) PK1119529 (Fan et al., 2017). The M2-to-M1 phenotypic
switches for the peripheral immune cells has also been reported
to be involved in the development and progression of some
CNS diseases (Kigerl et al., 2009; Perego et al., 2011; Hu
et al., 2012). M2 macrophage transplantation in patients with
AD alleviates brain inflammation and improves cognitive
dysfunction (Zhu et al., 2016).

Modules associated with all stages of AD were the
blue and brown modules, which are mainly enriched in
monocytes and macrophages, mediating the down-regulation of
translation, antigen processing and presentation of exogenous
peptide antigen via MHC class I, TAP-dependent, oxidative
phosphorylation, and ribosome, as well as the up-regulation
of leukocyte activation, vesicle-mediated transport, insulin
resistance, lysosome, autophagy and endocytosis, etc. It is worth
noting that the ME expression level of blue was up-regulated
mainly in the MCI stage. Combined with cell signature modules
and functional enrichment analysis, the results indicate that,
although there is a mixed activation of M1 and M2 phenotype
at each stage, the former may predominate in AD stage, while
the latter predominates in the MCI stage. HSPA8 as a molecular
chaperone, within the constitutively expressed heat shock protein
70 family, that binds to the nascent polypeptide to promote
proper folding of misfolded proteins and to promote degrading
by chaperone-mediated autophagy (Silva et al., 2014; Catarino
et al., 2017). Stat3 mediates the polarization of macrophages to
exert anti-inflammatory and neuroprotective effects (Bai et al.,
2018). All of the above results indicate that the insulin resistance
occurs in the whole stages of AD and compensatory phagocytosis
plays a major role in the MCI stage. There is increasing evidence
that insulin resistance has been identified as the pathology of
AD at the early stage (Liu et al., 2011; Talbot et al., 2012).
Insulin resistance increases key enzymes that produce Aβ and
phosphorylate tau, such as BACE1, γ-secretase and GSK3 β (Son
et al., 2012; Vandal et al., 2014), while it reduces levels of key
enzymes that degrade Aβ, such as IDE (Newsholme et al., 2009),
accompanied by oxidative stress (Kulstad et al., 2006), which
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TABLE 3 | The AUC of combined diagnosis of all hub genes from each module.

Module GSE63060 AUC (95%CI) GSE63061 AUC (95%CI)

AD-CTL MCI-CTL AD-CTL MCI-CTL

black 0.813 (0.758, 0.868) 0.720 (0.649, 0.791) 0.729 (0.670, 0.788) 0.728 (0.665, 0.792)
blue 0.822 (0.769, 0.875) 0.834 (0.776, 0.892) 0.723 (0.663, 0.823) 0.730 (0.667, 0.794)
brown 0.875 (0.832, 0.918) 0.841 (0.785, 0.897) 0.717 (0.654, 0.780) 0.775 (0.717, 0.833)
pink 0.809 (0.747, 0.870) 0.772 (0.714, 0.831) 0.722 (0.663, 0.782) 0.638 (0.570, 0.707)
red 0.837 (0.786, 0.888) 0.814 (0.754, 0.874) 0.706 (0.645, 0.767) 0.727 (0.665, 0.790)
turquoise 0.689 (0.618, 0.760) 0.767 (0.698, 0.835) 0.677 (0.614, 0.740) 0.670 (0.602, 0.738)
yellow 0.793 (0.735, 0.853) 0.804 (0.741, 0.868) 0.692 (0.629, 0.754) 0.710 (0.645, 0.775)

FIGURE 6 | Workflow and main conclusions.

damages synaptic remodeling and ultimately leads to memory
impairment (Searcy et al., 2012). Meanwhile, the increase of Aβ

and inflammatory factors (Takeda et al., 2010; Choudhary et al.,
2011), in turn, promotes insulin resistance. This is a vicious circle
in the progression of AD. Thus, insulin resistance may act as a
trigger for AD and repairing insulin resistance may help delay
the progression of AD.

The AUC of combined diagnostic effect of all hub genes
from each module is significantly higher than that of a single
hub gene in both training and validated datasets. The AUC of
all hub genes from the red, blue, and brown modules are all

more than 0.8 in the training dataset, while more than 0.7 in
the validated dataset, suggesting that those panels of genes may
be used for detection of MCI and prediction of this conversion
from MCI to AD. Based on the ROC of a single gene, only the
ROC of PRRC2A and WDR6 in the training dataset exceeded
0.7, while the ROC of PRRC2A and WDR6 in the validation
dataset only exceeded 0.6, suggesting that individual genes do not
achieve sufficient diagnostic efficacy and cannot be used as the
sole diagnostic criteria.

Our workflow andmain conclusions are shown in Figure 6. In
summary, first of all, our findings support the view that changes
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in peripheral blood are involved in temporal characteristic
mechanisms of AD. Our results indicate that the down-regulated
protein modification and ubiquitin degradation systems and the
up-regulated insulin resistance all play a major role inMCI, while
the up-regulated inflammatory cascade dominates in AD, which
is mainly mediated by monocytes, macrophages, and microglia.
Although there is mixed activation of M1 and M2 macrophages
in all stages of AD, the immune neutral state or M2 polarization
may predominate inMCI, andM1 polarizationmay predominate
in AD. Moreover, we found that TRPV2, NDUFV1, ATF4,
HSPA8, STAT3 and LUC7L3 may mediate the pathological
changes in MCI, while SIRPA, LAMP-2, NDUFB5, HSPA8,
STAT3 and FPR2 may mediate the conversion from MCI-AD
or the pathological changes in AD, which provide a basis for
the treatment based on the peripheral blood system. In addition,
we also found that the combined diagnosis based on a panel
of genes from the modules has a moderate diagnostic effect on
distinguishing MCI and AD from CTL. In short, the pathological
changes based on temporal characteristics of peripheral blood
provide a theoretical basis for appropriate peripheral dose-based
peripheral treatment at the appropriate time.

There are some limitations in our study: (1) cell type specific
genes are based on reference datasets, and do not completely
reflect cell type proportions. Changes in monocytes can occur

in AD compared to controls, and this change within the
same cell type will be lost or incorrectly interpreted using
the currently used approach of assigning cell specificity to
particular genes; and (2) since this is a cross-sectional study
rather than a longitudinal study, the above results cannot fully
represent the pathological changes from CTL-MCI-AD, and
further experimental verification is needed.
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