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Oxidative stress is a common feature of neurodegenerative diseases and plays an

important role in disease progression. Appoptosin is a pro-apoptotic protein that

contributes to the pathogenesis of neurodegenerative diseases such as Alzheimer’s

disease and progressive supranuclear palsy. However, whether appoptosin mediates

oxidative stress-induced neurotoxicity has yet to be determined. Here, we observe that

appoptosin protein levels are induced by hydrogen peroxide (H2O2) exposure through

the inhibition of proteasomal appoptosin degradation. Furthermore, we demonstrate

that overexpression of appoptosin induces apoptosis through the JNK-FoxO1 pathway.

Importantly, knockdown of appoptosin can ameliorate H2O2-induced JNK activation

and apoptosis in primary neurons. Thus, we propose that appoptosin functions as an

upstream regulator of the JNK-FoxO1 pathway, contributing to cell death in response to

oxidative stress during neurodegeneration.

Keywords: appoptosin, oxidative stress, ROS, JNK, FoxO1

INTRODUCTION

Reactive Oxidative Species (ROS) are primarily generated in mitochondria as natural by-products
of oxidative respiration. ROS normally play an important role in cell signaling and homeostasis
(Devasagayam et al., 2004). Transient fluctuations in ROS are counterbalanced by antioxidant
mechanisms within the cell comprising non-enzymatic molecules and enzymatic scavengers
(Birben et al., 2012). However, ROS production can also be induced in cells, or absorbed directly
from the extracellular environment when cells encounter environmental insults (Martindale and
Holbrook, 2002; Ma et al., 2017). In these instances, ROS may be deleterious to cell function
and survival.

In humans, the brain represents∼2% total body weight but disproportionately consumes∼20%
of total oxygen and caloric intake (Jain et al., 2010). Due to an elevated rate of aerobic metabolism
and potential insufficiencies in antioxidant and scavenging enzymes, the brain predisposes to be
particularly vulnerable to oxidative stress insults. Despite its heterogenous nature, oxidative stress
is a common feature of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s
disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD) (Ma et al., 2017;
Cao et al., 2018). In addition, it has been proposed that several key proteins implicated in these
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neurodegenerative disorders (Aβ in AD, α-synuclein in PD,
mSOD1 in ALS, frataxin in Friedreich’s ataxia and α-B-crystallin
in cataracts), may feature aberrant accumulation of Cu2+ and
Fe3+ which catalyze the conversion of O2 to ROS, thereby
exposing neurons to oxidative stress (Barnham et al., 2004; Zhou
and Tan, 2017).

Appoptosin is a protein that resides in the mitochondrial
inner membrane, and facilitates the exchange of glycine and
5-aminolevulinic acid between the cytosol and mitochondria
during heme synthesis (Guernsey et al., 2009). Mutations
in Appoptosin have been reported to be genetically linked
to congenital sideroblastic anemia (Guernsey et al., 2009;
Kannengiesser et al., 2011). We have previously demonstrated
that appoptosin is a pro-apoptotic protein that can activate
intrinsic caspase cascades, leading to neuronal apoptosis (Zhang
et al., 2012). In addition, appoptosin levels are found to
be increased in neurodegenerative diseases such as AD and
progressive supranuclear palsy (PSP), and under oxidative
conditions such as rodent stroke models and Aβ- or glutamate-
treated neurons (Zhang et al., 2012; Zhao et al., 2015).
However, it remains unclear how appoptosin is upregulated
to cause cell death in neurodegeneration or under oxidative
stress conditions. Here, we find that appoptosin levels are
induced with exposure to H2O2, where appoptosin turnover
is attenuated through proteasomal degradation with reactive
oxygen stress. Moreover, we find that appoptosin mediates
activation of ROS-induced JNK/FoxO1 pathways. Together,
these results implicate appoptosin as an important mediator of
ROS-induced signal transduction pathways and define pathways
that regulate appoptosin expression. Given that appoptosin
upregulation triggers pathogenic effects in AD and PSP, our
results suggest that antioxidants may reverse neurodegeneration
by mediating appoptosin turnover.

MATERIALS AND METHODS

Cells, Vectors, Antibodies, and Reagents
HEK293T and SY5Y cells were maintained in high glucose
DMEM with 10% FBS and penicillin/streptomycin. Primary
cortical neurons from embryonic day 17 (E17) mouse embryos
were maintained in neurobasal medium supplemented with B27
and 0.8 mM Glutamine.

The vector expressing myc-appoptosin was generated
previously (Zhang et al., 2012). A FLAG-tagged control vector
and vectors expressing FoxO1, FoxO1-AAA (T24A, S256A, and
S319A) and FoxO1 short hairpin RNA (shRNA) were kindly
provided by Dr. Jie Zhang (Institute of Neuroscience, Xiamen
University). The HA-Ub vector was kindly provided by Dr.
Hongrui Wang (School of Life Sciences, Xiamen University).
Gene-specific shRNA sequences were designed using the
Genelink website (www.genelink.com/sirna/shRNAi.asp) and
annealed shRNAs were inserted into the pLL3.7 vector. Three
different shRNA-expressing constructs were generated, and RNA
downregulation was tested by real-time PCR and western-blot.
Sequences targeting appoptosin in constructs showing RNAi
activity were as follows: Human appoptosin 5′-GGATGTTGG
CTGTACTCTT-3′ and 5′-ATTCAGAACTCACGTCCGT-3′;

mouse appoptosin 5′-gtgatcaagacacgctatg-3′; Scrambled shRNA
5′-GCCATATGTTCGAGACTCT-3′.

The following antibodies were used in this study: anti-
appoptosin (#ab133614) from Abcam; anti-Myc (9E10, sc-40)
from Santa Cruz; anti-tubulin (MABT205) from Millipore;
anti-cleaved PARP (#5625), anti-AKT (#4691), anti-β-catenin
(#8480), anti-β-actin (#8457), anti-cleaved caspase-3 (#9661),
anti-FoxO1 (#2880), anti-p-JNK (Thr183/Tyr185) (#9251), and
anti-p-c-Jun (Ser73) (#3270) from Cell Signaling Technology.
Horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG
(H+L) secondary antibody (#31460) and HRP-conjugated goat
anti-mouse IgG (H+L) secondary antibody (#31430) were from
Thermo Fisher Scientific.

Hydrogen peroxide (H2O2), nicotinamide (NAM), and
resveratrol were from Bio Basic Inc. Cycloheximide (CHX),
MG132, SP600125, 4′,6-diamidino-2-phenylindole (DAPI) and
2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) were
from Sigma Aldrich. Protease and phosphatase inhibitor
cocktails were from Roche.

Vector Transfection
HEK293T cells were transfected using Turbofect (Thermo
Fisher Scientific) according to the manufacturer’s instructions.
For transient co-expression of shRNAs and proteins, cells
were firstly transfected with shRNA-expressing plasmids for
24 h, and subsequently with overexpression plasmids for an
additional 24 h.

Real-Time PCR
RNA was extracted using TRIzol Reagent (Invitrogen). Reverse
transcription was performed using the ReverTra Ace qPCR RT
Kit (Toyobo). Equal amounts of cDNA from each sample were
subjected to real-time PCR experiments. Primers used in this
study were as follows:
human appoptosin:

forward primer: 5′-GTCGGAGACACGGTGGAAAC-3′;
reverse primer: 5′-GCCAACATCCCAACACGTCTA-3′;

mouse appoptosin:
forward primer: 5′-GAAGGTGGTTCGCACAGAAAG-3′;
reverse primer: 5′-CCTCGCAAGAAATACTGCTTCG-3′;

18S:
forward primer: 5′-CGACGACCCATTCGAACGTCT-3′;
reverse primer: 5′-CTCTCCGGAATCGAACCCTGA-3′.

Mitochondria Isolation
The cell mitochondria isolation kit was purchased from
Beyotime. Mitochondria-cytosol fractionation was performed
following manufacturer’s instructions. Briefly, cells were pelleted
by centrifugation at 600 g for 5min at 4◦C, re-suspended in
mitochondrial isolation solution, and homogenized on ice using
a tight-fitting pestle attached to a homogenizer. The homogenate
was then centrifuged at different speeds to separate intact cells,
mitochondria, and cytosol fractions.

Adeno-Associated Virus (AAV) Packaging
and Infection
AAVwas packaged by Obio Technology (Shanghai) and supplied
in liquid form (multiplicity of infection (MOI) equals to 1
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× 1012). Primary cortical neurons were cultured and infected
with AAV particles (MOI equals to 2 × 109) on day 3 in
vitro (DIV) and incubated for an additional 6 days before
subsequent treatment.

Western Blot
Cells were lysed in TNEN lysis buffer (50mM Tris, pH
8.0, 150mM NaCl, 2mM EDTA, 1% Nonidet P-40), and
supplemented with a protease inhibitor mixture. Equal amounts
of protein lysates were resolved in SDS-polyacrylamide gel
electrophoresis, transferred to polyvinylidene difluoride (PVDF)
membranes, and probed with antibodies as indicated. Relative
intensity of protein bands was quantified by densitometry
with Image J.

Cellular ROS Assay
Cellular ROS levels were evaluated by oxidation sensitive
fluorescent probe DCFH-DA. Briefly, HEK293T cells were
transfected with control or appoptosin plasmid for 24 h. After
washing with PBS for three times, cells were incubated with cell
culture media containing 10µM DCFH-DA for 30min. Cells
were then washed with PBS for another three times. Fluorescence
was observed under a fluorescence microscope; and fluorescence
intensity was measured by Image J.

Statistics
Statistical analysis was performed using GraphPad Prism 5
software. Results are presented as mean ± standard error of the
mean (SEM). Unpaired t-test, one way or two-way ANOVA was
used to assess statistical significance between groups.

RESULTS

H2O2 Treatment Elevates Appoptosin
Protein Levels
We previously reported that appoptosin is upregulated in
primary cortical neurons after Aβ or glutamate exposure (Zhang
et al., 2012). Because both Aβ (Behl et al., 1994) and glutamate
(Parfenova et al., 2006) partially exert toxic effects through
oxidative stress, it is likely that appoptosin expression is regulated
through pathological oxidative insults. To test this, we treated
cells with H2O2, a commonmembrane-permeable oxidant which
is catalytically converted to reactive hydroxyl radicals (•OH)
(Valko et al., 2005; Bienert et al., 2007).We found that exposure of
HEK293T (Figures 1A,B) and SY5Y (Supplementary Figure 1)
cells to H2O2 resulted in increased appoptosin levels in a
dose- and time-dependentmanner (Figures 1C,D). Interestingly,
appoptosin mRNA levels were slightly reduced in a dose-
(Figure 1E) and time-dependent (Figure 1F) manner upon
H2O2 treatment. These results suggest that H2O2-dependent
induction of appoptosin levels occurs through appoptosin-
associated translation or turnover, rather than modulation of
appoptosin mRNA transcripts.

Appoptosin Is Degraded Through the
Proteasomal Degradation Pathway
As previous studies have established that severe oxidative stress
has an inhibitory effect on protein translation (Patel et al., 2002;

Shenton et al., 2006; Ling and Soll, 2010), we characterized
mechanisms underlying appoptosin degradation and stability.
Appoptosin is an intra-mitochondrial transporter localized in
the mitochondrial inner membrane. Mitochondrial proteins
can be degraded by intrinsic mitochondrial proteases, or
through lysosome or ubiquitin-proteasome systems (Ashrafi
and Schwarz, 2013). To determine whether appoptosin is
degraded through intrinsic mitochondrial pathways, we isolated
mitochondria from HEK293T cells and assayed protein stability
at 37◦C at varying timepoints by immunoblot as described
previously (Azzu et al., 2008). Minimal appoptosin turnover was
observed in isolated mitochondria (Figures 2A,B). However,
when intact HEK293T cells were incubated with cycloheximide
(CHX) to inhibit protein synthesis, appoptosin was found to
be rapidly degraded with a half-life of ∼4 h (Figures 2A,B).
These results suggest that appoptosin degradation is regulated
by non-mitochondria associated pathways. Although the
mitochondria inner membrane and lumen are spatially
separated from ubiquitin-proteasomal machinery in the
cytosol, cumulative evidence indicates that the ubiquitin-
proteasome system is an important regulator for mitochondrial
quality control. Proteins residing in the mitochondrial outer-
membrane (Karbowski and Youle, 2011; Yoshii et al., 2011),
inter-membrane space (Bragoszewski et al., 2013), and inner-
membrane (Azzu and Brand, 2010) have been reported to be
degraded through the ubiquitin-proteasome pathway. Here,
we also pharmacologically inhibited proteasome and lysosome
function with MG132 (10 or 20µM) and NH4Cl (20 or
30mM), respectively, in HEK293T (Figures 2C,D) and SY5Y
(Supplementary Figure 2) cells. CHX-mediated inhibition of
protein synthesis dramatically decreased appoptosin levels,
which was dose-dependently reversed by MG132 but not NH4Cl.
In addition, MG132 treatment significantly reduced appoptosin
turnover kinetics (Figures 2E,F). These results indicate that
proteasomal mechanisms also mediate appoptosin turnover
and stability.

Since poly-ubiquitination is the obligatory initiating step
during proteasome-mediated protein turnover (Murakami
et al., 1992), immuno-precipitation was performed to determine
whether appoptosin could be subjected to ubiquitination.
Our results indicate that ubiquitin coprecipitated with
appoptosin in HEK293T cells, confirming that appoptosin
is indeed ubiquitinated (Figure 2G). Taken together, our results
suggest that appoptosin is primarily degraded through the
proteasome pathway.

H2O2 Inhibits Appoptosin Turnover
As a fundamental component that mediates cellular protein
degradation (Davies, 2001; Jung and Grune, 2008), proteasomal
function is potentially impaired during aging (Bulteau et al.,
2000; Carrard et al., 2002) and under severe oxidative stress
(Breusing and Grune, 2008; Wang et al., 2010). Moreover,
activity of E3 ubiquitin ligases has been reported to be
diminished under oxidative stress, leading to reduced
ubiquitination and aberrant stabilization/accumulation
of various protein species (Banerjee et al., 2010; Messina
et al., 2012). We therefore tested whether H2O2 stabilizes
appoptosin through the inhibition of proteasome-mediated
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FIGURE 1 | H2O2 treatment increases appoptosin protein levels. (A) HEK293T cells were exposed to varying H2O2 concentrations for 8 h. Appoptosin protein levels

were analyzed by western-blot. (B) Quantification of results from (A). (C) HEK293T cells were treated with 300 or 500µM H2O2 for the time duration indicated.

Appoptosin protein levels were determined by western-blot. (D) Quantification of results from (C). (E) HEK293T cells were treated with increasing H2O2

concentrations for 8 h and appoptosin mRNA levels were determined by quantitative real-time PCR analysis. (F) Appoptosin mRNA levels in HEK293T cells treated

with 300µM of H2O2 for the time duration indicated as measured by quantitative real-time PCR. n ≥ 3; *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA).

degradation pathways. Our results indicate that appoptosin
turnover kinetics were dose-dependently impaired by H2O2

(Figures 3A,B). In addition, H2O2 dramatically inhibited
appoptosin ubiquitin conjugation (Figure 3C), indicating that
the proteasomal degradation of appoptosin may be impaired
under oxidative stress.

Appoptosin Mediates the JNK Pathway
Activation Under Oxidative Stress
Oxidative stress is tightly linked to downstream signaling
cascades to regulate cell growth, senescence, and apoptosis
(Martindale and Holbrook, 2002). We have previously
shown that overexpression of appoptosin leads to aberrant
overproduction of heme, and release of ROS (Zhang et al., 2012).
Here we confirmed the effects of appoptosin overexpression

on promoting ROS production, as evidenced by DCFH-DA
staining (Figure 4A).

Although overexpression of appoptosin eventually activates
intrinsic caspase-dependent apoptotic pathways (Zhang et al.,
2012), the role of appoptosin in downstream ROS-responsive
signaling pathways has not been elucidated. Mitogen-activated
protein kinase (MAPK) pathways, including extracellular signal
regulated kinases (ERK-1/2), c-Jun NH2-terminal kinases
(JNK-1/2/3), and p38 MAPK proteins (p38 α/β/γ/δ), are
related kinase cascades that connect numerous intra- and
extra-cellular signaling pathways. JNK-MAPK proteins are
strongly tied to stress response (Martindale and Holbrook,
2002), and numerous reports indicate that JNK-MAPK proteins
are involved in the regulation of apoptosis during oxidative

injury (Yin et al., 2000; Hreniuk et al., 2001; Kanayama and
Miyamoto, 2007; Chen et al., 2008; Conde De La Rosa et al.,
2008). Here, we observed that overexpression of appoptosin
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FIGURE 2 | Appoptosin is degraded through the ubiquitin-proteasome pathway. (A) Appoptosin levels in isolated mitochondria or intact cells treated with

cycloheximide (CHX) as determined by western-blot. (B) Quantification of results from (A). (C) HEK293T cells were treated with DMSO alone (–), DMSO+CHX

(50µM), CHX+MG132 (10 and 20µM), and CHX+NH4Cl (20 and 30mM) for 8 h. β-catenin and appoptosin levels were determined by western-blot.

(D) Quantification of results from (C). (E) HEK293T cells were treated with CHX or CHX+MG132 (10µM) for various time periods. Appoptosin levels were analyzed by

western-blot. (F) Quantification of results from (E). (G) HEK293T cells were co-transfected with HA-ubiquitin (Ub) and myc-appoptosin plasmids for 24 h. Equal

protein amounts of cell lysates were subjected to immunoprecipitation (IP) with an appoptosin antibody or rabbit IgG, and then western-blot with HA and myc

antibodies. Ten percent of lysates used for IP was immunoblotted in inputs. n ≥ 3; *P < 0.05, **P < 0.01, ***P < 0.001 (unpaired t-test or two-way ANOVA).

in HEK293T cells activated JNK and its downstream substrate

c-Jun, as evidenced by upregulated p-JNK and p-c-Jun

(Figures 4B,C). Pharmacological inhibition of JNK by SP600125
dose-dependently reduced appoptosin-induced apoptosis

(Figures 4D,E). H2O2 treatment significantly increased p-c-
Jun levels, which was fully reversed with shRNA-mediated

appoptosin depletion (Figures 4F,G). These results suggest that

appoptosin mediates H2O2-induced apoptosis through the JNK-
MAPK pathway.

FoxO1 Mediates Appoptosin-Induced
Apoptosis
It has been previously established that the class O of forkhead
box transcription factor, FoxO1 can trigger apoptosis in response
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FIGURE 3 | Appoptosin turnover is delayed under oxidative stress. (A) HEK293T cells were treated with cycloheximide (CHX) or CHX+H2O2 (300 or 500µM) for the

time indicated. Appoptosin levels were determined by western-blot. (B) Quantification of results from (A). (C) HEK293T cells were co-transfected with HA-ubiquitin

(Ub) and myc-appoptosin plasmids for 24 h. Cells were then treated with or without 300µM H2O2 for 8 h. Equal protein amounts of cell lysates were subjected to

immunoprecipitation (IP) with a myc antibody and then western blot with HA and myc antibodies. n ≥ 3; *P < 0.05, **P < 0.01, ***P < 0.001 (two-way ANOVA).

to oxidative stress through the expression of apoptotic proteins
such as FasL, Puma, TRAIL, and Bim (Cui et al., 2009). Studies
have also shown that JNK can act as an upstream activator of
FoxO-related transcription factorsmultiple levels (VanDerHorst
and Burgering, 2007; Karpac and Jasper, 2009), to modulate
cell metabolism, cell cycle inhibition, oxidative stress resistance,
and/or apoptosis. Although we observe that overexpression of
FoxO1 or its active form FoxO1-AAA (mutations at the AKT
phosphorylation sites, which lead to nucleus retention) alone
had no effect on apoptosis, co-expression of appoptosin together
with FoxO1-AAA significantly potentiated appoptosin-induced
apoptosis (Figures 5A,B). In contrast, downregulating FoxO1
expression by shRNA significantly inhibited appoptosin-induced
apoptosis (Figures 5C,D).

Various post-translational modifications have been
observed in FoxO1, including phosphorylation, acetylation,
ubiquitination, and methylation (Calnan and Brunet, 2008).
Among these, FoxO1 acetylation enhances the expression of
genes involved in apoptotic pathways (Yang et al., 2009), whereas
FoxO1 deacetylation promotes transcription of genes involved
in DNA repair and stress resistance. Nicotinamide (NAM) is
a well-known inhibitor of SIRT1 (Avalos et al., 2005), which
modulates FoxO1 activity through deacetylation (Hariharan
et al., 2010). We found that although NAM treatment had no
effect on apoptosis in normal cells, NAM potentiated apoptosis
in cells overexpressing appoptosin in a dose-dependent manner
(Figures 5E,F). Conversely, resveratrol, a well-documented
SIRT1 activator (Borra et al., 2005), dose-dependently
inhibited appoptosin-induced apoptosis (Figures 5G,H).
Together, these results indicate that the downstream JNK
pathway effector, FoxO1, can potentiate appoptosin-associated
apoptosis pathways.

Downregulation of Appoptosin Protects
Primary Neurons From Oxidative Injury
We have previously shown that downregulation of appoptosin
can protect neurons from Aβ and glutamatergic toxicity
(Zhang et al., 2012). To investigate the effect of appoptosin

downregulation on neuronal injury induced by oxidative
stress, we transduced primary neurons with AAV expressing
appoptosin-shRNA or control AAV on DIV-3 for 6 days, and
subsequently exposed neurons to H2O2 for 4 h. Appoptosin
mRNA levels in appoptosin shRNA-expressing cells were reduced
to ∼25% of the control (Figure 6A). Consistent with results
from HEK293T cells, H2O2-induced JNK/c-Jun activation and
caspase-3 cleavage were reversed by appoptosin downregulation
(Figures 6B,C). These results indicate that reducing appoptosin
expression can protect neurons from oxidative injury.

DISCUSSION

ROS relay signals as important second messengers, and serve
important regulatory functions in cell growth and differentiation
at very low concentrations (Suzuki et al., 1997; Sauer et al.,
2001). However, excessive ROS-induced oxidative stress impairs
vital cell components, leading to cell cycle arrest and eventual
apoptosis or necrosis. These degenerative events are important
contributors to multiple diseases and are particularly important
in a spectrum of neurodegenerative disorders.

Mitochondria are the primary source for ROS generation
(Circu and Aw, 2010), and are therefore immediately susceptible
to ROS-mediated oxidative damage. With increasing ROS
levels, organellar damage within mitochondria includes oxidative
damage of mitochondrial DNA, lipids, and proteins, which can
have deleterious effects on cell functions (Fariss et al., 2005;
Gibson, 2005; Circu et al., 2009; Rachek et al., 2009; Andreazza
et al., 2010). Additionally, mitochondria play a central role
in mediating intrinsic apoptotic pathways. As a component
of the mitochondrial inner membrane, appoptosin and its
overexpression have recently been shown to induce apoptosis
by increasing heme synthesis, ROS production and cytochrome
c release. Appoptosin expression is found to be pathologically
upregulated in AD and PSP disorders that are also associated
with oxidative stress. In the present study, we found that
appoptosin protein levels accumulated under oxidative stress
through impaired proteasome-mediated appoptosin turnover.
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FIGURE 4 | Appoptosin mediates induction of the JNK pathway with oxidative stress. (A) HEK293T cells were transfected with pCMV-myc or myc-appoptosin for

24 h. Cells were then washed and incubated with DCFH-DA (fluorescent probe as indicator of ROS) for 30min. Fluorescence intensity was measured by Image J for

comparison. Scale bar: 200µm. (B) HEK293T cells were transfected with control or myc-appoptosin plasmids for 24 h. Cell lysates were analyzed for phosphorylated

JNK (p-JNK) and phosphorylated c-Jun (p-c-Jun) by western-blot. (C) Quantification of results from (B). (D) HEK293T cells were transfected with control pCMV-myc

or myc-appoptosin plasmids for 5 h, and treated with DMSO or the JNK inhibitor SP600125 as indicated for additional 19 h. Cleaved PARP (c-PARP) and

myc-appoptosin levels were analyzed by western-blot. (E) Quantification of results from (D). (F) Cells were transfected with plasmids expressing scrambled shRNA

(NC) or appoptosin shRNAs (sh1 and sh2) for 24 h, and treated with 0 or 300µM H2O2. Levels of p-c-Jun and appoptosin were determined by western-blot.

(G) Quantification of results from (F). n ≥ 3; *P < 0.05, **P < 0.01 (one-way or two-way ANOVA).

H2O2-induced effects on protein degradation appear to be
specific to appoptosin, since H2O2 treatment had no effect
on other proteasomal substrates such as SIRT1 (Caito et al.,

2010) and FoxO1 (Huang et al., 2005). In addition, we found
that appoptosin could mediate the JNK activation induced by
oxidative stress, and downregulation of appoptosin attenuated
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FIGURE 5 | FoxO1 potentiates appoptosin-induced apoptosis. (A) HEK293T cells were transfected with plasmids expressing FLAG (control vector), FoxO1, or

FoxO1-AAA plasmids for 24 h, and subsequently transfected with pCMV-myc or myc-appoptosin for another 24 h. Cleaved PARP (c-PARP), myc-appoptosin and

FoxO1 levels were analyzed by western-blot. (B) Quantitative analysis of c-PARP levels in (A). (C) HEK293T cells were transfected with scrambled control shRNA or

FoxO1-shRNA (shFoxO) for 24 h, and subsequently transfected with pCMV-myc or myc-appoptosin for additional 24 h. Indicated protein levels were analyzed by

western-blot. (D) Quantification of results from c-PARP levels in (C). (E) HEK293T cells were transfected with pCMV-myc or myc-appoptosin for 6 h, and

subsequently treated with the SIRT1 inhibitor NAM for 18 h as indicated. Levels of c-PARP and myc-appoptosin were determined by western-blot. (F) Quantification

of results from c-PARP levels in (E). (G) HEK293T cells were transfected with pCMV-myc or myc-appoptosin for 6 h, and subsequently treated with the SIRT1

activator resveratrol for 18 h as indicated. Levels of c-PARP, cleaved caspase 9 (c-caspase 9), total caspase 9 (T-caspase 9) and appoptosin were analyzed by

western-blot. (H) Quantification of results from c-PARP and c-caspase 9 levels in (G). n ≥ 3; *P< 0.05, ***P < 0.001 (one-way ANOVA).

H2O2-induced apoptosis. JNK is activated by the MAPKKK
(ASK1) during oxidative stress and is believed to be a central
regulator of both intrinsic and extrinsic apoptotic pathways
(Sinha et al., 2013). JNK directly or indirectly activates apoptotic
pathways by phosphorylating effector proteins (such as Bim,

Bad, and Bmf) or transcription factors [such as c-Jun, FoxOs,
p53, and c-myc (Sinha et al., 2013)]. Given its role in ROS
production shown previously (Chambers and Lograsso, 2011), it
is likely that appoptosin activates JNK through ROS induction
and mitochondrial fission (Zhang et al., 2016).
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FIGURE 6 | Downregulation of appoptosin protects primary neurons from

oxidative injury. (A) Mouse primary neurons were infected with AAVs carrying

scrambled control shRNA (Ctrl-AAV) or AAVs carrying an shRNA targeting

appoptosin (shRNA-AAV) for 72 h. Appoptosin mRNA levels in neurons

infected with Ctrl-AAV or shRNA-AAV were determined by quantitative

real-time PCR. (B) Neurons infected with Ctrl-AAV or shRNA-AAV were treated

with H2O2 (0, 300, or 500µM) for 4 h. Levels of p-JNK, p-c-Jun and caspase

3 were analyzed by western-blot. (C) Quantification of results from (B). n ≥ 3;

*P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA).

Here we observe that overexpression of the transcription
factor FoxO1 potentiates appoptosin-induced apoptosis.
Downregulation of FoxO1 likewise attenuated appoptosin-
induced apoptosis, and the SIRT1 inhibitor NAM promoted
appoptosin-induced apoptosis, whereas treatment with the
SIRT1 activator resveratrol blocked appoptosin-induced
apoptosis. As SIRT1modulates FoxO1-dependent transcriptional
activity to promote expression of genes involved in stress
resistance while inhibiting genes that trigger apoptosis, our
results indicate that FoxO1 functions downstream of appoptosin.
These results produce a working model where FoxO1 functions

downstream of JNK, whereby FoxO1 triggers apoptosis under
oxidative stress.
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