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Introduction: The loss of nigrosome-1, which is also referred to as the swallow

tail sign (STS) in T2∗-weighted iron-sensitive magnetic resonance imaging (MRI),

has recently emerged as a new biomarker for idiopathic Parkinson’s disease (IPD).

However, consistent recognition of the STS is difficult due to individual variations and

different imaging parameters. Radiomics might have the potential to overcome these

shortcomings. Therefore, we chose to explore whether radiomic features of nigrosome-

1 of substantia nigra (SN) based on quantitative susceptibility mapping (QSM) could help

to differentiate IPD patients from healthy controls (HCs).

Methods: Three-dimensional multi-echo gradient-recalled echo images (0.86 × 0.86 ×

1.00 mm3) were obtained at 3.0-T MRI for QSM in 87 IPD patients and 77 HCs. Regions

of interest (ROIs) of the SN below the red nucleus were manually drawn on both sides,

and subsequently, volumes of interest (VOIs) were segmented (these ROIs included four

1-mm slices). Then, 105 radiomic features (including 18 first-order features, 13 shape

features, and 74 texture features) of bilateral VOIs in the two groups were extracted.

Forty features were selected according to the ensemble feature selection method, which

combined analysis of variance, random forest, and recursive feature elimination. The

selected features were further utilized to distinguish IPD patients from HC using the SVM

classifier with 10 rounds of 3-fold cross-validation. Finally, the representative features

were analyzed using an unpaired t-test with Bonferroni correction and correlated with

the UPDRS-III scores.

Results: The classification results from SVM were as follows: area under curve (AUC):

0.96± 0.02; accuracy: 0.88± 0.03; sensitivity: 0.89± 0.06; and specificity: 0.87± 0.07.

Five representative features were selected to show their detailed difference between IPD

patients and HCs: 10th percentile and median in IPD patients were higher than those
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in HCs (all p < 0.00125), while Gray Level Run Length Matrix (GLRLM)-Long Run Low

Gray Level Emphasis, Gray Level Size Zone Matrix (GLSZM)–Gray Level Non-Uniformity,

and volume (all p < 0.00125) in IPD patients were lower than those in HCs. The 10th

percentile was positively correlated with UPDRS-III score (r = 0.35, p = 0.001).

Conclusion: Radiomic features of the nigrosome-1 region of SN based on QSM could

be useful in the diagnosis of IPD and could serve as a surrogate marker for the STS.

Keywords: nigrosome-1, substantia nigra, Parkinson’s disease, quantitative susceptibility mapping, radiomics,

support vector machine

INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative
movement disorder, and mainly characterized by a loss
of dopaminergic neurons and iron accumulation in the
substantia nigra (SN), pathologically (Damier et al., 1999). The
dopaminergic neuronal loss and iron deposition were reported
to occur in nigrosomes of the SN pars compacta (SNpc) at the
initial stage of PD, especially in the nigrosome-1, the largest
among the five subdivisions (Damier et al., 1999; Lehericy
et al., 2014). Therefore, imaging the nigrosome-1 using iron-
sensitive magnetic resonance imaging (MRI), for example, T2∗-
weighted imaging, has recently been investigated and validated
as a possible biomarker for idiopathic Parkinson’s disease (IPD)
(Noh et al., 2015; Reiter et al., 2015).

Recognizing the nigrosome-1 has been possible thanks to the
presence of high iron signal surrounding it that produces what is
referred to as the “swallow tail sign” (STS) (Schwarz et al., 2014).
The loss of the STS is thought to be due to the increase in iron
content subsequent to the depigmentation of the neuromelanin
in the nigrosome-1 territory. The reported sensitivity, specificity,
and accuracy of the loss of nigrosome-1 hyperintensity or the
STS varied from 94 to 100%, 84.6 to 94.4%, and 94.6 to 96%,
respectively (Noh et al., 2015; Reiter et al., 2015; Mahlknecht
et al., 2017; Stezin et al., 2018). However, consistent recognition
of the STS among reviewers has been difficult due to individual
differences in the shape of the nigrosome-1 territory and to the
choice of imaging parameters such as scanning plane, resolution,
signal-to-noise ratio (SNR), and echo time, even on the ultra-high
7.0 T system MRI (Schmidt et al., 2017; Kim et al., 2018).

Conventional quantitative imaging (e.g., R2∗) of SN was
reported to have the potential to differentiate PD from healthy
controls (HCs) by quantification of the local iron content (Martin
et al., 2008; Du et al., 2011), which partially avoids some of
the shortcomings referred above. Nevertheless, the quantification
can be affected by several factors including intravoxel spin
dephasing, non-locality of phase and tissue susceptibility, as
well as field strength (Schweser et al., 2011; Li et al., 2012; He
et al., 2015). Quantitative susceptibility mapping (QSM) has
been proven to be a sensitive and reliable quantitative method
reflecting the local tissue susceptibility with much better contrast
compared to R2∗ or T2 methods (Langkammer et al., 2012;
He et al., 2015; Murakami et al., 2015; Wang and Liu, 2015;
Du et al., 2016). However, diagnostic accuracy did not surpass
that of conventional imaging, which might be accredited to the

intergroup overlap of the susceptibility value when utilizing the
mean value of a given structure (Kim et al., 2018).

Radiomics is a recently developed promising technique, which
can be utilized to mine feature information (such as density,
shape, size, and texture) of a certain region of interest underlying
medical images and it can generate a great deal of quantitative
features including some reflecting the inter-voxel spatiality (Feng
et al., 2018). Radiomics has been mainly applied to various
tumors, and its role in diagnosis, treatment evaluation, and
prognosis has to some degree been verified (Cameron et al., 2016;
Nie et al., 2016; Zhang et al., 2017).

To date, few investigations of radiomics on neurodegenerative
disease have been carried out.We hypothesized that it might have
the potential to overcome and/or complement the shortcomings
of the current nigrosome-1 imaging referred to above. Therefore,
our purpose was to explore whether radiomic features of the iron
content in the nigrosome-1-containing part of the SN based on
QSM data could help to differentiate IPD patients from HCs.

MATERIALS AND METHODS

Participants
This study was approved by our institutional review board
and written informed consent was given and signed by all
the participants. The diagnosis of IPD was based on the UK
Parkinson’s Disease Society Brain Bank Clinical Diagnostic
Criteria (Hughes et al., 1992). The exclusion criteria were as
follows: (1) secondary or atypical parkinsonism; (2) dementia:
Mini-Mental State Examination (MMSE) score<24; (3) a history
of cerebrovascular disease (e.g., infarction, hemorrhage), brain
tumor, head trauma, or any other type of psychiatric disorders;
(4) a history of medication known to cause parkinsonism or
affect clinical assessment; or (5) contraindications to an MRI
examination. HCs with gender and age matched from local
communities were recruited according to the following inclusion
criteria: (1) older than 40 years, without family history of
movement disorders; (2) without any neurological or psychiatric
disorders; and (3) an MMSE score of at least 24. There were 87
IPD patients (41 males and 46 females, aged 60.9 ± 8.1 years)
and 79 HCs (43 males and 34 females, aged 63.4 ± 7.3 years)
enrolled according to the above criteria from March 2012 to
June 2015. Two HCs with imaging quality score higher than two
were excluded for further analysis (see the grading system in the
section Image Reconstruction).
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MRI Acquisition
All participants were scanned on a 3.0-T MRI system (Signa
HDxt; GE Healthcare, Milwaukee, WI, USA) equipped with
an eight-channel phased-array head coil. Foam pads and
earplugs were applied to reduce head movement and scanner
noise, respectively. A three-dimensional multi-echo gradient-
echo (GRE) sequence was used to generate T2

∗
-weighted images

with the following parameters: TR= 59.3ms; TE1= 2.7ms,1TE
= 2.9ms, number of echoes = 16, flip angle = 12◦, FOV = 22 ×
22 cm2, matrix= 256× 256, resolution= 0.86× 0.86× 1.0mm3,
bandwidth = 488.28 Hz/pixel, acceleration factor = 2, number
of slices = 136, and acquisition time = 10min 42 s. In addition,
conventional sequences including T1-weighted images, T2-
weighted fluid-attenuated inversion recovery (FLAIR) images,
and diffusion-weighted imaging (DWI) were also acquired to
screen for cerebrovascular diseases and other confounding
diseases. The whole brain was covered axially parallel to the
anterior commissure–posterior commissure (AC–PC) line.

Image Reconstruction
Before reconstruction of QSM, two neuroradiologists (ZC, NH)
blindly assessed the quality of magnitude images using the
following grading system (He et al., 2015): 1= very good (little or
no artifact); 2 = good (visible artifacts); 3 = poor (considerable
motion artifacts); 4 = very poor (significant motion artifacts), 5
= non-diagnostic scan, and reached a consensus by discussion
on the disagreements. Subjects with a score higher than two were
excluded from further processing. Of the 79 HCs, 75 cases were
scored 1; 2 and 2 cases were scored 2 and 3, respectively. Of the
IPD cases, 85 cases scored 1 and the remaining 2 cases scored
2. QSM reconstructions were performed utilizing the method
reported previously (Li et al., 2011). A brief description follows:
(1) phase images were collected from each channel of the coil, and
then averaged; (2) background phase variations were removed
using SHARP (Sophisticated Harmonic Artifact Reduction for
Phase) with a filter radius of 8 (Schweser et al., 2011); and (3)
the susceptibility map was generated using an improved LSQR
(iLSQR) method (Li et al., 2011, 2015) with the regularization
threshold for Laplace filtering being set at 0.04.

Image Analysis and Segmentation
The STS is composed of the nigrosome-1 (hyperintensity on
SWI) and its surrounding structures (hypointensity on SWI)
(Schwarz et al., 2014). This usually appears at or below the
caudal part of the red nucleus (RN) (Massey et al., 2017).
This nigrosome-1-containing territory was set as the region of
interest (ROI) and the relevant slices were manually drawn
and segmented on the QSM data using ITK-SNAP (V3.4.0,
http://www.itksnap.org) by one of the investigators (J.Z) blindly
from the level of the inferior part of the RN to the inferior
part of the SN (Figure 1). The most inferior part and the
boundary regions of the SN were excluded to avoid partial
volume effects. The lateral andmedial parts of SNwere delineated
on a visible border of high-intensity signal of SN on QSM, with
boundary voxels excluded. The final volume of interest (VOI)
consisted of four slices unilaterally, and the bilateral VOIs were

confirmed by a neuroradiologist (Z.C., with 5 years’ experience
on neuroimaging diagnosis).

As a comparison, all the subjects were reviewed blindly on
QSM for manifestation of STS or not by a neuroradiologist (ZC,
with 5 years’ experience on neuroimaging diagnosis). Bilateral
and unilateral loss of the sign were classified as positive, and
bilateral presence of the sign was classified as negative.

Feature Extraction
One hundred and five radiomic features including 18 first-order
features, 13 shape-based features, and 74 texture features were
extracted from the segmented nigrosome-1-containing SN
images. The first-order features describe how the individual
susceptibilities are distributed, consisting of mean, 10th
percentile, variance, and 15 other features. The shape-based
features describe the geometric characteristics of the VOI, such
as volume, surface area, and diameter. The textural features
express how individual susceptibilities distribute spatially,
which are computed according to five defined matrices: Gray
Level Co-occurrence Matrix (GLCM), Gray Level Dependence
Matrix (GLDM), Gray Level Run Length Matrix (GLRLM),
Gray Level Size Zone Matrix (GLSZM), and Neighboring Gray
Tone Difference Matrix (NGTDM). The (i, j)th element of
GLCM represents the frequency of the combination of gray
levels i and j of two pixels, which are separated by a distance of
δ along angle θ ; GLDM quantifies gray-level dependencies in
an image, and gray-level dependency is defined as the number
of connected voxels that are dependent on the center voxel
within distance δ along angle θ ; GLRLM quantifies gray-level
runs, which are defined as the length of consecutive pixels
that have the same gray-level value within distance δ along
angle θ ; GLSZM quantifies gray-level zones in an image, and a
gray-level zone is defined as the number of connected voxels
that share the same gray-level intensity. The NGTDM quantifies
the difference between a gray value and the average gray value
of its neighbors within distance δ. In our study, we considered
one neighboring pixel (δ = 1). As for the parameter angle
θ in GLCM, GLDM, GLRLM, we consider all 13 possible
directions as (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0,
1, 1), (1, −1, 0), (−1, 1, 0), (1, 0, −1), (−1, 0, 1), (0, −1, 1),
(0, 1, −1), and (1, 1, 1) for our volumetric data, and the mean
values of the features form different directions were used as the
final features.

The meaning and equation of each feature from the
above mentioned seven groups (first-order features, shape-
based features, and textural feature-based GLCM, GLDM,
GLRLM, GLSZM, and NGTDM) were described thoroughly in
Supplementary S1, and 17 representative features were listed in
Table 1. The feature extraction procedure was performed using
the open-source python package pyradiomics (Jjm et al., 2017).
All the feature descriptions are consistent to the illustration
in their website (https://pyradiomics.readthedocs.io/en/latest/
index.html).

Feature Selection
Feature selection was performed to keep the most relevant
features. Ensemble feature selection can combine the results from
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FIGURE 1 | Segmentation of the nigrosome-1-containing region of SN. Representative QSM images of the nigrosome-1 area for a HC (67 years old, male; A) and an

IPD patient (69 years old, male, H&Y = 2; G). The nigrosome-1 area presents as the “swallow tail” sign bilaterally (A, black arrow) in the HC, while it cannot be seen in

the IPD case (G, white arrow) (that is, there is a loss of the “swallow tail” sign). Regions of the SN below the RN were segmented slice by slice (B–E; H–K) to generate

the three-dimensional nigrosome-1-containing SN (F,L).

different feature selection methods to one major decision, and
this can improve the robustness and stability of the final feature
selection results (Jong et al., 2004; Abeel et al., 2010; Hoque et al.,
2018). Therefore, three different methods were assembled in
our feature selection procedure: analysis of variance (ANOVA),
random forest, and recursive feature elimination (RFE). The
average rank from different methods served as the final feature

rank criterion. A schematic overview of our feature selection
procedure can be found in Figure 2.

ANOVA was used to compare the features’ mean values of
IPD group with those of HC groups. The ANOVA F value (a
measure of significance in F-test) was calculated and served as
one criterion to rank features: features with a higher F value were
ranked as more important.
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TABLE 1 | Description and equation of the 13 representative features from different group.

Features Description Equation

Firstorder-minimum The minimum susceptibility in the VOI min(X)

Firstorder-10 Percentile The 10th percentile of the sorted susceptibility in the VOI 10th_percentile(X)

Median Median of the sorted susceptibility in the VOI Median(X)

GLCM-Correlation The image complexity

Ng
∑

i=1

Ng
∑

j=1
p(i,j)ij−µxµy

σx (i)σy (j)

GLCM-Informational

Measure of Correlation 1 (InfMCor1)

Complexity of the texture HXY−HXY1
max{HX,HY}

GLCM-SumEntropy (SumEntrp) The sum of neighborhood intensity value differences
2Ng
∑

k=2
px+y (k)log2(px+y (k))

GLDM-Dependence Entropy (DepdEntrp) The randomness of GLDM. Higher Dependence Entropy implies more

complex texture
p(i,j)log2 (p(i,j))

GLDM-Dependence

Variance (DepdVar)

The variance in dependence size. Higher Dependence Variance implies

more heterogeneity in local zone size.

Nd
∑

j=1
p(i, j)(j − µ)2,where µ =

Ng
∑

i=1

Nd
∑

j=1
jp(i, j)

GLDM-GrayLevel Non-Uniformity

(GryLvNon-Uni)

The similarity of gray-level intensity values in the image. A lower GLN value

correlates with a greater similarity in intensity values

Ng
∑

i=1

(

Nd
∑

j=1
P(i,j)

)2

Nz

GLDM-Dependence

Non-uniformity

Normalized (DepdNonUni)

The similarity of dependence throughout the image, with a lower value

indicating more homogeneity among dependencies of the image.

Nd
∑

j=1

(

Ng
∑

i=1
P(i,j)

)2

N2
z

GLRLM-RunEntropy (RunEntrp) The randomness of run lengths and gray levels. A higher value indicates

more heterogeneity in the texture patterns
p(i,j)log2 (p(i,j))

GLRLM-RunLengthNonUniformityNormalized

(RunLthNonUni)

The similarity of run lengths throughout the image. A lower value indicates

more homogeneity among run lengths of the image

Nr
∑

j=1

(

Ng
∑

i=1
P(i,j)

)2

Nr
2

GLRLM-HighGrayLevelRunEmphasis

(HGLRunEmphs)

The distribution of the higher gray-level values, with a higher value indicating

a greater concentration of high gray-level values in the image

Ng
∑

i=1

Nr
∑

j=1
P(i,j)i2

Nr

GLRLM-LongRunLowGrayLevelEmphasis

(LRunLGREmphs)

The joint distribution of long run lengths with lower gray-level values

Ng
∑

i=1

Nr
∑

j=1

P(i,j)j2

i2

Nr

GLSZM-ZoneEntropy (ZoneEntrp) The randomness in the distribution of zone sizes and gray levels. A higher

value indicates more heterogeneity in the texture patterns

p(i, j)log2(p(i, j))

GLSZM-GrayLevelNonUniformity

(GryLvNonUniS)

The variability of gray-level intensity values in the image, with a lower value

indicating more homogeneity in intensity values

Ng
∑

i=1

(

Ns
∑

j=1
P(i,j)

)2

Nz

Shape-Volume The volume of the VOI The voxel number in VOI

The first part of the feature name is its group. The X is the susceptibility in the VOI; Ng is the number of discrete intensity values in the VOI; P(i, j) is the value in corresponding matrix;

Nd and Nz are the number of discrete dependency sizes and the number of dependency zones in GLDM; Nr is the number of discrete run lengths in the GLRLM; µ, σ , HX, HY, and

HXY denote the mean, standard deviations, entropy of px , entropy of py , and entropy of p(i,j) in GLCM, respectively. More details can be found in the Supplementary S1 or the

abovementioned pyradiomics website.

Random forest is a classification method, which trains
a series of classifying decision trees by randomly choosing
sub-samples of the dataset and sub-features from all the
features and then averages the results from different decision
trees to avoid overfitting and improve the accuracy. When
constructing the decision trees, random forest provides
feature importance intrinsically. The feature’s importance
degree is measured by the impurity proposed by Breiman
(2001). Higher impurity implies that the corresponding
feature can influence the predictive results more obviously
and will be reckoned more important. In our study, we
constructed a random forest with 10 decision trees and used

the provided importance degree as another criterion for
features ranking.

The RFE method selects features by recursively pruning
the least important features from current features set, and the
estimator in our RFE method was specified as linear support
vector machine (SVM). The estimator not only evaluated the
importance of features but also gave feedback on training
performance of different feature subsets, so that the curve
between training accuracy and feature number (Figure 3) could
be obtained to determine the optimal number of features.
According to the curve, the number was set as 40 in order to
reduce the feature dimensionality as much as possible.
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FIGURE 2 | Illustration of the feature selection process. Firstly, three feature selection methods ranked the features individually. Then, the ranks from different methods

were averaged. Finally, the features were sorted according to the average ranks, and the most important N features were selected for the subsequent analysis (the

number N could be determined by RFE).

FIGURE 3 | Relationship between the classification accuracy and feature

number.

Finally, the features were sorted according to the average
feature ranks from the above three rankers and the top 40 features
were selected for the subsequent classifiers. To illustrate the
feature selection results, we would present the top five features
selected by each feature selection method in Table 2. All these
three methods were implemented on a python package named
scikit-learn (Pedregosa et al., 2013). When ranking the features
by random forest and RFE, we used all the 164 samples as training
set because the validation/test accuracy did not matter when we
concentrated on the features’ importance in this procedure.

Classification
SVM is one of the most popular machine learning methods and
has been used in PD diagnosis (Prashanth et al., 2016; Amoroso
et al., 2018; Castillo-Barnes et al., 2018). It tries to find out the

optimal hyperplane that minimizes the classification error and
maximizes the geometric margin on the training set, which leads
to high generalization ability on the new cases (Burges, 1998).
In practice, radial basis function (RBF) is usually used as the
kernel function to non-linearly map the features to a higher
dimensionality and improve the performance of SVM (Han et al.,
2012). The RBF kernel function is:

K(xi, xj) = exp(−γ
∥

∥xi − xj
∥

∥

2
) (1)

where xi and xj are the features of samples; γ is a
constant parameter.

And the object function of the SVM is:

min
ω,b,ξ

1
2‖ω‖ 2 + C

N
∑

i=1
ξi

s.t. yi(ωxi + b) ≥ 1− ξi, i = 1, 2, 3, . . . ,N
ξi ≥ 0, i = 1, 2, 3, . . . ,N

(2)

where yi is the label of the ith sample, and C is a
constant parameter.

Then, the function can be solved by a Lagrangian function:

min
ω,b,ξ

L(ω, b, ξ ,α,µ) = −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyj exp(−γ ||xi − xj||
2)

+

N
∑

i=1

αi (3)

At last, the obtained SVM function is:

f (x) = ωx+ b (4)

There are two parameters (C, γ ) that can be adjusted according
to a specific task and dataset. The parameter C is a penalty
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TABLE 2 | Results of the ROC curve analyses of the top five features picked by each feature selection method.

ANOVA Random Forest RFE

Features name AUC Features name AUC Features name AUC

Top1 Minimum 0.83 GryLvNonUni 0.80 DepdEntrp 0.80

Top2 DepdNonUni 0.84 Correlation 0.78 SumEntrp 0.51

Top3 DepdVar 0.81 10 Percentile 0.75 RunEntrp 0.76

Top4 InfMCor1 0.81 Minimum 0.83 ZoneEntrp 0.62

Top5 GryLvNonUni 0.80 RunLthNonUni 0.78 HGLRunEmphs 0.50

FIGURE 4 | Histograms of the classification performance. (A) Histogram of accuracy: 0.88 ± 0.03; (B) histogram of AUC: 0.96 ± 0.02; (C) histogram of sensitivity:

0.89 ± 0.06; (D) histogram of specificity: 0.87 ± 0.07.

parameter, which determines the error tolerance when we train
an SVM. The parameter γ adjusts the effect of RBF.

The order of the magnitudes of selected features was different;
therefore, prior to being fed to the SVM classifier, the features
were standardized to zero mean and unit variance. In addition,
the standardized features were transformed into an orthogonal
space to make the features more discriminating by principal
components analysis (PCA) (Groth et al., 2013). Then, these
features were input into the SVM classifier. the 3-fold cross-
validation with 10 repetitions was used to reduce the influence
of dataset partition during the procedure of training and
testing. In other words, in each round of the training and
testing, we randomly separated the 164 samples into 3-folds.
Then, 2-folds (109 samples) were used as training set and the
left fold (55 samples) was used as testing set. In our study,
the kernel function of SVM was set as RBF conventionally.

Parameters C and γ were set as 30 and 0.001 by the grid
search method.

The performance of the SVM classification was evaluated
using the area under the receiver operating characteristic (ROC)
curve, accuracy, specificity, and sensitivity.

Statistical Analysis
Two-tailed unpaired t-test was used to compare selected features
between HCs and IPDs, and Bonferroni correction was used to
correct the error of multiple comparisons. The adjusted p-value
was set at 0.05/n, where n = time of comparison. ROC was used
to further test the selected features in differentiating IPD from
HC via the area under ROC (AUC).

Two-tailed Pearson linear correlation was also utilized to
study the correlations between the selected features and the
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TABLE 3 | Classification performance of 3-fold cross-validation in the first round.

Index AUC Accuracy Sensitivity Specificity

Threefold

cross-validation 1

0.95 0.85 0.93 0.77

Threefold

cross-validation 2

0.97 0.93 0.93 0.92

Threefold

cross-validation 3

0.97 0.87 0.86 0.88

Mean ± SD 0.96 ± 0.01 0.88 ± 0.04 0.91 ± 0.04 0.86 ± 0.08

UPDRS-III scores of the IPDs. All the above statistical analyses
were processed by SPSS Statistics version 25 for mac.

RESULTS

Classification Performance
The histograms of the results of the 3-fold cross-validation with
10 repetitions are shown in Figure 4, with the accuracy ranging
from 0.80 to 0.95 (centralized at 0.85). The AUC was stable
and approximately centralized at 0.95, while the sensitivity and
specificity were relatively unstable, ranging from 0.8 to 1.0.
Statistically, the AUC, accuracy, sensitivity, and specificity were
0.96 ± 0.02, 0.88 ± 0.03, 0.89 ± 0.06, and 0.87 ± 0.07 (mean
± standard deviation), respectively. To make the performance
illustration more concrete and clearer, the cross-validation result
in the first round was chosen as a representative example
(Table 3; Figure 5). According to the classification performance,
the selected features offered informative contents to the SVM
and could produce the ROC with average AUC beyond 0.95.
As a contrast, the STS was visualized by a radiologist in 67.52%
(52/77) of the cases of HC and 9.20% (8/87) of the cases of
IPD, respectively. The STS in differentiating HC from IPD
was with an accuracy of 79.88%, a sensitivity of 67.53%, and
a specificity of 90.80%, which was overall lower than that of
the classification.

Top Five and Representative
Features Analysis
ROC curve analysis of the top five picked by each feature
selection is summarized in Table 2. The AUC of the top
five features selected by ANOVA, random forest, and
RFE varied from 0.80 to 0.84, 0.75 to 0.83, and 0.50 to
0.80, respectively.

There were 29 out of the 40 selected features showing
significant difference (p-value <0.05/40) between IPD and HC
groups, and five features were selected as representative in
Table 4 to show the details (all t-test results can be found in
supplementary S2). The 10th percentile (0.023 ± 0.007 vs. 0.015
± 0.009, p < 0.0001) and median (0.076 ± 0.016 vs. 0.066 ±

0.015, p < 0.0001) in IPD patients were higher than those in
HCs; while, GLRLM-Long Run Low Gray Level Emphasis (0.420
± 0.133 vs. 0.546 ± 0.312, p = 0.001), GLSZM-Gray Level Non-
Uniformity (5.769 ± 2.442, 7.583 ± 2.707, p < 0.0001), and
volume (519.514 ± 128.743 vs. 629.073 ± 129.558, p < 0.0001)

FIGURE 5 | Receiver operating characteristics curve obtained from the 3-fold

cross-validation in the first round.

TABLE 4 | Unpaired t-test performances of the five representative features.

Features Name IPD HC P-value AUC

10 th percentile 0.023 ± 0.007 0.015 ± 0.009 1.49E−9 0.75

Median 0.076 ± 0.016 0.066 ± 0.015 4.10E−5 0.68

Volume 519.514 ± 128.743 629.073 ± 129.558 2.46E−7 0.73

LRunLGREmphs 0.420 ± 0.133 0.546 ± 0.312 1.00E−3 0.64

GryLvNonUniS 5.769 ± 2.442 7.583 ± 2.707 1.40E−5 0.71

LRunLGREmphs, GLRLM-Long Run Low Gray Level Emphasis; GryLvNonUniS, GLSZM-

Gray Level Non-Uniformity; the units of 10th Percentile and Median were parts per million

(ppm); the unit of volume was mm3; there were no units of the remaining two features.

in IPD patients were lower than those in HCs. The AUC of these
five features varied from 0.64 to 0.75 (Table 4; Figure 6).

The correlation between the five features and the UPDRS-
III score of IPD was as follows: 10th percentile of the first
order was positively correlated with UPDRS-III score (r =

0.35, p = 0.001); median of the first order, GLSZM-Gray Level
Non-Uniformity, GLRLM-Long Run Low Gray Level Emphasis,
and volume were not correlated with UPDRS-III score (r =

0.15, −0.02, −0.17, and −0.05 and p = 0.19, 0.87, 0.12, and
0.65, respectively).

DISCUSSION

Since iron accumulation in the SN plays a vital role in the
progression of PD, visualization and quantification of increased
iron are thought to have the potential to assist in the diagnosis
and evaluation on PD (He et al., 2015; Noh et al., 2015;
Reiter et al., 2015). Howerver, iron deposition is spatially
heterogeneous and the nigrosome territory may individually
vary (Schmidt et al., 2017). Single iron-sensitive nigrosome
imaging for visualization or simple utilization of the mean of
susceptibility might be subjective, inssufficient, and inaccurate.
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FIGURE 6 | Plots of multiple comparisons of the five representative features between IPD patients and HCs after Bonferroni correction. Dots stand for individual

values; horizontal bars stand for mean and standard deviation. ***p ≤ 0.001, ****p < 0.0001 (a = 0.05/40).

Radiomics based on QSM could offer the means to overcome
these deficiencies. Our preliminary results verified that radiomic
features of the nigrosome-1 region of the SN were different
between IPD patients and HCs. The performance of the SVM
approach based on these radiomic features was better than
that of the radiologist in our study, especially on accuracy and
sensitivity, and was similar to that of a meta-analysis based
on visualizing the STS at 3.0 T (Mahlknecht et al., 2017). The
reason on one hand might be the limitation of radiologists’
visual discernment on the sign especially between the early stage
IPD and the HCs, and on the other hand, more HCs in our
group showed loss of STS unilaterally or bilaterally as a result
of individual nigrosome-1 variants or potential preclinical PD,
which might lead to a similar perfromance to the previous visual
assessment investigations.

As the first-order features describe the distribution of the
voxel intensities within a VOI, they might have the potential to
reflect the iron deposition spatially. Our study found that the
representive features of the 10th percentile and median in the
nigrosome-1 region of the SN in IPD patients were bigger than
those of the HCs, and the 10th percentile positively correlated
with the UPDRS-III, suggesting that the 10th percentile and
median of intra-voxel susceptibility (iron content) might better
differentiate IPD from HC and the 10th percentile might be a

biomarker for the progression of the IPD. The 10th percentile and
median represent the first 10 and 50% proprotion of voxels with
positive order of susceptibility, respetively. The voxels with lower
susceptibility can partially seperate the overlap of voxels between
IPD andHC (Figure 6, first row) andmight outperform themean
value, which is similar to the findings of a histogram analytical
study that using the proportion of voxels with susceptibility lower
than 70 ppb as the threshold could better differentiate early
IPD from HC compared to the other thresholds including mean
value (Kim et al., 2018). The volume, one of the shape-based
features, was found smaller in IPD than that in HC, which is
consistent with previous studies (Sasaki et al., 2006; Minati et al.,
2007; Menke et al., 2009; Ziegler et al., 2013), suggesting that
the iron deposition increases and dopaminergic neurons lose in
IPD (Duguid et al., 1986). The second-order features describe
the relationship of all voxel pairs within a segamented VOI.
GLRLM-Long Run Low Gray Level Emphasis and GLSZM-Gray
Level Non-Uniformity describe the joint distribution of long run
lengths with lower gray-level values and the similarity of the
gray-level intensity values, respectively, which were both found
lower in the IPD patients compared to those in HCs in our study.
This reflected the fact that iron accumulation of the nigrosome-
1-containing part of SN was spatially more uniform in IPD,
which was consistent with the loss of STS in IPD. Therefore,
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radiomic features could be an objective means to assess iron
accumulation and neuromelanin loss in SN spatially and could
be a promising time-saving tool in assisting in the diagnosis
of IPD.

Furthermore, apart from analyzing the selected radiomic
features in this study, we also trained SVM to classify the subjects
as IPD patients or HCs automatically. Recently, several studies
have proved that it is effective to diagnose PD using SVM and
different features (Prashanth et al., 2016; Amoroso et al., 2018;
Castillo-Barnes et al., 2018) with an accuracy ranging from 0.70 to
0.96. However, few of them trained the SVM using the radiomic
features as input. In our study, we found that the radiomic featues
also provided discraminative information to the SVM classifier
and could reach an accuracy of 0.88. The SVM classifier could
ultilize high-dimensional features automatically, but its results
intrinsically fluctuate according to different training datasets and
testing datesets (Figure 4).

There are several limitations to this study. First, only the
nigrosome-1 territory was segmented, which might bias the
results. It is known that the nigrosome-1 is the first to be involved
in the progression of PD (Sung et al., 2018). Since most of our
IPD cases were at the the early stages (68 out of 77 cases were
at Hoehn and Yahr stage 1–2), we expect that less bias was
introduced. Second, instead of defining some specific features
that might better characterize the nigrosome-1 pathological
changes and subsequently well-differentiate the IPD from HCs,
only 105 common radiomic features were extracted in the study,
which might be insufficient. Third, we only used SVM as the
classifier, rather than comparing or assembling the performances
of different machine learning methods. In the future, we can
improve the accuracy by exploring novel features and classifiers.

In conclusion, radiomic features of the SN based on QSM
could be useful in the diagnosis of IPD and could serve
as a surrogate marker for the qualitiative (visualization) and
conventional quantitative evalaution of STS or nigrosome-1.
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