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Neurodegenerative diseases are disorders that are characterized by a progressive
decline of motor and/or cognitive functions caused by the selective degeneration and
loss of neurons within the central nervous system. The most common neurodegenerative
diseases are Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s
disease (HD). Neurons have high energy demands, and dysregulation of mitochondrial
quality and function is an important cause of neuronal degeneration. Mitochondrial quality
control plays an important role in maintaining mitochondrial integrity and ensuring normal
mitochondrial function; thus, defects in mitochondrial quality control are also significant
causes of neurodegenerative diseases. The mitochondrial deacetylase SIRT3 has been
found to have a large effect on mitochondrial function. Recent studies have also shown
that SIRT3 has a role in mitochondrial quality control, including in the refolding or
degradation of misfolded/unfolded proteins, mitochondrial dynamics, mitophagy, and
mitochondrial biogenesis, all of which are affected in neurodegenerative diseases.

Keywords: mitochondrial NAD-dependent deacetylase sirtuin-3, mitochondrial quality control, signaling pathway,
neurodegenerative diseases, neuroprotective effects

INTRODUCTION

Neurodegenerative diseases involve mitochondrial dysfunction caused by various factors, which
ultimately leads to progressive degeneration, apoptosis, or necrosis of neurons (Srivastava and
Yadav, 2016). Degeneration can be selective for specific neuron types, such as in Parkinson’s
disease (PD), where selective degeneration of substantia nigra (SN) dopaminergic neurons occurs;
in contrast, Alzheimer’s disease (AD) and Huntington’s disease (HD) neuropathology shows
extensive neuronal degeneration (Mavroudis et al., 2010; Dexter and Jenner, 2013; Saudou and
Humbert, 2016; de Baat et al., 2018).

Mitochondria are important organelles in the nervous system, especially at nodes of Ranvier
and axonal ends, and they are usually needed to supply energy to neurons and maintain
Ca2+-based ion homeostasis through axonal transport (Giorgi et al., 2018). When neurons
age, the mitochondrial functions also become abnormal; factors such as increased reactive
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oxygen species (ROS) can damage mitochondrial oxidative
phosphorylation, thereby affecting long-distance axonal
transport of mitochondria, leading to synaptic dysfunction
and neurodegeneration (Reynolds et al., 2004; Baloh et al.,
2007). Therefore, a robust mitochondrial function may be more
important for neurons than for other cells (Knott et al., 2008).

Mitochondria have multiple functions in neurons, such as
in oxidative phosphorylation, lipid metabolism, amino acid
metabolism, andmaintenance of Ca2+ homeostasis (Pipatpiboon
et al., 2012; Johnson et al., 2014; Bergman and Ben-Shachar,
2016; Giorgi et al., 2018). Previous studies have found that a
dysregulation of mitochondrial function is an important cause
of neuronal degeneration, and recent studies have also shown
that mitochondrial quality control has a role in maintaining
mitochondrial integrity and ensuring normal mitochondrial
function (Palikaras and Tavernarakis, 2014; Ni et al., 2015;
Palikaras et al., 2015). Defects in mitochondrial quality control
are therefore also important factors in neurodegenerative
diseases (Dupuis, 2014; Zorzano and Claret, 2015; Khanna et al.,
2019). The currently well-defined mitochondrial quality control
pathways include the mitochondrial unfolded protein response
(mtUPR), dynamic remodeling and repair of mitochondrial
fission and fusion, mitophagy, and mitochondrial biogenesis,
which is coordinated with mitophagy (Zhu et al., 2013; Palikaras
and Tavernarakis, 2014).

Mitochondrial function is regulated by a variety of enzymes,
and in this review, we have focused on the important
mitochondrial NAD-dependent deacetylase sirtuin-3 (SIRT3;
Finley et al., 2011). SIRT3 belongs to the histone deacetylase
family of silent information regulator 2 (Sir2) proteins, or
sirtuins, whose deacetylase activity affects the acetylation status
of at least 165 proteins in the mitochondrial proteome (Lombard
et al., 2007; Schwer et al., 2009; Hebert et al., 2013). SIRT3 has
important effects on mitochondrial sugar, fat, and amino
acid metabolism; electron transport; oxidative phosphorylation;
and oxidative stress (Hiromasa et al., 2004; Lombard et al.,
2007; Hallows et al., 2011; Huang et al., 2016; Wang et al.,
2019). Recently, studies have also reported that SIRT3 plays an
important role in regulating mitochondrial quality control in
neuronal mitochondria (Tseng et al., 2013; Samant et al., 2014;
Liu et al., 2018).

This review summarizes recent research into mitochondrial
quality control and the role of SIRT3 in mitochondrial
function, and further illustrates the effects of SIRT3 on
mitochondrial quality control in the neurodegenerative diseases
AD, PD, and HD. This will provide a reference for exploring
the relationship between mitochondrial function and quality,
as well as for seeking new targets for the treatment of
neurodegenerative diseases.

MITOCHONDRIAL QUALITY CONTROL

The normal functions of mitochondria rely on mitochondrial
quality, which is regulated by mitochondrial quality
control (Palikaras et al., 2015). Refolding or degradation
of mitochondrial misfolded/unfolded proteins is mainly
mediated by molecular chaperones and proteolytic enzymes

in the mitochondria (Bernales et al., 2012; Haroon and
Vermulst, 2016). When mitochondria are damaged, excessive
ROS production that exceeds the scavenging ability of
superoxide dismutase 2 (SOD2) leads to lipid oxidation,
mutations or deletions of mtDNA, and protein misfolding
(Papa and Germain, 2014). At this point, mitochondria
initiate the unfolded protein response (mtUPR) and activate
molecular chaperones (such as the Hsp60/Hsp10 complex
or the Hsp60–mtHsp70 complex) and proteolytic enzymes
(such as Lon proteases; Figure 1A). Molecular chaperones
are involved in regulating the refolding or degradation
of misfolded proteins (Kao et al., 2015). In addition to
degrading misfolded proteins, Lon proteases regulate mtDNA
replication and transcription by acting on mitochondrial
transcription factor A (TFAM; Matsushima et al., 2010;
Kao et al., 2015).

Mitochondrial fission and fusion are collectively referred
to as mitochondrial dynamics (Bertholet et al., 2016). In
mammals, mitochondrial fission is regulated by dynamin-related
GTPase (DRP1) and mitochondrial fission 1 (FIS1). DRP1 is
the key protein that controls mitochondrial fission, and FIS1 is
considered to be the receptor of DRP1 (Palmer et al., 2013;
Singh et al., 2016). The fusion of the mitochondrial outer
and inner membranes is mediated by mitofusin1/2 (MFN1/2)
and optic atrophy 1 (OPA1), respectively (Figure 1B; Chang
and Doering, 2018). Concurrently, OPA1 controls the shape
of mitochondria cristae after fusion, which directly affects the
stability of electron transport chain (ETC) complexes, especially
complex IV, thus indicating that OPA1 regulates mitochondrial
fusion while maintaining normal oxidative phosphorylation
(Olichon et al., 2006).

Mitophagy selectively removes damaged mitochondria and
plays an important role in maintaining normal mitochondrial
function (Vigié and Camougrand, 2017). A variety of mitophagy
pathways have been identified, including ubiquitin-dependent
and ubiquitin-independent pathways. The most widely studied
of these pathways is the PINK1–Parkin-mediated mitophagy
pathway (Figure 1C; Ding and Yin, 2012). Mitophagy caused
by the PINK1–Parkin pathway is widespread in mitochondria
(Ziviani andWhitworth, 2010). Phosphatase and tensin homolog
(PTEN)-induced putative kinase 1 (PINK1) accumulates in the
outer membranes of damaged mitochondria and is activated by
autophosphorylation, thus recruiting Parkin to translocate to the
outer membrane of the mitochondria. Parkin is phosphorylated
by PINK1 to continue the ubiquitination of MFN1/2, voltage-
dependent anion channel 1 (VDAC1), and small GTPase
Miro, among others. Ubiquitinated MFN1/2 is then degraded
by proteasomes, thereby preventing mitochondrial fusion and
promoting mitochondrial fission (Poole et al., 2010; Nguyen
et al., 2016). Subsequently, the ubiquitin chains on mitochondria
can recruit the microtubule-associated protein 1A/1B-light chain
3 (LC3) adaptors P62, OPTN, NDP52, TAX1BP1, and NBR1.
LC3 can recognize LC3 adaptors and mediate the formation of
autophagosomes to realize mitophagy (Lazarou et al., 2015).

Mitochondrial biogenesis and mitophagy represent
two opposing but coordinated processes that determine
mitochondrial content, structure, and function (Zhu et al., 2013).
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FIGURE 1 | Mitochondrial quality control. (A) Mitochondrial unfolded protein response. Refolding or degradation of mitochondrial misfolded/unfolded proteins is
mainly mediated by molecular chaperones and proteolytic enzymes in the mitochondria. (B) Dynamic remodeling and repair of mitochondrial fission and fusion.
Mitochondrial fission is regulated by dynamin-related GTPase (DRP1) and FIS1, while mitochondrial fusion is regulated by MFN1/2 and optic atrophy 1 (OPA1).
(C) Mitophagy. The PINK1–Parkin-mediated mitophagy pathway can mediate the formation of autophagosomes. (D) Mitochondrial biogenesis. Mitochondrial
biogenesis is mainly regulated by PGC-1α and nuclear respiratory factors 1 and 2 (NRF1/2).

Mitochondrial biogenesis includes the replication, transcription,
and translation of mtDNA; the synthesis and import of nuclear-
encoded mitochondrial protein; the recruitment of newly
synthesized proteins and lipids; and the construction of the
mitochondrial reticulum (Rasbach and Schnellmann, 2007;
Zhu et al., 2013). Peroxisome proliferator-activated receptor
γ (PPARγ) coactivator-1α (PGC-1α) is considered the major
regulator of mitochondrial biogenesis. It interacts with nuclear
respiratory factors 1 and 2 (NRF1, 2), which can activate TFAM
(Scarpulla, 2002) and bind to the promoter region of the nuclear
gene encoding the five complex subunits of the mitochondrial
electron transport chain (ETC), thereby affecting the synthesis of
nuclear-encoded mitochondrial proteins and the transcription
of mtDNA (Figure 1D; Uittenbogaard and Chiaramello, 2014).

REGULATION OF MITOCHONDRIAL
FUNCTION BY SIRT3

Sir2 proteins are a family of histone deacetylases that catalyze
the deacetylation and ribosylation of histone and non-histone
lysine residues (Winnik et al., 2015). They were first discovered
to affect energy metabolism through enzyme activity regulation
in studies of yeast aging, and they play an important role in
promoting health and survival (Haigis and Sinclair, 2010). There
are seven mammalian sirtuins (SIRT1–7). SIRT1, SIRT6, and
SIRT7 are mainly located in the nucleus and participate in
DNA repair and transcription regulation of related genes (Brunet
et al., 2004; Grob et al., 2009; Cardus et al., 2013). SIRT2 is
mostly located in the cytosol and its main substrate is α-tubulin,

which is involved in cell cycle regulation (Li et al., 2007).
SIRT3, SIRT4, and SIRT5 are called mitochondrial sirtuins.
SIRT3 plays an important role in the metabolism of glycosides,
lipids, and amino acids in mitochondria (Hiromasa et al., 2004;
Lombard et al., 2007; Scher et al., 2007; Wang et al., 2019).
SIRT4 can inhibit glutamate dehydrogenase (GDH) activity
through ADP ribosylation, thus reducing fatty acid oxidation
(Wang et al., 2018). SIRT5 can regulate the urea cycle by
deacetylating to activate carbamyl phosphate synthase 1 (CPS1),
and also has demalonylase and desuccinylase activity (Figure 2;
Du et al., 2011).

SIRT3 is one of the most important deacetylases in
mitochondria, and it plays an important role in regulating
mitochondrial function (Finley et al., 2011). For example,
deacetylation of the pyruvate dehydrogenase complex (PDC)
by SIRT3 during glycolysis allows pyruvate to participate in
the Krebs cycle and accelerates glucose uptake by activating
protein kinase B (Akt; Hiromasa et al., 2004; Wang et al.,
2019). SIRT3 also ensures the normalization of fatty acid β-
oxidation by deacetylating long-chain acyl-CoA dehydrogenase
(LCAD) and acetyl-CoA synthetase 2 (AceCS2; Schwer et al.,
2006; Sakakibara et al., 2009; Hirschey et al., 2010) and plays
a role in the formation of ketone bodies by deacetylating 3-
hydroxy-3-methylglutaryl-CoA synthetase (HMGCS2; Hirschey
et al., 2010; Shimazu et al., 2010). Deacetylation of GDH
by SIRT3 promotes amino acid utilization (Lombard et al.,
2007). In addition, the key enzyme in the urea cycle,
ornithine carbamoyltransferase (OTC), is a substrate of SIRT3
(Hallows et al., 2011). SIRT3 also plays an important role in
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FIGURE 2 | Localization, enzyme activity, and function of the sirtuin family. SIRT1, SIRT6, and SIRT7 are mainly located in the nucleus and regulate DNA repair and
gene transcription. SIRT2 is mainly located in the cytosol and plays an important role in the regulation of the cell cycle. SIRT3, SIRT4, and SIRT5 are known as
mitochondrial sirtuins and are involved in the regulation of mitochondrial functions.

FIGURE 3 | SIRT3 regulation of mitochondrial quality control in neurodegenerative disease. SIRT3 is involved in the regulation of mitochondrial quality control in
neurodegenerative diseases. SIRT3 deacetylates MnSOD, HSP10, and Lon proteases and participates in the mitochondrial unfolded protein response. SIRT3 can
activate AMPK by upregulating the ratio of AMP/ATP. Activated AMPK can directly phosphorylate PGC-1α or enhance SIRT1 activity by increasing NAD+ levels, and
SIRT1 can then deacetylate PGC-1α. PGC-1α interacts with NRF1/2 to activate TFAM and promote the synthesis and import of nuclear-encoded ETC complex
subunits [such as the Fe–S subunit of succinate dehydrogenase (SDH) or the subunit of cytochrome c oxidase]. In addition, Lon proteases are also involved in the
selective degradation of TFAM to regulate mitochondrial biogenesis. SIRT3 can deacetylate FOXO3, thereby activating PINK1–Parkin pathway-mediated mitophagy.
Activated FOXO3 also promotes the expression of Bnip3/Nix, LC3-I/LC3-II, DRP1, FIS1, and MNF2 and regulates mitophagy and mitochondrial fission/fusion. The
direct deacetylation of OPA1 by SIRT3 is also involved in the regulation of mitochondrial fusion.

promoting the normal progression of the tricarboxylic acid
(TCA) cycle by deacetylating succinate dehydrogenase (SDH)
and isocitrate dehydrogenase (IDH; Cimen et al., 2010; Fritz

et al., 2013). Furthermore, the deacetylation by SIRT3 of
numerous complex I–V subunits in the oxidative respiratory
chain indicates the importance of this enzyme (Ahn et al., 2008;
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Mattson et al., 2008; Cheng et al., 2016). SIRT3 also prevents
or delays damage caused by oxidative stress by activating many
antioxidant factors, including FOXO3, IDH2, and SOD (Tseng
et al., 2013; Huang et al., 2016; Cui et al., 2017).

MITOCHONDRIAL QUALITY CONTROL BY
SIRT3 IN NEURODEGENERATIVE
DISEASES

In addition to its role in mitochondrial function, SIRT3 has
recently been reported to have an effect on mitochondrial
quality control (Tseng et al., 2013; Gibellini et al., 2014). In this
part of our review, we studied three major neurodegenerative
diseases—AD, PD, and HD—and summarized the regulation
of mitochondrial quality control by SIRT3 in each disease
(Figure 3).

ALZHEIMER’S DISEASE

AD is the most common form of dementia in the elderly (Barker
et al., 2015). In this disease, there is progressive degeneration
of vulnerable parts of the central nervous system (mainly the
hippocampus and cortex), leading to a decline in cognitive
function (Mavroudis et al., 2010). The etiology of AD is
associated with impaired brain energy metabolism and oxidative
stress, leading to synaptic degeneration and related cognitive
deficits (Blass et al., 2002; Dumont and Beal, 2011).

In AD, the accumulation of amyloid β (Aβ) in synapses
and synaptic mitochondria is an important cause of synaptic
degeneration and cognitive decline in AD patients (Calkins and
Reddy, 2011). Accumulation of Aβ disrupts the mitochondrial
membrane potential, leading to the production of ROS, and
activates themitochondrial fission-associated proteins DRP1 and
FIS1, causing mitochondria to divide excessively. Defective
mitochondria cannot move to the synapse to provide ATP,
which ultimately causes synaptic degeneration, leading to
neuronal degeneration (Calkins and Reddy, 2011; Kapogiannis
and Mattson, 2011). Upregulation of SIRT3 expression in AD
not only reduces ROS damage to mitochondrial structure by
deacetylation and activation of SOD2 (Jacobs et al., 2008;
Cho et al., 2009), but also participates in the regulation
of mitochondrial quality (Kincaid and Bossy-Wetzel, 2013).
SIRT3 can deacetylate the inner membrane fusion protein
OPA1 and increase its GTPase activity, and can also promote
gene expression of the outer membrane fusion protein
MFN2 through activation of FOXO3, thereby slowing the
excessive mitochondrial division caused by abnormal DRP1 and
FIS1 activity (Kincaid and Bossy-Wetzel, 2013; Ribeiro et al.,
2019). This suggests that SIRT3 acts to regulate the balance
of mitochondrial division and fusion in neurons, thereby
preventing or slowing the damage and degeneration of neuronal
axons that occurs because mitochondrial fragmentation leads to
insufficient ATP supply (Knott et al., 2008; Tseng et al., 2013;
Samant et al., 2014).

In addition, studies have shown that expression levels of
PGC-1α, NRF1, NRF2, and TAFM are all significantly decreased

in the hippocampus of AD patients, indicating that impaired
mitochondrial biogenesis likely contributes to mitochondrial
dysfunction in AD (Sheng et al., 2012). SIRT3 has been reported
to promote mitochondrial biogenesis by promoting PGC-1α
expression (Fu et al., 2012). SIRT3 activates AMP-activated
protein kinase (AMPK) by activating AceCS2 to increase
the AMP/ATP ratio (Hallows et al., 2006). Activated AMPK
can directly phosphorylate PGC-1α (Jäger et al., 2007) or
enhance SIRT1 activity by increasing NAD+ levels. SIRT1 can
then deacetylate PGC-1α, thereby promoting mitochondrial
biogenesis and delaying AD progression (Cantó et al., 2009).

PARKINSON’S DISEASE

PD is one of the most common neurodegenerative diseases and
is characterized by the preferential, progressive degeneration
of dopaminergic neurons in the SN pars compacta and
a loss of striatal dopamine input (Dexter and Jenner,
2013). The pathogenic mechanisms of PD are presumed to
include mitochondrial dysfunction and abnormal changes in
mitochondrial quality (Mandemakers et al., 2007).

PINK1 is a mitochondrial Ser/Thr kinase, and a loss or
mutation of PINK1 has an important impact on PD pathogenesis.
Mutations in PINK1 can promote mitochondrial fission or
reduce mitochondrial fusion in mammalian cells. Mutant
PINK1 promotes mitochondrial translocation of DRP1 and
reduces the degradation of DRP1 and FIS1 by Parkin, resulting
in increased fission and damage to mitochondria (Deng et al.,
2008). Studies have shown that SIRT3 can act indirectly on
PINK1, and the SIRT3–FOXO3 pathway activates mitophagy
via the PINK1–Parkin pathway (Das et al., 2014). In addition,
SIRT3 deacetylation of FOXO3 promotes the expression
of a variety of FOXO3-dependent genes that are required
for mitochondrial homeostasis. Studies have shown that the
SIRT3–FOXO3 pathway induces the expression of DRP1, FIS1,
and MFN2 to coordinate mitochondrial fission/fusion, and
increases Bnip3, Nix, and LC3-II/LC3-I for mitophagy in the
presence of mitochondrial damage, resulting in the degradation
of damaged mitochondria (Tseng et al., 2013). This type of
regulation delays the degeneration and necrosis of dopaminergic
neurons resulting from the mitochondrial damage caused by
mutant PINK1. SIRT3 can, therefore, regulate mitochondrial
quality control by increasing the levels of mitochondrial
autophagy, thus playing a neuroprotective role (Huang et al.,
2019). In addition, PINK1 also has an effect on mitochondrial
function. Studies have shown that PINK1 may maintain the
stability of the ETC by maintaining Ser250 phosphorylation in
the ETC complex I subunit NdufA10 (Gautier et al., 2008;Wood-
Kaczmar et al., 2008; Morais et al., 2014), whether SIRT3 can
affect mitochondrial function through PINK1 still needs related
research reports.’’

The accumulation of α-synuclein is also an important
neuropathological characteristic of PD. Studies have shown
that SIRT3 has neuroprotective effects in a mutant α-synuclein
rat model of PD, which may be achieved by enhancing
mitochondrial bioenergetics and reducing mitochondrial
oxidative stress (Gleave et al., 2017). Studies have also shown
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that SIRT3 downregulation in the presence of α-synuclein
accumulation is accompanied by increased phosphorylation of
AMPK, cAMP-response element-binding protein (CREB),
and DRP1, as well as decreased levels of OPA1. These
results imply impaired mitochondrial dynamics, further
supporting the protective role of SIRT3 in relevant PD pathways
(Park et al., 2018).

HUNTINGTON’S DISEASE

HD is a late-onset autosomal dominant neurodegenerative
disease caused by repeated amplification of the CAG
trinucleotide in the gene encoding the ubiquitin-expressing
protein Huntingtin (HTT). In addition to central nervous
system dysfunction, which includes neuronal cell death in the
striatum and cortex, cell dysfunction in peripheral tissues is also
widespread in HD (Saudou and Humbert, 2016).

In HD patients, mitochondrial ETC complex II, III activity
is decreased, and aconitase activity in the basal ganglia is also
reduced. This also occurs in striatal cells of mutant Huntingtin
knock-in mice: mitochondrial oxidative phosphorylation
and ATP production are both severely damaged, resulting
in the massive production of ROS (Browne and Beal, 2004).
Accumulation of ROS leads to mtDNA damage and the
misfolding of proteins (Papa and Germain, 2014). SIRT3 plays
an important role in repairing misfolded mitochondrial
proteins, and SIRT3 is a major coordinator of mitochondrial
unfolded protein response (mtUPR); for example, SIRT3 can
reduce ROS levels by deacetylating MnSOD (Shi et al., 2017).
Molecular chaperones (such as the Hsp60/Hsp10 complex
and the Hsp60–mtHsp70 complex) participate in mtUPR to
achieve the refolding or degradation of misfolded/unfolded
proteins (Bie et al., 2016; Yadav et al., 2019). Studies have
shown that the decline of HSP60 leads to mitochondrial
dysfunction in HD, HSP70 is involved in the regulation of
misfolded proteins in HD, suggesting that molecular chaperones
play a neuroprotective role in HD (Wacker et al., 2009; Reis
et al., 2017; Fu et al., 2019). Hsp10 has been confirmed as a
deacetylated substrate for SIRT3 (Lu et al., 2014). In addition,
immunolocalization revealed that Lon protease is a substrate
of SIRT3, and SIRT3 activates Lon protease by deacetylation
(Gibellini et al., 2014). Activated Lon protease degrades
oxidized aconitase in HD and regulates mtDNA replication
and transcription by acting on TFAM, thereby preventing
mitochondrial dysfunction resulting from the massive
accumulation of damaged proteins, which can cause neuronal
damage (Goo et al., 2014; Neo and Tang, 2018). TFAM is also
a direct deacetylation substrate for SIRT3, and SIRT3 promotes
mitochondrial biogenesis by deacetylating to enhance TFAM
expression (Liu et al., 2018).

Furthermore, studies have shown that AMPK activation can
resist mutated HTT-induced cytotoxicity in the early stage of
HD (Vázquez-Manrique et al., 2016). However, as the aging of
organisms or the less ability of cells to cope with proteotoxic
stress and its consequences, AMPK may become abnormally
active due to the overwhelming quantity of stress signals, and
its activity may be fatal to cells (Ju et al., 2014). SIRT3 has

been found to activate AMPK in HD by deacetylating liver
kinase B1 (LKB1) to regulate mitochondrial biogenesis and
energy metabolism homeostasis, further demonstrating that
SIRT3 exerts neuroprotective effects in HD (Fu et al., 2012).

In addition, mutant HTT stimulates the activation of
DRP1 and FIS1 because it has a higher affinity than that
of wild-type HTT. Mutant HTT also leads to decreased
MFN1/2 and OPA1 expression, thus causing high levels of
mitochondrial fission and low levels of mitochondrial fusion,
which leads to disordered mitochondrial dynamics (Kim et al.,
2010; Song et al., 2011; Jodeiri Farshbaf and Ghaedi, 2017). Direct
deacetylation of OPA1 by SIRT3 can increase mitochondrial
fusion levels, and deacetylation of FOXO3 by SIRT3 can
promote MFN2 expression, thereby delaying the disorder of
mitochondrial fission and fusion, maintaining mitochondrial
function and axonal transport, and slowing the progression of
striatal lesions (Tseng et al., 2013; Samant et al., 2014).

FUTURE DIRECTIONS

Several new pathways of mitochondrial quality control have
been reported recently; for example, mitochondria form
mitochondrial-derived vesicles (MDV) under oxidative stress.
These vesicles contain oxidized proteins that germinate
from damaged mitochondria and dissolve in lysosomes,
thus selectively degrading damaged mitochondrial contents
and maintaining mitochondrial function (Soubannier et al.,
2012; McLelland et al., 2014). Another pathway involves
the formation of mitochondrial spheroids, independent of
the classical mitophagy pathway (Ding et al., 2012). This
suggests that there may be a variety of indefinite mechanisms
involved in the regulation of mitochondrial homeostasis
as part of mitochondrial quality control. In addition, both
MDV and mitochondrial spheroids show a correlation with
PINK1 and Parkin (Ni et al., 2015). Whether SIRT3 is involved
in the regulation of mitochondrial homeostasis still requires
further study.

Although there have been many studies into the role of
SIRT3 in the nervous system, many potential mechanisms are
still unclear. For example, when studying the neurotrophin
pituitary adenylate cyclase-activating polypeptide (PACAP), it
was found that PACAP can induce SIRT3 expression and protect
neurons against Aβ toxicity. Experiments have also shown that
PACAP expression is decreased in an AD animal model and
SIRT3 expression is also decreased (Han et al., 2014), which
contradicts a previously reported increase in SIRT3 mRNA
expression in AD (Weir et al., 2012). These results suggest
that the role of SIRT3 needs to be further explored in future
research. In addition, it has been reported that SIRT3 regulates
mitochondrial ceramide biosynthesis through the deacetylation
of ceramide synthase (CerS) 1, 2 and 6 (Novgorodov et al., 2015),
and the content of mitochondrial ceramide is closely related
to mitochondrial dysfunction and ischemic stroke (Novgorodov
and Gudz, 2011), suggesting that the role of SIRT3 in the nervous
system remains controversial and needs further study.

Recently, studies have explored the function of SIRT3 by using
SIRT3 inhibitors, the most widely used of which is 3-(1H-1,2,3-
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triazole-4-yl)pyridine (3-TYP), a selective SIRT3 inhibitor. At
present, 3-TYP ismainly used to study the regulation of SIRT3 on
mROS homeostasis and autophagic flux, which is reflected in the
study of ischemia-reperfusion injury and some drugs (such as
genipin and melatonin; Pi et al., 2015; Zhai et al., 2017; Shumin
et al., 2018; Ouyang et al., 2019). 3-TYP has also been used to
study the relationship between some upstream factors (including
PGC-1α and SIRT1) and SIRT3 (Feng et al., 2019; Liu et al.,
2019), as well as the regulation of mitophagy by SIRT3 (Wang
et al., 2019). As a new method, SIRT3 inhibitors may play an
important role in future research into SIRT3.

In addition to the role of SIRT3 in mitochondrial quality
control in neurodegenerative diseases, recent studies have
gradually started to investigate the roles of two other
mitochondrial sirtuins, SIRT4 and SIRT5, in mitochondrial
quality control. SIRT4 promotes mitochondrial fusion by
interacting with OPA1 in an enzymatically dependent
manner (Lang et al., 2017) and reduces the recruitment
of DRP1 to the mitochondrial membrane by inhibiting
DRP1 phosphorylation, thereby reducing mitochondrial
fission and mitophagy (Fu et al., 2017). SIRT5 has also been
found to regulate mitochondrial protein degradation by
mitophagy in challenging metabolic conditions (Guedouari
et al., 2017). These results suggest that future studies of
mitochondrial quality control may need to focus more on
the interrelationships and interactions among these three
mitochondrial sirtuins.

SIRT1 is also involved in regulating mitochondrial quality
control. The AMPK–PGC-1α axis and SIRT1–PGC-1α axis are
the two main pathways that regulate mitochondrial biogenesis.
AMPK can activate PGC-1α by phosphorylation (Jäger et al.,
2007) and enhance the activity of SIRT1 by increasing cellular
NAD+ levels. SIRT1 can then activate PGC-1α by deacetylation,
thus initiating mitochondrial biogenesis (Cantó et al., 2009).

CONCLUSIONS

Based on the roles of SIRT3 in mitochondrial function, we
further reviewed the involvement of SIRT3 in mitochondrial
quality control in the nervous system, and especially in
neurodegenerative diseases. We reviewed that SIRT3 has
an effect on mitochondrial quality control through the
mitochondrial unfolded protein response, mitochondrial
dynamics, mitophagy, and mitochondrial biogenesis. The
role of SIRT3 in mitochondrial function and quality
control suggests that changes in mitochondrial quality
have an important impact on mitochondrial function and
that the two work together to maintain mitochondrial
homeostasis. Although there have been many studies on
the role of SIRT3 in the nervous system, many potential
mechanisms are still unclear and need to be further explored in
future research.
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