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Background: Abnormalities of cognitive and movement functions are widely reported
in Parkinson’s disease (PD). The mechanisms therein are complicated and assumed
to a coordination of various brain regions. This study explored the alterations of global
synchronizations of brain activities and investigated the neural correlations of cognitive
and movement function in PD patients.

Methods: Thirty-five age-matched patients with PD and 35 normal controls (NC) were
enrolled in resting-state functional magnetic resonance imaging (rs-fMRI) scanning.
Degree centrality (DC) was calculated to measure the global synchronizations of brain
activity for two groups. Neural correlations between DC and cognitive function Frontal
Assessment Battery (FAB), as well as movement function Unified Parkinson’s Disease
Rating Scale (UPDRS-III), were examined across the whole brain within Anatomical
Automatic Labeling (AAL) templates.

Results: In the PD group, increased DC was observed in left fusiform gyrus extending to
inferior temporal gyrus, left middle temporal gyrus (MTG) and angular gyrus, while it was
decreased in right inferior opercular-frontal gyrus extending to superior temporal gyrus
(STG). The DC in a significant region of the fusiform gyrus was positively correlated with
UPDRS-III scores in PD (r = 0.41, p = 0.0145). Higher FAB scores were shown in NC
than PD (p < 0.0001). Correlative analysis of PD between DC and FAB showed negative
results (p < 0.05) in frontal cortex, whereas positive in insula and cerebellum. As for the
correlations between DC and UPDRS-III, negative correlation (p < 0.05) was observed
in bilateral inferior parietal lobule (IPL) and right cerebellum, whereas positive correlation
(p < 0.05) in bilateral hippocampus and para-hippocampus gyrus (p < 0.01).

Conclusion: The altered global synchronizations revealed altered cognitive and
movement functions in PD. The findings suggested that the global functional connectivity
in fusiform gyrus, cerebellum and hippocampus gyrus are critical regions in the
identification of cognitive and movement functions in PD. This study provides new
insights on the interactions among global coordination of brain activity, cognitive and
movement functions in PD.

Keywords: resting-state fMRI, global synchronizations, Parkinson’s disease, cognitive function,
movement function
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INTRODUCTION

As one of the most common neurodegenerative diseases,
people diagnosed with Parkinson’s disease (PD) are widely
reported with abnormalities consisting of motor and non-motor
symptoms (Chaudhuri et al., 2006; Bunzeck et al., 2013; Villarreal
et al., 2018). PD is known as a kind of movement disorder,
including general motor symptoms and specificmotor symptoms
(Fox et al., 2018). However, non-movement aspects such as
impairment of cognitive and executive functions have also gained
great attention and have been the topic of a great number of
researches on PD (Kudlicka et al., 2011; Litvan et al., 2011;
Dirnberger and Jahanshahi, 2013; Delgado-Alvarado et al., 2016).
Various methods are performed to explore the biomarkers for
the diagnosis and progression monitoring of PD, including
metabolomics profiling of blood (Bogdanov et al., 2008),
cerebrospinal fluid (Hong et al., 2010), cognitive impairment
(Svenningsson et al., 2012) and neuroimaging (Reijnders et al.,
2010; Tessitore et al., 2016; Li et al., 2018).

Structural and functional changes in patients with PD are
observed in many neuroimaging studies (Borroni et al., 2015;
Wang et al., 2016; Prell, 2018). Structural changes are reported
in various brain regions such as corpus callosum, hippocampus,
basal ganglia, temporal cortex and frontal cortex by voxel-
based morphometry (VBM) analysis (Camicioli et al., 2003;
Summerfield et al., 2005; Wiltshire et al., 2010; Tessitore et al.,
2016; Lee et al., 2018; Prell, 2018). In recent years, resting-state
functional magnetic resonance imaging (rs-fMRI) has become a
prevalent method to explore the alterations of spontaneous brain
activities (Fox and Raichle, 2007; Van Eimeren et al., 2009) in
patients with PD. For the functional neuroimaging aspect, the
blood oxygen level dependent (BOLD) signal is widely employed
to explore the differences of spontaneous brain activity between
healthy people and PD patients (Göttlich et al., 2013; Pan et al.,
2017a; Wang et al., 2018). Functional neuroimaging studies of
PD are mainly focused on the spontaneous brain activity of
amplitude of low frequency oscillations (Kwak et al., 2012; Hou
et al., 2014; Pan et al., 2017b), regional synchronization (Wu
et al., 2009; Li et al., 2016; Pan et al., 2017a) and functional
connectivity (de Schipper et al., 2018; Wang et al., 2018).

The neuroimaging findings of PD are various and
inconsistent. In the current stage, it is still unclear which
structural or functional neuroimaging marker is reliable or
convincing for understanding the pathological physiology of
PD. While these findings suggest that the pathophysiological
mechanisms in PD is complicated and assumed to a coordination
of various brain regions. Degree centrality (DC), a voxel-wise
measurement, is applied to evaluate the strengths of functional
connectivity across the whole brain (Buckner et al., 2009).
DC is a reliable rs-fMRI indicator (Zuo et al., 2013) and
suggested to represent the global synchronizations or global
functional connectivity density (Tomasi and Volkow, 2012).
Using the DC method, alterations are found in brain regions
associated with cognition and motor, with these regions being
depressed in PD sufferers (Wang et al., 2018). Higher degrees
are observed in the precuneus in PD patients with cognitive
impairments than patients without cognitive impairment

(Nagano-Saito et al., 2019). In the current study, we applied DC
to investigate the differences of global synchronizations of brain
activity between PD and normal controls (NC). Furthermore,
the neural correlations between global synchronizations and
cognitive function as well as movement function were explored
in PD group across the whole brain.

MATERIALS AND METHODS

Participants
In this study, 35 NC and 35 patients diagnosed with PD were
included in the investigation. Subjects of NC were included
who had no history of neurological disease, no symptom of
PD and no disorder of cognitive function and movement
function. Diagnosis of PD was according to the clinical criteria
of Movement Disorder Society (MDS; Postuma et al., 2015).
PD patients included: those aged over 30 years old, no less
than 1 year of disease duration, had received a stable dose of
levodopa medication treatment for at least 30 days, without
cardiovascular disease and respiratory disease, nor with a history
of surgical operations or embedded with a pacemaker in the
body. PD patients with severe symptoms of dementia, anxiety
and depression were excluded. All of the PD patients were in
a medication-on state during experimental data collection and
no drug-naïve patient was included in this study. Both NC and
PD subjects were recruited by Guangzhou First People’s Hospital
from May 2017 to September 2018. This study was approved
by the Institutional Review Board (IRB) of Guangzhou First
People’s Hospital. Informedwritten consents were obtained from
all subjects.

Clinical Assessments
Clinical assessments, including motor and non-motor
symptoms, were measured across all subjects with PD. Hoehn
& Yahr (H&Y) scale (Hoehn and Yahr, 1998) was collected
from subjects of PD group to evaluate the severity of PD
symptoms, with classifications of stages 1–5, with a higher
H&Y stage indicating an advanced state of PD. Additionally,
cognitive function and motor function were also measured.
For both NC and PD, cognitive-related measurement was
identified by the Frontal Assessment Battery (FAB) containing
six sub-items that are associated with the frontal cortex (Dubois
et al., 2000). Movement-related assessment was evaluated from
PD (medication-on) by the motor part (Part three) of Unified
Parkinson’s Disease Rating Scale (UPDRS-III), which was
developed by the MDS (Goetz et al., 2008). Higher UPDRS-III
scores indicated decreased movement ability.

Data Acquisition
Two groups of subjects (35 NC and 35 PD) participated in the
MRI scanning by 3.0T SIEMENS MRI machine system. All of
the subjects were required to lie quietly and stayed awake with
eye closed during the whole process of scanning. All of the
PD patients were in medication-on state when the fMRI was
performed. Functional images and structural images of the brain
were obtained. The resting-state functional images were obtained
with the following parameters: repetition time (TR) of 2,000 ms,
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echo time (TE) of 21 ms, slice thickness of 4 mm, acquisition
matrix of 64 × 64; flip angle (FA) of 78◦ and pixel spacing of
3.5 mm × 3.5 mm. Structural T1-weighted images were scanned
with parameters: 1,900/2.22 ms TR/TE, acquisition matrix of
256 × 215, 9◦ FA, pixel spacing of 0.488 × 0.488 and 1 mm
slice thickness.

Data Preprocessing
Data preprocessing was implemented on MATLAB platform
based on toolkit package of DPABI (Yan et al., 2016)
and Statistical Parametric Mapping (SPM121). Preprocessing
procedures included: removal of the first 10 of 220 time
points; slice timing adjustment (33 slices); realign; segmentation
using new segment (Ashburner and Friston, 2005) and
Diffeomorphic Anatomical Registration through Exponentiated
Lie Algebra (DARTEL; Ashburner, 2007); regression of nuisance
covariates including whilematter, cerebrospinal fluid and Friston
24 parameters of head motions (Friston et al., 1996; Satterthwaite
et al., 2013; Yan et al., 2013); spatial normalization with
resampling of 3 mm × 3 mm × 3 mm to Montreal Neurological
Institute (MNI) space by DARTEL (Ashburner, 2007); temporal
filtering with low frequency band pass of 0.01–0.1 Hz and
linear detrend removal. Subjects with maximal translations
exceeded 2.5 mm or rotations over 2.5◦ were excluded from
analysis. According to this exclusion criteria, no subjects were
excluded. Additionally, the mean framewise displacement (FD)
Jenkinson (Jenkinson et al., 2002) was calculated, representing
the head motions of every subject. No significant difference of
FD Jenkinson between two groups was observed by two-sample
t-test (p = 0.1294).

Global Signal Synchronization—Degree
Centrality
DC is a voxel-wise measurement calculating the functional
connectivity density between a voxel with the other voxels
within the mask (Buckner et al., 2009). Pearson correlation is
employed to evaluate the connectivity strength of all pairs of
voxels. DC is conventionally calculated as weighted-sum DC or
binarized-sumDC. The weighted-sumDC is defined as summing
up the correlation coefficients that reach a given threshold,
whereas the binarized-sum DC is defined as summing up the
number of correlation coefficient that reaches a given threshold.
Therefore, DC is also named global functional connectivity
density, long range functional connectivity and global signal
synchronization (Tomasi and Volkow, 2012). In this study, based
on the preprocessed functional image, binarized-sum DC was
calculated and the threshold was set at 0.3. For standardization,
the DC maps of all subjects were transformed into Z-maps by
subtracting the global mean value and then divided by standard
deviation. After standardization transformation, the Z-maps
were then smoothed with 4 mm of full width at half maximum
(FWHM). The smoothed Z-maps were applied to the subsequent
statistical analysis and correlative analysis.

1http://www.fil.ion.ucl.ac.uk/spm/

Statistical and Correlative Analysis
To explore global signal synchronization differences between NC
and PD, a two-sample t-test was performed on DC maps of two
groups, with age, sex, education time and mean FD Jenkinson
as covariates within the mask of gray matter. The resultant
statistical T-map was corrected with multiple comparisons of
Gaussian Random Field (GRF) within gray matter mask, with
voxel p < 0.005 and cluster p < 0.05, two-tailed test (T > 2.91,
cluster size > 1,350 mm3).

The brain regions showing significant group differences
were extracted as regions of interest (ROIs) to explore the
neural correlates between global signal synchronization
(DC) and cognitive function (FAB) as well as movement
function (UPDRS-III). DC signals were extracted from ROIs
by averaging the signals of all voxels within ROI. Pearson
correlation (statistical significance level p < 0.05) was applied to
calculate the correlations between DC and cognitive/movement
function. Moreover, the correlation analysis was also analyzed
across the whole brain, within Automated Anatomical
Labeling (AAL) template, which contains 116 brain regions,
including 90 cerebrum regions and 26 cerebellum regions
(Tzourio-Mazoyer et al., 2002).

RESULTS

Demographic Characteristics and Clinical
Assessments
Statistical results of demographic characteristics and clinical
measurements were summarized in Table 1. No group difference
(p > 0.05) was observed on age or mean FD Jenkinson.
Significant group differences were demonstrated in FAB scores
(p < 0.0001) and education time (p = 0.0277). NC were shown
to have higher FAB scores and longer education time than PD
(Table 1). It should be noted that the FAB scores were obtained

TABLE 1 | Demographic characteristics and clinical assessments.

NC (n = 35) PD (n = 35) Statistical
p-value

Age (years) 60 ± 6 63 ± 12 0.0989
Sex (female/male) 24/11 18/17 NA
Education time 11.08 ± 2.84 9.43 ± 3.31 0.0277
(years)
Hand dominance 0/35 2/33 NA
(left/right)
Disease duration NA 4.19 ± 3.97 NA
(years)
H&Y scores NA 2.44 ± 0.72 NA
UPDRS-III scores NA 31.93 ± 14.56 NA
(medication-on)
FAB scores 17.17 ± 1.34 15.16 ± 2.44 (n = 31) <0.0001
Levodopa equivalent NA 431.95 ± 383.33 NA
daily dose (mg)
Mean FD (mm) 0.088 ± 0.064 0.069 ± 0.031 0.1284

NC, normal controls; PD, Parkinson’s disease; FD, framewise displacement of Jenkinson;
H&Y, Hoehn & Yahr; UPDRS-III, Unified Parkinson’s Disease Rating Scale (part
three); FAB, Frontal assessment battery; NA, not applicable. Data was noted as
average ± standard deviation. Statistical p-value was obtained by two-sample t-test with
significance level of p < 0.05.
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FIGURE 1 | Between-group degree centrality (DC) differences. (A) T-maps of DC differences between normal controls (NC) and patients with Parkinson’s disease
(PD). Multiple comparison corrections were implemented by Gaussian Random Field (GRF) with voxel p < 0.005 and cluster p < 0.05 within gray matter mask
(T > 2.91, cluster size > 1,350 mm3). The color bar indicated the statistical t-value. Warm/Cool overlays indicated increased/decreased DC in PD. L/R = left/right
hemisphere. (B) Positive correlation between DC and motor part of Unified Parkinson’s Disease Rating Scale (UPDRS-III) in left fusiform gyrus.

from 31 out of 35 PD patients because four PD patients refused
to do the FAB assessment.

Differences of Global Synchronizations
DC differences between NC and PD were implemented by
two-sample t-test. The significant brain regions were showed
in Table 2, Figure 1A. The survival voxels of brain regions
were identified based on CUI Xu’s XjView2. For the PD group,
increased DC was observed in left fusiform gyrus extending
to inferior temporal gurus (ITG), left middle temporal gyrus
(MTG) and angular gyrus, whereas it was decreased in right
interior opercular-frontal gyrus (IFGoper) extending to superior
temporal gyrus (STG).

2http://www.alivelearn.net/xjview/

Correlative Analysis
The brain regions showing significant DC differences (Table 2)
between NC and PD were extracted as ROIs. The correlative
analysis between DC and cognitive/movement functions was
performed within these brain regions. Positive correlation was
observed between DC and UPDRS-III in left fusiform gyrus
(r = 0.41, p = 0.0145; Figure 1B), while no correlation (p > 0.05)
was observed between DC and FAB scores. Additionally, the
neural correlations of cognitive function (FAB) and movement
function (UPDRS-III) were examined across the whole brain
within AAL templates. The significant results were demonstrated
in Figures 2–4.

Among the correlative analysis between DC and FAB scores
in PD, negative correlations were observed in bilateral superior
frontal gyrus (SFG; Figures 2B,C) and right medial SFG
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TABLE 2 | Brain regions showing significant degree centrality (DC) differences between normal controls (NC) and patients with Parkinson’s disease (PD).

Side Brain regions Brodmann area Cluster size (mm3) Peak MNI coordinates (x y z) Peak t-value

Left Fusiform gyrus/Inferior temporal gyrus 20 1,890 −42 −15 −39 4.85
Left Middle temporal gyrus/Angular gyrus 39 2,754 −60 −63 18 4.73
Right Inferior opercular-frontal gyrus/Superior temporal gyrus 44/48 1,620 57 15 12 −4.59

MNI, Montreal Neurological Institute. Positive/Negative statistical t-value indicated increased/decreased DC in PD.

FIGURE 2 | Significant correlations between cognitive function and the global signal synchronizations within the whole brain [Automated Anatomical Labeling (AAL)
templates] in patients with PD. (A) The Frontal Assessment Battery (FAB) scores of NC and PD. Significant correlations between FAB and DC in bilateral superior
frontal gyrus (SFG; B,C), right medial-SFG (D), bilateral insula (E,F), bilateral cerebellum-curs1 (G,H) and right cerebellum-6 (I). Significance notations: ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.005. The dots and lines were demonstrated in red/blue color for positive/negative correlations.

(Figure 2D). The results were shown to be positive in bilateral
insula (Figures 2E,F), bilateral cerebellum-crus1 (Figures 2G,H)
and right cerebellum-6 (Figure 2I). The results were insignificant
(p > 0.05) in NC within these regions. Conversely, significant
negative results (p < 0.05) were observed in the bilateral
hippocampus in NC, while the results were unobvious (p > 0.05)
in PD (Figure 3).

Significant correlative analysis between DC and movement
function (UPDRS-III) of PD within AAL templates are
demonstrated in Figure 4. Negative correlations were observed

in bilateral inferior parietal lobule (IPL; Figures 4A,D), right
AG (Figure 4G), and right cerebellum-6 (Figure 4H). DC
were positively correlated with UPDRS-III in the bilateral
hippocampus (Figures 4B,E) and para-hippocampus gyrus
(Figures 4C,F).

DISCUSSION

In this study, the indicator of DC was adopted to compare the
difference of global signal synchronizations of spontaneous brain
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FIGURE 3 | Correlative analysis between cognitive function and the global signal synchronizations in bilateral hippocampus in both NC and patients with PD.
Significance notations: ∗p < 0.05, ∗∗∗p < 0.005, n.s = no significance. The dots and lines were demonstrated in blue/green color for negative/no correlations.

activity between PD and NC. In addition, the neural correlations
between global synchronizations and cognitive/movement
functions were explored across the whole brain within AAL
templates. Significant results were observed in both analysis of
group DC differences and neural correlations.

More Sticky to Default Mode State in
Parkinson’s Disease
Significant DC differences between PD and DC were observed
in left fusiform gyrus extending to ITG, left MTG/angular
gyrus and right IFGoper/STG (Table 2, Figure 1A). Posterior
MTG and angular gyrus, together with medial prefrontal cortex
(MPFC) and precuneus/posterior cingulate cortex (PCu/PCC),
are identified as critical brain regions that constitute default
mode network (DMN; Raichle et al., 2001; Laird et al.,
2009). Brain activities in DMN are task-negative, which
means deactivations during task-related state and activations
in resting state (Raichle et al., 2001). DMN is also thought
to be associated with self-referential processing (de Groot
et al., 2000; Gusnard and Raichle, 2001). In our results,
increased DC was demonstrated in left MTG and angular gyrus
compared to in the NC group in a resting state. Dysfunctional
DMN was also reported in other neuropsychiatric disorders

like schizophrenia (Calhoun et al., 2008) and Alzheimer’s
disease (Lustig et al., 2003). Additionally, less deactivations of
DMN in PD were also observed in executive tasks than
those in NC (Van Eimeren et al., 2009). DC evaluates
global synchronizations and global functional connectivity
density, therefore, higher DC activities indicate higher binding
between inter-regions collaboration. Therefore, higher global
synchronizations of DMN in PD may result in decreased
ability to be self-referential, more likely to remain the
default mode state and less control of interactions between
brain regions.

Cognitive impairment is commonly present in PD patients.
A VBM study on PD reports gray matter atrophy in left fusiform
gyrus, and the fusiform atrophy is associated with poor memory
(Camicioli et al., 2009). Fusiform gyrus is famous for its face area
and face perception (Kanwisher et al., 1997; George et al., 1999).
PD patients have an impairment in recognizing facial expression
and visuospatial dysfunctions (Levin et al., 1991; Sprengelmeyer
et al., 2003). In our results, increased DC was also observed in left
fusiform gyrus and the DC in the fusiform is positively correlated
with movement function for PD patients (Figure 1, Table 2).
Consistent with previous study, increased activity is shown in the
fusiform gyrus in response to the paradigm of facial perception
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FIGURE 4 | Significant correlations between movement measurements and the global signal synchronizations within the whole brain (AAL templates) in patients
with PD. Correlations between Part three of UPDRS-III and DC in bilateral inferior parietal lobule (IPL; A,D), right angular gyrus (G), right cerebellum-6 (H), bilateral
hippocampus (B,E) and bilateral para-hippocampus gyrus (C,F). The dots and lines were demonstrated in red/blue color for positive/negative correlations.

(Cardoso et al., 2010). Visuospatial dysfunctions have an impact
on the movement of PD especially those with freezing gait.
The correlation between DC in fusiform gyrus and movement
function may be explained by impaired vision in balance (Day
and Guerraz, 2007).

Neural Correlations of Cognitive and
Movement Function in Parkinson’s Disease
Patients with PD are not only reported with abnormalities of
motor symptoms but also with decreased cognitive function
(Dubois and Pillon, 1996; Kehagia et al., 2010). As expected,
the FAB scores of PD were significantly lower than NC
(p < 0.0001; Figure 2A), suggesting decreased frontal-related
of cognitive function in PD. The correlative analysis between
global synchronizations and cognitive function scores across
the whole brain showed significant correlations in frontal
cortex, insula and cerebellum in PD patients (Figure 2),
while there was no significant result in NC. The DC of
PD was negatively correlated with FAB scores in bilateral
SFG and medial SFG, and positively correlated with bilateral
insula and cerebellum. The frontal cortex is always associated
with cognitive and executive functions (Miller and Cohen,
2001). Cortical thickness changes and gray matter volume

reductions were reported in frontal cortex of PD (Pan et al.,
2012; Tessitore et al., 2016). Therefore, negative correlations
between DC and FAB scores reveal altered frontal-cognitive
function in PD.

Contrary to frontal cortex, the correlations between DC and
FAB scores were positive in the insula (Figure 2). Though
the insula is a well-known brain region that is associated with
self-representation (Burgmer et al., 2013) and awareness (Craig,
2009), it is also suggested to be related to non-motor symptoms of
PD (Christopher et al., 2014a). In addition, patients with PDwere
observed with reduced gray matter volume in insula (Pan et al.,
2012) and decreased DC in bilateral insula in medication-off
state (Zhong et al., 2018). Insular dysfunction is also related
to PD with cognitive impairment (Christopher et al., 2014b).
These findings suggest higher DC in insula of PD suggests higher
cognitive function.

Positive correlations between DC and FAB scores were
also shown in the cerebellum (Figure 2). However, negative
correlations were observed between DC and movement function
(UPDRS-III) in PD (Figure 4). Cerebellum is both associated
with sensorimotor processing (Baumann et al., 2015; Kansal
et al., 2017) and cognitive/emotional processing (Schmahmann,
2010; Adamaszek et al., 2017). Decreased DC in cerebellum-6
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was also observed in PD (Wang et al., 2018). Positive results
in neural correlations of cognitive function and negative neural
correlations of movement function were found in the cerebellum,
suggesting that the cerebellum plays both cognitive and motor
function roles in the pathology of PD.

The hippocampus is well known for its role in memory
(Squire, 1992). Interestingly, negative correlations were observed
between DC and FAB scores in the hippocampus of NC, while
no correlation was observed (p > 0.05) in PD (Figure 3).
Moreover, positive correlations were shown between DC and
movement function (UPDRS-III) in the hippocampus/para-
hippocampus in PD (Figure 4). These findings seem to suggest
that the global synchronizations in the hippocampus reveal both
cognitive and movement functions of PD. Hippocampus atrophy
is found in PD patients with depressive symptoms, cognitive
impairment and dementia (van Mierlo et al., 2015; Delgado-
Alvarado et al., 2016). A longitudinal study on PD patients
suggests that the hippocampus is related to the progression
of cognitive impairment and dementia (Kandiah et al., 2014).
Decoupled correlation between hippocampal DC and FAB scores
of PD (Figure 3) may imply cognitive decline in PD. The findings
of PD studies in reference to hippocampus/para-hippocampus
are extensively focused on non-motor symptoms, mostly on
depression, cognitive decline and memory impairment, and
are rarely related to motor symptoms or movement function.
The hippocampus is involved in motor tasks and perturbed
movements (Devan et al., 2015; Kerr et al., 2017) which
are not general movements. No direct evidence supports
the influence of hippocampus on motor effect in PD. Our
finding of increased hippocampal signal synchronization comes
with increased motor performance in PD (Figure 4) suggests
that the hippocampus has an important role in the motor
symptoms of PD.

In our results, negative correlations between DC and
movement function (UPDRS-III) were observed in bilateral
IPL (Figure 4). Altered brain activities of parietal lobe are
widely reported in PD studies. Decreased inter-hemispheric
functional connectivity in IPL was demonstrated in PD and
negative neural correlation was observed in interaction with
motor scores (Li et al., 2018). Meta-analysis also suggests that
IPL is a robust brain region that showed significant differences
in regional synchronizations between PD and NC (Pan et al.,
2017a). Therefore, IPLmay be a critical brain region in the motor
symptom of PD.

The findings of this study suggest the global synchronizations
of the fusiform, hippocampus and cerebellum-6 are critical brain

regions for both cognitive function and movement function of
PD. However, the exact pathology remains unclear and needs
further studies on it.

CONCLUSION

Alterations of global synchronization in the left fusiform gyrus
and right opercular-frontal cortex reveal altered cognitive and
movement functions in PD. The findings of neural correlations
suggest that the global functional connectivity in fusiform gyrus,
cerebellum and hippocampus are critical in the identification of
cognitive and movement functions in PD. This study provides
new insights on the interaction among global coordination of
brain activity, cognitive function and movement function in PD.
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