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Alzheimer’s disease (AD) is a complex, multi-factorial disease affecting various brain
systems. This complexity implies that successful therapies must be directed against
several core neuropathological targets rather than single ones. The scientific community
has made great efforts to identify the right AD targets beside the historic amyloid-β (Aβ).
Neuroinflammation is re-emerging as determinant in the neuropathological process of
AD. A new theory, still in its infancy, highlights the role of gut microbiota (GM) in the
control of brain development, but also in the onset and progression of neurodegenerative
diseases. Bidirectional communication between the central and the enteric nervous
systems, called gut-brain axes, is largely influenced by GM and the immune system
is a potential key mediator of this interaction. Growing evidence points to the role of
GM in the maturation and activation of host microglia and peripheral immune cells.
Several recent studies have found abnormalities in GM (dysbiosis) in AD populations.
These observations raise the intriguing question whether and how GM dysbiosis could
contribute to AD development through action on the immune system and whether, in a
therapeutic prospective, the development of strategies preserving a healthy GM might
become a valuable approach to prevent AD. Here, we review the evidence from animal
models and humans of the role of GM in neuroinflammation and AD.
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INTRODUCTION

Alzheimer’s disease (AD) remains the most spread form of dementia afflicting 45 million people
worldwide and continuously challenging the scientific community in the hard task of identifying
a therapy. AD pathogenesis starts around 15–20 years before the clinical symptoms become
detectable. Within this time frame, the patient’s brain accumulates multiple-system damages
including synaptic and mitochondrial alterations, vessel damage, chronic neuroinflammation,
cognitive dysfunctions and neuronal cell death. amyloid-β (Aβ) extracellular plaques and
intracellular neurofibrillary tangles enriched of hyperphosphorylated Tau protein are the two main
histological brain lesions. Aβ is still held to be the main culprit, especially in its soluble oligomeric
form. Aβ oligomers are indeed considered as the most neurotoxic species and the best correlates of
disease severity (Forloni et al., 2016). However, Aβ can no longer be considered the sole target
because of the multiple failures in anti-Aβ trials (Panza et al., 2019). More likely, the complex
pathological condition of AD conceivably calls for alternative targets and multi-target therapies.
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Based on these considerations, this review aims to highlight
two therapeutic targets, which are attracting much attention in
the fight against AD: neuroinflammation and the gut microbiota
(GM). The former has strongly re-emerged as crucial in the
neuropathogenic process of AD, whereas the latter, though
still in its infancy, is attracting interest as a promising new
alternative target. Both systems intimately interact in physiology
and pathology.

NEUROINFLAMMATION AND AD

A large body of evidence has accumulated in the last
few years on the vital role of neuroinflammation in the
pathogenetic process of AD. In physiological conditions glial
cells are determinants in the regulation of brain development,
neuronal activity and survival. Microglia patrol the brain
microenvironment guaranteeing its defense from exogenous
pathogens or endogenous dangers. In response to bacterial
and viral infections or brain damage, microglia are rapidly
activated and phagocytize pathogens, including Aβ, and
damaged neurons. With elimination of harmful stimulus,
neuroinflammation is resolved and microglia return to a resting
state. In AD, neuroinflammation is chronic and resolution is
not achieved. This implies that microglia constantly release
pro-inflammatory cytokines, favoring neuronal cell death
(Heneka et al., 2015). Indeed, many of the inflammatory
mediators, such as pro-inflammatory cytokines, chemokines as
well as factors of the complement system are produced locally
and elevated in the brain of AD patients (Rogers et al., 1992;
McGeer and McGeer, 2002). The most representative cytokines
of AD are IL1β, TNFα and IL6, all up-regulated in AD tissues
and prominently associated with AD lesions (Griffin et al.,
1989; Dickson et al., 1993). It was recently demonstrated that
neurodegeneration very likely involves astrocytes which, by
taking on a microglia-induced A1 pro-inflammatory phenotype,
would promote neuronal cell death, with TNFα as the most
prominent mediator (Fiala and Veerhuis, 2010; Liddelow et al.,
2017). In addition, activated microglia loses their phagocytic
properties, thus reducing the degree of Aβ phagocytosis, and
consequently promoting its accumulation (Krabbe et al., 2013).
These findings are supported by the discovery of a relation
between an increase in AD risk and mutations in genes
encoding immune receptors such as TREM2, myeloid cell surface
antigen CD33 and CR1 (Balducci and Forloni, 2018). This was
compelling since they are all expressed on myeloid cells, thus
demonstrating that alterations in microglial biology are linked
to AD pathogenesis and an increased risk of its development.
Of note, a series of transcriptomic and proteomic analysis of
inflammatory cells might provide biomarkers for preclinical
detection as well as insights on progression from MCI to AD
condition (Fiala and Veerhuis, 2010; Wes et al., 2016; Rangaraju
et al., 2018; Bonham et al., 2019).

A close relation has also been described between primed
microglia and cognitive dysfunction. In healthy tissue, microglia
have a ramified morphology and the prolongations constantly
survey synaptic activity. Phagocytic microglia have an important
role in synaptic pruning and refinement in the developing

nervous system (Weinhard et al., 2018). The most intriguing
mechanism explaining memory dysfunction in AD implies that
Aβ oligomers, the most toxic species, foster microglial activation
which then excessively engulf and eliminate synapses through
C1q and C3 complement factors (Hong et al., 2016). We too
have reported that Aβ oligomer-mediated memory impairment
is closely associated with glial activation (Balducci et al., 2017).

New evidence is now shedding light on a dangerous
dialogue between central immune cells and the gut, potentially
leading to AD.

MICROBIOTA-GUT-BRAIN AXES

Constant communication between the central and enteric
nervous systems is required to maintain body homeostasis.
This complex interplay, the ‘‘Gut-brain-axis,’’ is mediated
by neural, endocrine and immune signals (Carabotti et al.,
2015). GM, the dense population of bacteria, viruses, fungi,
and protozoa inhabiting the human gut, is now recognized
as an important part of this interaction and the new
term Microbiota-Gut-Brain axis, has been introduced. Recent
progress in high-throughput analyses has permitted to study
more in-depth the microbial composition and appreciate its
complexity (Rooks and Garrett, 2016).

Every person has a distinct and widely variable GM, with some
common features emerging only at higher level of organization
(Tremaroli and Bäckhed, 2012). This dynamic system is
subject to re-modeling in response to aging, environmental
perturbations, changes in lifestyle and diet and it is therefore
prone to maladaptive modifications (Santoro et al., 2018).
Substantial shifts in human GM composition have been
observed in CNS disorders such as depression, anxiety, autism
(Finegold et al., 2012; Liang et al., 2018) and neurodegeneration
(Fung et al., 2017).

GUT MICROBIOTA IN CNS PHYSIOLOGY

Germ free (GF) and antibiotic-treated rodents provided the
necessary tool to study the impact of intestinal microbes on CNS
development and physiology.

A pioneering study used GF mice, which are generated and
raised in sterile conditions, to investigate the influence of GM
on hypothalamic-pituitary-adrenal (HPA) response to stress.
The HPA response was significantly higher in GF relative to
mice raised with normal GM. The introduction of the complex
microbiota at an early stage (up to 9 weeks old), could partially
reverse this enhanced HPA response to stress. GF mice also
had lower brain-derived neurotrophic factor (BDNF) expression,
which is important for neuronal growth and synaptic plasticity,
in the cortex and hippocampus (Sudo et al., 2004).

Subsequent studies showed that the absence of complex
microbiota has profound effects on adult behavior and
CNS development and that the timing and duration of
exposure to microorganisms are critical. GF condition altered
spatial, working and reference memory, increased motor
activity and reduced anxiety (Diaz Heijtz et al., 2011; Gareau
et al., 2011). It also impaired hippocampal development
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and morphology, increased dorsal hippocampal neurogenesis
and BBB permeability, and significantly altered levels of
noradrenaline, dopamine and serotonin (Braniste et al., 2014;
Luczynski et al., 2016; Sharon et al., 2016; Lin et al., 2018).

SYMBIOTIC RELATIONSHIP BETWEEN
THE IMMUNE SYSTEM AND GM

The microbial ecosystem co-evolved with our immune system
over millennia and host-specific antimicrobial peptides and
pattern recognition receptors evolved not only to protect against
pathogens but also to promote resident beneficial microbes
(Bosch, 2014). The immune system closely controls the GM
composition and distribution (Sigal and Meyer, 2016), while
the microbial symbionts regulate immune system maturation
and function (Belkaid and Hand, 2014). Commensal GM
can profoundly affect both innate and adaptive immune
systems. Several studies have confirmed the interaction between
microbiota and various immune cell populations: peripheral T
cells, myeloid cells and mast cells (Round and Mazmanian, 2009;
Kamada et al., 2013; Forsythe, 2016).

Khosravi et al. (2014) provided evidence that GM influences
the development of the immune system by regulating
hematopoiesis of primary immune cells. They showed that
GF mice have lower proportions and less differentiation
potential of myeloid cell progenitors of both yolk sac and bone
marrow origin. This could help explain the widespread effects of
GM on the immune system, microglia included.

GM-MICROGLIA INTERACTION

Mounting evidence from animal studies demonstrates that GM
regulates microglial maturation and function. Microglia from
GF or antibiotic-treated mice had an immature profile and
impaired immune response (Erny et al., 2015). The absence of
gut flora altered microglia mRNA profiles and downregulated
several microglial genes involved in cell activation, pathogen
recognition and host defense. The microglia transcription and
survival factors SFPI1 and CSF1R, normally downregulated in
mature adult microglia, were upregulated in GF mice (Kierdorf
and Prinz, 2013). Matcovitch-Natan et al. (2016) examined
the transcriptional profiles of different microglial development
stages, showing that the genes related to the adult phase of
microglial maturation and immune response are dysregulated in
GF mice.

Products derived from bacterial metabolism such as short-
chain fatty acids (SCFAs) were identified as key mediators
of GM-microglia interaction. These molecules are able to
translocate from colonic mucosa to systemic circulation
(Schönfeld and Wojtczak, 2016), cross the BBB and affect
CNS function (Borre et al., 2014). A SCFA supplement in
drinking water of GF mice for 4 weeks restored many
aspects of the immature microglial morphology, re-established
microglial density and normalized CSF1R surface expression
(Erny et al., 2015).

From the therapeutic perspective, it is important to highlight
that the GM-microglia interaction is highly dynamic as many

of the defects observed in microglia of GF mice could be
partially restored by recolonization with conventional GM or
SCFA supplementation.

GM ALTERATIONS IN AD

An association between gut dysbiosis and neurodegeneration
is mostly supported by pre-clinical studies, while the clinical
data are still limited. The most consistent clinical evidence
of deviation from the healthy microbial composition in
a neurodegenerative condition derives from studies of
Parkinson’s disease (PD) patients (Keshavarzian et al., 2015;
Scheperjans et al., 2015; Hopfner et al., 2017). Only few
studies have investigated GM populations in AD patients.
Microbial diversity was reduced in AD patient feces compared
to age- and sex-matched controls. At the phylum level,
there was a decrease in the numbers of Firmicutes and
Actinobacteria and an increase in abundance of Bacteroidetes.
The relative abundance of bacterial genera correlated with
the levels of cerebrospinal fluid biomarkers of AD (Vogt
et al., 2017). A recent study examined the link between
selected bacterial taxa and brain amyloidosis in patients with
cognitive impairment. Amyloid deposition was associated
with an increased stool content of the pro-inflammatory
taxa Escherichia/Shigella and low anti-inflammatory taxon
Eubacterium rectale. These changes correlated well with a
peripheral inflammatory state (Cattaneo et al., 2017). A few
human studies have also linked dysbioses of oro-nasal cavity
microbiota with neurodegeneration (Kamer et al., 2008;
Cockburn et al., 2012).

In AD animal models was found a significant shift in the
composition of GM, and microbial manipulations could affect
disease outcomes as summarized in Figure 1 (Brandscheid et al.,
2017; Harach et al., 2017; Shen et al., 2017). A combination of
broad-spectrum antibiotics or GF condition in AD mice reduced
Aβ plaques and attenuated plaque-surrounding glial reactivity
and the levels of circulating cytokines and chemokines (Minter
et al., 2016). Conversely, re-introduction of conventionally raised
AD mice gut flora in GF mice increased Aβ pathology (Harach
et al., 2017).

HOW CHANGES IN MICROBIAL
COMPOSITION COULD BE RELEVANT
TO AD

A plethora of hypotheses have been advanced to explain possible
mechanisms linking GM alteration to neurodegenerative
processes, many of them involving neuroinflammation as a
common driving force.

The GM is a major source of the bacterial surface
lipopolysaccharide (LPS) and other pro-inflammatory molecules
and endotoxins. AD patient’s brains contain more frequently
pathogenic bacteria and LPS compared to controls (Itzhaki et al.,
2004; Fox et al., 2019). LPS was found in the hippocampus and
cortex and at higher concentrations in plasma than in healthy
controls (Zhao et al., 2017; Kowalski and Mulak, 2019). In
addition, LPS co-localizes with Aβ1–40/42 in amyloid plaques and
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FIGURE 1 | Mouse models of gut microbiota (GM) manipulation. The figure illustrates the typical mouse phenotypes resulting from various GM manipulations.

around blood vessels (Zhan et al., 2016). Bacterial LPS can bind
to microglial receptors (TLR2, TLR4 and CD14) and trigger an
inflammatory response. In a recent study LPS was able to strongly
activate the NF-kB (p50/p60) complex, an important initiator
for neuroinflammatory processes occurring in AD (Lukiw, 2016;
Lin et al., 2018).

The most common form of AD typically affects elderly
people and aging is associated with significant changes in
GM composition. These age-related changes are mainly due
to modifications in life-style, diet and a chronic low-grade
inflammatory state called ‘‘inflammaging’’ (Santoro et al., 2018).
GM in the elderly is reduced in diversity and stability and
is less resistant to environmental perturbations such as stress
and antibiotics (Biagi et al., 2010). Therefore, it is more
vulnerable to the invasion of opportunistic species and to
clinically important changes in microbial composition. It has
been shown that implantation of aged GM in young GF mice
induced inflammaging. In addition, the aged GM promoted
small intestine inflammation in implanted GF mice and
weakened the intestinal barrier making possible the infiltration
of inflammatory bacterial components into the circulation.
An increase in systemic T cell activation was also observed
(Fransen et al., 2017). In humans, there is an age-related
decline in immune system function (Fulop et al., 2018), that
could make gut dysbiosis more relevant in triggering low-grade
systemic inflammation.

A recent study in mice lacking PINK1−/−, which has
a key role in adaptive immunity by repressing presentation
of mitochondrial antigens, suggests that specific deficits in
the immune system function could make intestinal infection
a risk factor for neurodegeneration. In these mice, gut
infection triggered an autoimmune mechanism involving the
mitochondria specific CD8+ cells, which are toxic for both
peripheral and central neurons. These events led to the
degeneration of dopaminergic neurons and motor symptoms
typical of PD (Matheoud et al., 2019).

In animal models, dysbiosis increases gut permeability
and promotes inflammation and macrophage dysfunction
(Thevaranjan et al., 2018). There is evidence of BBB damage
and accumulation of blood-derived products in AD brains
(Kowalski and Mulak, 2019). The passage of harmful agents
from the gut to the brain is still not adequately explained, but
compromised the integrity of epithelial barriers might play a role
(Sochocka et al., 2019).

Several gut bacterial species such as E. coli, Salmonella and
Citrobacter produce Aβ (O’Toole et al., 2000; Zhou et al.,
2012). Amyloids are common structural components of the
extracellular matrix in which bacterial cells stay close to each
other. Exposure to microbial amyloids might trigger amyloid
misfolding in the brain. Increasing evidence supports the idea
that the formation and propagation of Aβ seeds is a prion-like
mechanism (Walker et al., 2016). However, it is still not clear how
bacterial amyloids could gain access to the brain. One possibility
is uptake through specialized epithelial cells of the mucosa-
associated lymphoid tissues, then physical interaction between
enteric nervous system fibers and parasympathetic neurons of
vagusnerve where they could reach the CNS via retrograde
axonal transport (Kujala et al., 2011; Friedland and Chapman,
2017). The key study supporting the hypotheses that the spread
of misfolded proteins from the gut to the brain could occur
via the vagus nerve comes from the context of α-synuclein
propagation in PD (Ulusoy et al., 2015; Breen et al., 2019;
Santos et al., 2019).

Soscia et al., in 2010 noticed some interesting similarities
in biophysical properties of Aβ and a family of biomolecules
called ‘‘antimicrobial peptides’’ (AMPs). AMPs are potent
broad spectrum antibiotics and modulators of immune system
in the brain and other immune-privileged tissues. Dysregulation
of these molecules can lead to neurotoxicity and chronic
inflammation (Soscia et al., 2010). This study, followed by
few others, confirmed the antimicrobial properties of Aβ and
proposed its possible physiological role in brain’s innate immune
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response to microbes. They advanced the hypotheses that brain
infiltration of gut bacteria or their components might stimulate
Aβ production and deposition (White et al., 2014; Kumar et al.,
2016; Eimer et al., 2018).

Figure 2 summarizes the possible pathological events
increasing the risk of AD as a consequence of GM dysbiosis.

THERAPEUTIC POTENTIAL OF
MICROBIOTA IN NEUROINFLAMMATION
AND AD

At present, the existing data on the mechanisms linking GM to
neurodegeneration, mostly based on animal studies, are still not
sufficient to provide directions for the development of GM-based
therapeutic strategies.

Attempts to use probiotics were made mostly in animal
models, although there is no evidence that this approach can lead
to long-term alterations in GM composition (Akbari et al., 2016;
Musa et al., 2017; Plaza-Díaz et al., 2017; Kowalski and Mulak,
2019). In one clinical trial, PD patients were given antibiotics to
treat small intestinal bacterial overgrowth, with improvements
in gastrointestinal symptoms and motor fluctuations (Fasano
et al., 2013). Another strategy for modifying GM composition
is fecal transplant, already successful for treating infections of
Clostridium difficile (Xu et al., 2015), but there are only limited
attempts to use it outside gastrointestinal diseases (Evrensel and
Ceylan, 2016).

Pre-clinical evidence suggests that microbial metabolism
products such as SCFAs could be signaling molecules
used by gut microbes to act on the CNS (Erny et al.,
2015). Their interaction with the immune system and
anti-inflammatory properties make them interesting
therapeutic candidates for neurodegenerative disorders.
Several strategies for delivery of SCFAs are summarized
in Gill et al. (2018).

To date, dietary and lifestyle modifications are the most
effective way to produce long-term changes in GM. Some
healthy dietary patterns such as Mediterranean, Japanese or
FINGER (Finish Geriatric intervention study) diet can positively
influence the rates of cognitive decline (Pistollato et al., 2018;
Wahl et al., 2019) and also induce significant changes in
GM composition.

Among the most significant examples of nutritional
intervention with neuroprotective and age-delaying potential is
caloric restriction (CR) which can be obtained by reducing the
daily caloric intake or by intermittent fasting (Fontana, 2018). CR
delays the onset of neurodegeneration in rodents and prevents
several hallmarks of brain aging in non-human primates and
humans (Pani, 2015). The possible underlying mechanisms
are numerous and reviewed in Zullo et al. (2018). Briefly, CR
increases levels of neuroprotective factors while decreasing
oxidative stress, inflammation, and activity of pro-apoptotic
factors (Maalouf et al., 2009). At a molecular level, CR acts
on nutrient-sensing pathways through different mechanisms.
Notably, it can activate the SIRT1 enzyme (a member of

FIGURE 2 | From gut dysbiosis to Alzheimer’s disease (AD). The figure depicts the possible pathological events associated with gut dysbiosis leading to both
peripheral and central pathological events which would increase the risk of AD.
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the sirtuin family that regulates gene expression) which
downregulates the mammalian target of rapamycin (mTOR),
thus suppressing NF-kB-dependent neuroinflammation and
inducing autophagy as neuronal self-defense mechanism
(Maalouf et al., 2009; Shirooie et al., 2018).

Fasting can induce rapid adaptations in GM composition
favoring growth of beneficial and anti-inflammatory microbial
phylotypes and lead to significant changes in the SCFA
biosynthesis (Zhang et al., 2013; Tanca et al., 2018). GM
interacts with several mechanisms of metabolic response to
nutrient deprivation. For instance, SIRT1 activation regulates,
the GM resulting in lower intestinal inflammation during aging
(Wellman et al., 2017). Some substances such as resveratrol,
a natural phenol found in grapes and red wine can activate,
in alternative to CR, the sirtuine pathway (Kelly, 2010) and
positively influence GM. The interaction between resveratrol
and GM is bidirectional as gut microbes affect also resveratrol
bioavailability (Hu et al., 2019).

CR shares some common metabolic effects with the ketogenic
diet (KD) which is high in fat, moderate in proteins and very
low in carbohydrate. KD is already used to treat patients with
drug resistant epilepsy (Stafstrom and Rho, 2012) and in a
few studies have revealed the potential to reduce symptoms of
neurodegeneration (Wodarek, 2019). Remarkably, a study using
mouse models of drug-resistant epilepsy showed that the KD
anti-seizure properties were mediated by microbiota. Depletion
of GM with a high dose antibiotic treatment abolished the KD
beneficial effects (Olson et al., 2018).

Among other modifiable factors, exercise is considered to
promote diversity and enhance beneficial metabolic functions of
microbial species in the gut and improve cognitive performance
(Ticinesi et al., 2019).

A preventive therapy based on changes in diet and levels
of physical activity seems to be the most promising approach
for delaying cognitive decline and improving metabolic,
neuroendocrine and vascular abnormalities that often precede
and likely significantly contribute to cognitive deterioration
(Sohn, 2018). A successful preventive strategy must recognize

that GM is an important mediator of the effects of diet
and exercise on cognitive decline, aging and inflammation.
However, additional studies are needed to understand if dietary
interventions, such as CR, could be safely recommended to
elderly population, which is already at risk of malnutrition and
sarcopenia (Sieber, 2019).

One of the present difficulties in tailoring a GM-based therapy
is its inter-individual variability in composition and metabolism,
but with the rapid advancement in research and diagnostic
technologies a new type of personalized medicine might well
become possible.

GM AND AD DEVELOPMENT: MAIN
EXPERIMENTAL LIMITATIONS

Although the study of microbiota-gut-brain axis in recent years
has flourished, there are still many obstacles. For instance, a
lack of well-defined methodological standards make it hard to
compare studies and numerous confounding factors including
diet, drugs and concomitant pathologies must be carefully
considered in the analysis (Marizzoni et al., 2017). One of the
key questions that need to be addressed is whether changes
in GM are cause or secondary effects of the disease. At
present, GF and antibiotic-treated rodents remain the best
available tools for transitioning from observational studies
to understanding the cause-effect directionality. However,
the translational value of studies of human microbiota in
rodent models is limited by obvious differences in diet and
microbiota composition.
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