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Many neurodegenerative diseases manifest in an overall aged population, the pathology
of which is hallmarked by abnormal protein aggregation. It is known that across aging,
sleep quality becomes less efficient and protein homeostatic regulatory mechanisms
deteriorate. There is a known relationship between extended wakefulness and poorly
consolidated sleep and an increase in cellular stress. In an aged population, when
sleep is chronically poor, and proteostatic regulatory mechanisms are less efficient, the
cell is inundated with misfolded proteins and suffers a collapse in homeostasis. In this
review article, we explore the interplay between aging, sleep quality, and proteostasis
and how these processes are implicated in the development and progression of
neurodegenerative diseases like Alzheimer’s disease (AD). We also present data
suggesting that reducing cellular stress and improving proteostasis and sleep quality
could serve as potential therapeutic solutions for the prevention or delay in the
progression of these diseases.
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INTRODUCTION

Sleep is found in all animals that have been studied to date. It is a universal and crucial aspect
of overall health. While the specific functions of sleep are still actively researched, some benefits
of sleep, including memory consolidation (Stickgold and Walker, 2007; Diekelmann and Born,
2010) and management of cellular processes (Benington and Heller, 1995; Cirelli et al., 2004),
have been demonstrated. However, it is known that sleep quality decreases with age (Manderville
and Wetmore, 2017) and poor sleep is often a symptom of many aged-related neurodegenerative
diseases, such as Alzheimer’s disease (AD; Ju et al., 2013). This begs the question to what extent
is sleep causally related to the progression of aging and the symptoms of neurodegeneration.
Perhaps the most effective way to examine this question is to investigate cellular health at the
molecular level. Most neurodegenerative diseases display protein aggregation as a main feature of
the disease, suggesting that proteostatic dysfunction could be causally related to the development
and progression of these diseases. Proteostasis, or protein homeostasis, is maintained by quality
control systems and signal transduction pathways such as the unfolded protein response (UPR;
Braakman and Hebert, 2013). The UPR is initiated in the endoplasmic reticulum (ER), which is
a major site of protein folding and processing. The ER is responsible for ensuring proper protein
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folding of all secretory and membrane proteins, through the
use of other chaperone proteins. Protein misfolding due to
changes in the ER environment such as redox, energy, pH and
calcium perturbations activate the UPR (Kaufman, 2002; Ron,
2002). Activation of the UPR is an adaptive response and works
in the short term to restore proteostasis (Koga et al., 2011).
Importantly, as we age, the protein regulatory mechanisms of
the cell deteriorate, as does sleep quality (Koga et al., 2011). This
review will explore the interplay of sleep quality and protein
homeostatic changes across aging, with a focus on the UPR, and
the implications that these changes have for the development,
progression, and treatment of neurodegenerative diseases. The
goal of this is review is to present a cellular perspective on sleep
and aging in terms of neurodegenerative diseases that can have
broad impacts on the overall health of the individual across the
normal aging process, and can serve as a potential therapeutic
target for these diseases.

SLEEP AND PROTEOSTASIS

Sleep is a ubiquitous physiological process. The current theory
for the physiological regulation of sleep is the two-process model
of sleep (Borbély, 1982). This model suggests that there is a
circadian component to regulate the timing of sleep across
the 24-h day, as well as a homeostatic process that regulates
sleep based on the homeostatic regulatory processes of the cell
(Borbély, 1982). The circadian process is regulated by light
across the 24-h day as well as the cycling of proteins such as
melatonin (Cassone, 1990; Brown, 1994). For the purposes of
this review, however, we will focus on the homeostatic process,
which regulates sleep on a cellular/molecular level based on
cellular demands. This hypothesis posits that there is a buildup
of molecules that correlate with the duration of wakefulness.
Extending wakefulness, therefore, results in an accumulation of
molecules and proteins commensurate with the prior duration
of wakefulness.

The waking cell is incredibly active transcribing DNA and
translating proteins that are necessary tomaintain wake function.
As mentioned previously, the ER is the site of secretory and
membrane protein synthesis in the cell, with the neuron being
no exception. The ER of neurons extends through the entire
axon and cell body of the neuron (Berridge, 2002; Ramírez
and Couve, 2011). The vastness of this organelle, relative to
the size of the neuron itself, indicates that protein synthesis
is especially critical for neural function. Newly synthesized
proteins are located in the ER lumen, which contains molecular
chaperones that bind to the newly formed proteins in order to
assist them in achieving their appropriate conformation. Once
proteins are properly folded, they are transferred out of the ER to
serve their cellular function. If the proteins cannot be properly
folded, they are targeted to the proteasome for degradation to
prevent aggregation (Ellgaard et al., 1999; Ellgaard and Helenius,
2001). Despite quality checkpoints and the presence of molecular
chaperones, some proteins will be misfolded and will accumulate
in the lumen of the ER.

There are instances when protein accumulation in the ER
is too overwhelming for chaperone proteins alone. This state,

once reached, is referred to as ER stress, which initiates a
cascade of cellular signaling collectively referred to as the UPR,
to cope with the aggregated proteins in the lumen of the ER
(Berridge, 2002). This UPR has many downstream consequences
for the cell and affects many important cellular mechanisms,
including metabolic pathways (Bravo et al., 2013). The UPR
activates three main types of protective responses: up-regulation
of chaperone proteins such as BiP [also known as glucose
regulated protein 78 (GRP78) or Hspa5], down-regulation of
protein translation, and increasing degradation of misfolded
proteins. When there is extended stress on the ER and these
three mechanisms of the UPR are not sufficient to relieve that
stress, apoptotic pathways are activated, ultimately leading to
cell death (see reviews by Ron and Walter, 2007); and (Szegezdi
et al., 2006). Interestingly, several microarray studies have shown
that protein translation factors and ER resident factors such
as BiP that are involved in these pathways of the UPR are
increased with prolonged wakefulness, or sleep deprivation
(Cirelli and Tononi, 2000; Cirelli et al., 2004; Naidoo et al., 2005;
Mackiewicz et al., 2007; Naidoo et al., 2007). These observations
suggest that protein homeostatic mechanisms could be linked to
sleep/wake patterns.

There are three ER transmembrane proteins that serve
as the ‘‘stress detectors’’ of the cell; PKR-like endoplasmic
reticulum kinase (PERK), inositol requiring enzyme 1 (IRE1),
and activating transcription factor 6 (ATF6; Zhang andKaufman,
2004; Ron and Walter, 2007). BiP is bound to these three
receptors under normal cellular conditions. When misfolded
proteins are present, BiP dissociates from these receptors, thereby
activating their signaling pathways, and binds to the unfolded
proteins. Activation of IRE1 results in downstream signals
that increase molecules involved in endoplasmic reticulum
associated degradation (ERAD), targeting misfolded proteins for
degradation. ATF6 activation results in the ultimate translation
of more chaperone proteins to assist in protein folding. Finally,
PERK activation leads to a temporary global reduction in
protein synthesis by inhibiting translation (Harding et al.,
2000; Hetz and Mollereau, 2014). Together, these processes
allow the cell to cope with or manage accumulated misfolded
proteins, and we know that these systems are activated in states
of sleep deprivation. Specifically, several studies have shown
that sleep deprivation leads to an increase in levels of the
chaperone protein, BiP/GRP78, as well as activation of the PERK
pathway of the UPR (Cirelli et al., 2004; Naidoo et al., 2005,
2007). Importantly, recovery sleep following sleep deprivation in
Drosophila leads to a reduction in BiP levels (Naidoo et al., 2007).

Autophagy is another well-studied proteostasis pathway that
is activated by the integrated stress response downstream of the
UPR (see review by Kroemer et al., 2010). Autophagy leads to
the degradation of aggregated proteins and defective organelles
and is activated when protein homeostasis cannot be achieved
by the cell, leading to apoptosis. It is known from studies in
yeast that ER stress induces the autophagy response and that
a downstream signaling molecule, Atg1, is necessary to induce
autophagosome formation (Yorimitsu et al., 2006). In particular,
it has been shown that the IRE1-JNK pathway is necessary for
autophagy activation (Ogata et al., 2006). Further, ER stress
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molecules negatively regulate the AKT/mTOR pathway, which
leads to an induction in autophagy (Qin et al., 2010). Recent data
suggest that autophagy is regulated by the circadian clock with a
direct role for Rev-erbα and transcription factor CEBPB linking
these two processes (Huang et al., 2016). Interestingly, the cycling
of autophagy proteins in hippocampal tissue is altered with sleep
fragmentation (He et al., 2016). It is possible that sleep and the
circadian clock could together influence how the cell is able to
degrade aggregated proteins or dysfunctional organelles.

Fascinatingly, deep slow wave sleep that occurs during
non-rapid eye movement (NREM) sleep, reflects the intensity
of the previous waking period. The greater the previous bout of
wakefulness, the longer the duration of slow wave sleep (Borbély
et al., 1989). According to (Tononi and Cirelli, 2003) this
slow-wave pattern could be involved in homeostatic regulation.
They propose that wakefulness is associated with synaptic
potentiation and slow-wave activity is associated with the
corresponding synaptic downscaling, together resulting in the
beneficial consequences of sleep on cognition. This hypothesis
specifically addresses a role for sleep in the regulation of protein
homeostasis in the brain in terms of the dynamic synaptic
changes that occur with learning and daily neural activity.

AGING: EFFECTS ON SLEEP AND
PROTEIN HOMEOSTATIC REGULATION

The quality of sleep changes across the healthy aging process.
In general, as humans reach maturity, some studies suggest that
sleep need decreases (Manderville and Wetmore, 2017). Across
aging, there are key changes in sleep architecture. Some of
these changes include increased sleep onset latency, shorter sleep
duration, impaired sleep consolidation by increased awakening,
increased daytime sleepiness, decreased melatonin levels, and
reduced the amount of deep slow wave sleep (Welsh et al., 1986;
Pandi-Perumal et al., 2002; Wolkove et al., 2007; Yaffe et al.,
2014; Mander et al., 2017 and references therein). Importantly,
these age-related changes in sleep characteristics are conserved
across many animal species studied (Mendelson and Bergmann,
1999; Koh et al., 2006; Naidoo et al., 2008; Wimmer et al., 2013;
Brown et al., 2014). While sleep need decreases with age, the
fact that sleep remains necessary even in adulthood in many
species underscores that idea that sleep has been preserved across
evolution because it serves a critical function.

The age-related alterations in sleep characteristics could
be related to, or even contribute to, cognitive impairment.
Some work has shown that poor slow-wave oscillations and
sleep spindles during NREM sleep in aged individuals is
linked to poor memory and forgetting (Helfrich et al., 2018).
Interestingly, other work has shown that sleep quality in
middle-aged individuals could affect cognitive abilities later in
life. In this middle-aged population, sleep quality was positively
correlated with working memory and visual-spatial episodic
memory (Rana et al., 2018). Deficits in sleep at this stage
could be indicative of increased risk for cognitive decline at a
later age, and improving sleep quality during mid-life, could
reduce susceptibility to cognitive decline. Other studies have
shown that there is a correlation between poor sleep quality

and working memory, long term memory, verbal knowledge,
and visuospatial reasoning (Schmutte et al., 2007; Nebes et al.,
2009). Further, sleep fragmentation and increased daytime
sleepiness are associated with increased cognitive impairment
(Ohayon and Vecchierini, 2002; Naismith et al., 2010; Jaussent
et al., 2012). Importantly, sleep disruptions such as those
discussed here are also associated with neurodegenerative
diseases, such as AD (Ju et al., 2013; Lim et al., 2013). While
the biological mechanisms and pathways that could underlie this
relationship between sleep and cognition are poorly understood,
it is clear that there is a connection between them with
respect to aging.

Furthermore, with aging, the protein quality control systems
discussed above become dysfunctional. The ER stress response
becomes less adaptive as we age, resulting in reduced efficiency
of the refolding aspects of the UPR and increasing the
prominence of the apoptotic pathways (Hussain and Ramaiah,
2007; Naidoo et al., 2008; Brown et al., 2014). Interestingly,
protein aggregations as a result of maladaptive UPR function
occur in almost all of the tissues of an aged organism (see
review by Koga et al., 2011). Deficits in chaperone protein
function have also been reported in age-related diseases (Macario
and Conway de Macario, 2002; Nuss et al., 2008), as well as
overall decreases in the levels of chaperone proteins in aged
wildtype rodents (Naidoo et al., 2008). Conversely, increasing
chaperone protein levels results in an increase in longevity in
flies and worms (Tatar et al., 1997; Kang et al., 2002; Morley and
Morimoto, 2004). In addition, improving protein homeostasis by
treatment with a small chemical chaperone molecule, 4-phenyl
butyrate (PBA), improves sleep in aged flies (Brown et al., 2014).
Further, work done in C. elegans has demonstrated that some
protein misfolding earlier in adulthood can lead to the eventual
overall collapse of protein homeostasis in older organisms (Ben-
Zvi et al., 2009). It is clear that in addition to sleep quality
changing with age so does overall protein homeostasis. What
remains unclear is how these phenomena are related and if
improving one is sufficient to rescue the other, particularly in
disease states.

NEURODEGENERATIVE DISEASES:
INTERSECTION OF AGE-RELATED
CHANGES IN SLEEP AND PROTEOSTASIS

Protein misfolding and aggregation is a key feature of
many neurodegenerative diseases, particularly AD (Cornejo
and Hetz, 2013), Parkinson’s disease (PD; Breydo et al.,
2012), Huntington’s disease (HD; Arrasate and Finkbeiner,
2012), fronto-temporal dementia (FTD; Ling et al., 2013), and
amyotrophic lateral sclerosis (ALS; Lindberg et al., 2005). Most
of those who suffer from neurodegenerative diseases are aged
individuals, which is a population that, as discussed above,
displays reduced sleep quality and a decreased ability to maintain
protein homeostasis due to aged-related dysfunctions in cellular
regulatory mechanisms [(Selkoe, 2003) and see the review by
Hetz and Saxena (2017)]. Therefore, it is reasonable to consider
that these aged-related changes in both sleep and protein
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homeostasis could increase the risk of neurodegeneration by
ultimately leading to increases in levels of abnormal protein
aggregates and an inability for individual cells to ameliorate this
homeostatic imbalance.

The over activation of the UPR/maladaptive ER stress
response could contribute to neurodegenerative disease. The
expression of disease-associated proteins that aggregate and
cause an imbalance in protein homeostasis have long-term
consequences on the folding of other proteins. Part of the
downstream signaling branches of the UPR reduces translation
(Harding et al., 2000). This reduction could have negative
consequences for synaptic health, memory formation, and basic
cellular function, as none of these can occur without proper
protein quantities. To this end, some work has shown that
inhibiting PERK improves memory (see review by Halliday and
Mallucci, 2014). This feature of protein regulation demonstrates
that the cell does not have the capacity to deal with
chronic protein misfolding, suggesting that the quality control
mechanisms may be maladaptive to chronic ER stress in these
disease states (Morimoto, 2008; Brown and Naidoo, 2012).

Several animal models of neurodegenerative diseases, such
as ALS, FTD, AD, PD, and HD display an accumulation
of misfolded proteins and an activation of the UPR (Reddy
et al., 1999; Rao et al., 2002; Hoozemans et al., 2005); see
review by (Hetz and Saxena, 2017). In AD, increased levels
of β-amyloid precursor proteins in neurons sensitize these
cells to ER stress (Chafekar et al., 2008), for review see
Cornejo and Hetz (2013). Studies have shown that amyloid-
β, which can accumulate in the ER lumen, can disrupt ER
calcium homeostasis, leading to a proapoptotic stress response
(Cornejo and Hetz, 2013). Phosphorylation of PERK and its
downstream target eIF2α, a branch of the UPR, is observed
in AD patients (Chang et al., 2002). Further, reduction of

PERK rescues memory and cholinergic neurodegeneration by
preventing increases in BACE1, which is involved in Aβ

production (Devi and Ohno, 2014). Some evidence in PD has
shown that ER stress in the form of increased phosphorylation
of PERK and eIF2α occurs in the substantia nigra early in
the disease (Hoozemans et al., 2012). In addition, another
study showed that iPSCs derived from PD patients display
early ER stress, which leads to a disruption of proteostasis
(Chung et al., 2013). In HD, ER calcium homeostasis has been
identified in patient-derived iPSCs, which could contribute to
protein misfolding (Nekrasov et al., 2016), and increased levels
of UPR effectors BiP and CHOP have been observed in HD
patients (Carnemolla et al., 2009; Kalathur et al., 2015). Finally,
all three UPR branches are expressed in ALS (Atkin et al.,
2008; Hetz et al., 2009; Ito et al., 2009; Saxena et al., 2009;
Kiskinis et al., 2014).

In addition, autophagy is a prominent pathological feature
of many neurodegenerative diseases (see review Martinez-
Vicente and Cuervo, 2007). In PD, α-synuclein can be
degraded via autophagy (Webb et al., 2003), and it is
known that the effectiveness of these degradation pathways
decays with age (Martinez-Vicente et al., 2005). In AD, the
lysosomal system that provides enzymes for degradation of
toxic proteins in autophagosomes becomes inefficient (Yu
et al., 2005). Further, in HD, macroautophagy is upregulated
in response to Huntingtin aggregation (Kegel et al., 2000).
It is possible that with age and poor sleep quality, increased
levels of ER stress coupled with a maladaptive autophagic
response all contribute to the development and progression of
neurodegenerative disease.

Several studies using animal models of neurodegenerative
diseases, specifically AD, have shown that increasing protein
chaperone levels that assist in the folding of proteins, and

TABLE 1 | Neurodegenerative diseases that display alterations in protein homeostatic regulation and sleep disruptions.

Disease Evidence of ER stress in disease phenotypes Sleep disruptions observed

Alzheimer’s Disease (AD) Increased BiP expression in neurons of AD patients
(Hoozemans et al., 2005)
Increased CHOP leads to proapotosis in AD (Lee et al., 2010)
Reduction of PERK rescues memory and cholinergic
neurodegeneration (Devi and Ohno, 2014)
Excessive eIF2α phosphorylation associated with memory loss in
models of AD (Costa-Mattioli et al., 2009; Ma et al., 2013; Trinh and
Klann, 2013)

Fragmented sleep, increased daytime
sleepiness, REM disruptions (Prinz et al., 1982;
Vitiello and Prinz, 1989; Bliwise, 2004)

Parkinson’s Disease (PD) Neuron loss in an α-Synuclein model of PD occurs concomitantly
with ER chaperone induction (Colla et al., 2012)
ATF4 induction in rat dopamine neurons of the substantia nigra
results in degeneration (Gully et al., 2016)
ER stress in pink1/parkin models of PD leads to neurodegeneration
(Celardo et al., 2016)

REM disruptions, excessive daytime sleepiness
(Gagnon et al., 2002; Iranzo, 2011)

Frontotemporal Dementia (FTD) The rTg4510 mouse model of FTD displays an increase in levels of
ATF4, p-PERK, p-eIF2α, and BiP (Abisambra et al., 2013; Radford
et al., 2015)

Insomnia, sleep disordered breathing, excessive
daytime sleepiness (McCarter et al., 2016)

Huntington’s Disease (HD) BiP and CHOP are upregulated in HD patient brains (Carnemolla
et al., 2009)
Soluble oligomers of htt activate ER stress (Leitman et al., 2013)

Increased latency to sleep, frequent nocturnal
awakening, reduced sleep efficiency (Wiegand
et al., 1991; Morton et al., 2005)

Amyotrophic Lateral Sclerosis (ALS) Elevated levels of ER stress markers, CHOP, XBP1s, and
BiP/GRP78 in motor neurons in an animal model of ALS (Ito et al.,
2009; Wang et al., 2011; Das et al., 2015)

Daytime sleepiness, sleep disordered breathing
(Ferguson et al., 1996; Lo Coco et al., 2011)
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thereby improve these protein quality control mechanisms, the
progression of these diseases can be ameliorated (Ricobaraza
et al., 2011; Wiley et al., 2011; Cuadrado-Tejedor et al.,
2013; Hafycz et al., 2019). In models of ALS, treatment
with eIF2α phosphatase inhibitors improved motor neuron
performance and survival (Jiang et al., 2014; Wang et al.,
2014; Das et al., 2015). In mouse models of FTD, PERK
inhibition resulted in improved neuronal function (Radford
et al., 2015). This data together suggests that reducing the
activation of the UPR in these disease models can, to a
degree, rescue progression of the diseases. Further evidence
demonstrates that modulating ER stress signaling in an effort
to make it more effective results in neuroprotection (Hughes
and Mallucci, 2019). Together, these studies suggest that cellular
stress underliesmany neurodegenerative diseases and could serve
as a therapeutic target for the treatment of patients suffering with
these disorders.

As mentioned previously, most patients suffering from
protein misfolding neurodegenerative diseases also report sleep
disruptions (see Table 1). AD and PD in particular report a
high percentage of patients suffering from sleep alterations such
as increased sleep fragmentation, increased daytime sleepiness,
and REM sleep disruptions (Factor et al., 1990; Iranzo, 2011; Ju
et al., 2013). Additional studies examining ALS and FTD show
that in a mutant animal model of these diseases expressing FUS
protein demonstrate sleep and circadian disturbances prior to the
cognitive deficits (Hetz and Saxena, 2017; Zhang et al., 2018).
Some work has also investigated the effect of neurodegenerative
disease, specifically AD, on the circadian clock, suggesting that
once the neurodegeneration begins in sleep and circadian rhythm
regulatory regions, the brain becomes even more susceptible to
the effects of neurodegeneration (see review by Chauhan et al.,
2017 and citations therein).

An ongoing investigation into these diseases is required to
establish which comes first, protein homeostatic disruptions or
sleep disturbances, and in particular, if sleep quality is improved,

can the spread of these protein misfolding diseases be delayed or
halted altogether?

CONCLUDING REMARKS

There is sufficient evidence that cellular health and sleep quality
go hand-in-hand. Across the aging process, both sleep quality
and protein homeostatic mechanisms decrease in efficiency.
Many studies demonstrate that poor sleep quality is correlated
with poor memory and cognition. While it is impossible to
examine protein homeostasis and protein levels of neurons
in humans, evidence from neurodegenerative diseases clearly
shows increases in cellular stress and poor regulation of
protein folding, leading to aggregations commonly seen in
these diseases. What remains unclear is the link between
sleep and protein homeostasis in these disease states. Some
evidence suggests that it is the interplay between poor sleep and
maladaptive protein regulation that contributes to age-related
neurodegenerative diseases like AD.We suggest, since both sleep
quality and the efficacy of protein homeostatic maintenance
machinery decreases with aging, it seems plausible that these
two key aspects of aging could contribute to the onset of
neurodegenerative age-related diseases. In accordance with this
perspective, improving sleep quality and relieving cellular stress
could serve as critical target areas for therapeutic intervention of
these devastating diseases.
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