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Aging is a known non-modifiable risk factor for stroke. Usually, this refers to chronological
rather than biological age. Biological brain age can be estimated based on cortical and
subcortical brain measures. For stroke patients, it could serve as a more sensitive marker
of brain health than chronological age. In this study, we investigated whether there is a
difference in brain age between stroke survivors and control participants matched on
chronological age. We estimated brain age at 3 months after stroke, and then followed
the longitudinal trajectory over three time-points: within 6 weeks (baseline), at 3 and at
12 months following their clinical event. We found that brain age in stroke participants
was higher compared to controls, with the mean difference between the groups varying
between 3.9 and 8.7 years depending on the brain measure used for prediction.
This difference in brain age was observed at 6 weeks after stroke and maintained at
3 and 12 months after stroke. The presence of group differences already at baseline
suggests that stroke might be an ultimate manifestation of gradual cerebrovascular
burden accumulation and brain degeneration. Brain age prediction, therefore, has the
potential to be a useful biomarker for quantifying stroke risk.

Keywords: age prediction, structural magnetic resonance imaging, stroke, chronological age, brain age

INTRODUCTION

The chronological age of an individual is not necessarily the same as their physiological—or
‘‘biological’’—age. The trajectory of physiological aging is affected by individual differences in
genetics and life style. For example, different people will have different amounts of brain volume
loss in late life, depending on their education level, lifestyle, and level of physical activity (Steffener
et al., 2015). Brain health can be measured, meaning that brain age could be quantified.

The difference between chronological and brain age can be a sensitive predictor and a clinically
relevant biomarker of different disorders, especially ones associated with aging. A number of
authors have shown the utility of using the difference between chronological and predicted brain
age to identify cognitive impairment (Liem et al., 2017), Alzheimer’s disease (AD; Franke et al.,
2010), predict mortality (Cole et al., 2018), and the conversion from mild cognitive impairment to
AD (Gaser et al., 2013).

Stroke incidence disproportionately increases with age (Go et al., 2013). Older age is a risk factor
for stroke; it also worsens outcomes after stroke (Sohrabji et al., 2013). The proposal that stroke
is specifically associated with accelerated brain aging prior and after stroke has been made by
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several authors. Neuroimaging markers of brain aging, such as
smaller hippocampal and total brain volumes, and increased
white matter hyperintensity load, have been linked to both,
vascular brain injury prior to the stroke event (Seshadri et al.,
2004; Knopman and Hooshmand, 2017; Werden et al., 2017)
and continued brain atrophy and neurodegeneration (Knopman
et al., 2009; Kooi Ong et al., 2017). For acute stroke, it has been
estimated that during stroke or transient ischemeic attack (TIA),
compared with the normal rate of neuronal loss in brain aging,
the ischemic brain ages 3.6 years each hour without treatment
(Saver, 2006). Furthermore, the effect of stroke on cognitive
function has been shown to be equivalent to aging 7.9 years
(Levine et al., 2015).

Previous studies have not directly compared brain age
to chronological age in stroke. In this study, we applied
age-predicting models trained on a large cohort of healthy
participants and validated in several independent datasets (Liem
et al., 2017), to investigate differences between brain and
chronological age in stroke and healthy participants at 3 months
post-stroke, as well as the longitudinal trajectory of brain age
(at 6 weeks, 3 months and 12 months), with the intention of
assessing feasibility of age prediction in stroke. We hypothesized
that although the groups of stroke and control subjects were
not significantly different in their chronological age, stroke
participants’ brains would have an estimated brain age greater
than controls.

MATERIALS AND METHODS

Participants
This work was based on data from the Cognition and Neocortical
Volume after Stroke (CANVAS) study (Brodtmann et al.,
2014). Ischemeic stroke patients were recruited within 6 weeks
of their event from the Stroke Units at three Melbourne
hospitals: Austin Hospital, Box Hill Hospital, and the Royal
Melbourne Hospital. Each hospital’s ethics committee approved
the study in line with the Declaration of Helsinki. Patients had
clinically and radiologically confirmed first-ever or recurrent
ischemic stroke in any vascular territory. The severity of
participants’ stroke was assessed with the National Institutes of
Health Stroke Scale (NIHSS) examination performed at hospital
admission. Healthy control participants were recruited from the
database of volunteers who had previously undertaken MRI
scanning or volunteered for studies at the Florey Institute of
Neuroscience andMental Health. Stroke and control participants
had no history of dementia or neurodegenerative disorders,
major psychiatric illnesses or substance abuse problems.
Participants’ demographic and clinical data are described
in Table 1.

Imaging Data Acquisition and Analysis
All images were acquired on a Siemens 3T Tim Trio scanner
(Erlangen, Germany) with a 12-channel head coil. The same
scanner was used for participants recruited from different
hospitals. As part of an ongoing longitudinal study (Brodtmann
et al., 2014), participants were assessed within 6 weeks, then
again at 3 and 12 months after their stroke. A high-resolution

anatomical MPRAGE was collected (volume of 160 sagittal slices
with 1 mm isotropic voxels, TR = 1,900 ms, TE = 2.55 ms,
9◦ flip angle, 100% field of view in the phase direction and
256 × 256 acquisition matrix). A high-resolution 3D SPACE-
FLAIR image was acquired (with 160 1 × 0.5 × 0.5 mm
sagittal slices, TR = 6,000 ms, TE = 380 ms, 120◦ flip angle,
100% field of view in the phase direction and 256 × 254
acquisition matrix).

We automatically estimated structural volumes using
FreeSurfer 5.31 at each time-point separately. Tissue
segmentations for individual subjects were visually inspected and
corrected. Total intracranial brain volumes for each participant
were estimated.

Lesions were manually traced on the high-resolution FLAIR
image. A stroke neurologist (AB) visually inspected and verified
the manually traced images. A binary lesion mask was created
and normalized to the MNI152 template using the Clinical
Toolbox SPM extension (Rorden et al., 2012). Lesion volumes
were computed from the masks using FreeSurfer. Lesion overlap
images were prepared using MRIcron software (Rorden et al.,
2007; Supplementary Figure S1).

Age Prediction
Models were trained to predict age based on measures of cortical
anatomy (cortical thickness, cortical surface area, subcortical
volumes) as described in Liem et al. (2017). Native surface
models for cortical thickness and surface area computed in
FreeSurfer were transformed into the fsaverage4 standard space
and the two hemispheres data were concatenated. Volumes
of subcortical regions and measures of global volume were
extracted from the ‘‘FreeSurfer aseg.stats’’ files. After extracting
the feature vectors for each subject and for each of the different
anatomical measures, predictions were stacked via a Random
Forest model, producing the stacked anatomy measure including
cortical thickness, cortical surface area, and subcortical volumes.

Linear support vector regression model (SVR) was used to
predict age from structural neuroimaging data. The training
sample was a subsample of the LIFE-Adult-Study [Leipzig
Research Centre for Civilization Diseases (LIFE), life.uni-
leipzig.de (Loeffler et al., 2015)]. Specifically, it included
randomly selected community-dwelling volunteers between 20
and 80 years who had MRI assessment and neuropsychological
testing performed and who were found to have no objective
cognitive impairment based on standardized scores of cognitive
performance (OCI norm in Liem et al., 2017), N = 1,166, sex:
566 female, age: M = 59.1, standard deviation (SD) = 15.2.
The MRI data for the sample were acquired on a 3T Siemens
Trio scanner with a 32 channel head coil. High-resolution
T1 images were acquired with an MPRAGE sequence with 1 mm
isotropic voxels, 176 slices, TR = 2,300 ms, TE = 2.98 ms,
TI = 900 ms. Generalizability of the model has been previously
tested and validated in another sample [the Enhanced Nathan
Kline Institute Rockland sample (Nooner et al., 2012)] from a
different country, with data from a different scanner, with a
different acquisition protocol and subjects.

1http://surfer.nmr.mgh.harvard.edu/
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TABLE 1 | Demographic and clinical variables by group.

Variable Stroke Control Stroke vs. Control (p-values) Test (2-tailed)

N 135 40 n/a n/a
Sex (N female) 41 15 0.39 Chi-Square
N right-handed 10 4 0.52 Fisher exact test
NIHSS baseline (Median, range) 2 (0–15) n/a n/a n/a
Years of education (Mean, SD) 12.66 (3.66) 15.48 (4.53) <0.001 t-test
Age (years, Mean, SD) 67.41 (13.01) 68.65 (6.64) 0.49 t-test
Total intracranial volume, ml (Mean, SD) 1,518 (125) 1,502 (165) 0.47 t-test
Lesion volume, ml (Mean, SD) 10 (30) n/a n/a n/a
BMI baseline 27.74 (4.72) 26.55 (3.81) 0.11 t-test
Smoking, pack-years (Median, range) 1 (0–120) 0 (0–50) 0.051 Mann-Whitney test
Family history of stroke (N) 42 15 0.44 Chi-Square
High cholesterol (N) 62 14 0.22 Chi-Square
Hypertension (N) 85 17 0.021 Chi-Square
Atrial fibrillation (N) 33 1 0.001 Fisher exact test
T2DM (N) 34 4 0.049 Fisher exact test
Stroke laterality (N) n/a n/a n/a

Left 50
Right 82
Bilateral 3

Stroke type, Oxfordshire classification (N) n/a n/a n/a
LACI 19
PACI 70
POCI 44
TACI 2

N, number; SD, standard deviation; NIHSS, National Institutes of Health Stroke Scale; BMI, Body Mass Index; T2DM, Type 2 Diabetes Mellitus; LACI, lacunar circulation infarcts; PACI,
partial anterior circulation infarcts; POCI, posterior circulation infarcts; TACI, total anterior circulation infarcts.

Predictive analyses were performed using the python-
and scikit-learn based methods implemented in BARACUS
0.9.4 (Brain-Age Regression Analysis and Computation Utility
Software2), as described in detail in Liem et al. (2017).

Statistical Analyses
To evaluate age prediction quality with different measures
of anatomy, we performed Pearson correlations between
chronological and predicted age estimated for each brain
measure for the whole cohort (stroke and control participants
combined) and for each group. In addition, we report a mean
absolute error (MAE) and coefficients of determination, R2

calculated using the R2_score function implemented in Scikit-
learn. Note that the R2 here represents a comparison of the
values predicted by the model against the values predicted by
a dummy model. The value of R2 can be zero if the model
predicts the expected value disregarding the input features, or
negative if the model performs arbitrarily worse. To evaluate
the relationship between stroke lesions and predicted age, we
computed a correlation between lesion volume and predicted
age, accounting for the NIHSS at baseline.

As typically done in studies of predicted age, to compare
stroke and control groups, we calculated the so-called brain aging
score by subtracting chronological age from predicted age for all
participants. We then performed between-group ANCOVAs for
each brain measure based on the data from 3 months (controls:
N = 40, stroke: N = 124), accounting for years of education,
as it has been previously shown to be associated with brain

2https://doi.org/10.5281/zenodo.843491

age (Steffener et al., 2015). To evaluate the relationship between
stroke lesions and brain scores, we performed a correlation
between lesion volume and predicted age, accounting for the
NIHSS at baseline. For all analyses, we performed 2-tailed tests
and the results were considered significant at p < 0.05.

Finally, to investigate whether there were any differences in
brain aging over time, we performed a longitudinal analysis on
all 175 subjects, even if some participants did not have data for
all time points, using a mixed linear regression, as implemented
in matlab fitlme function. We designed the mixed-effect model
based on a maximal random effects structure, with factors Time
(baseline, 3 and 12 months) and Group (control vs. stroke) and
years of education as a covariate. A random intercept and a
random (Time) slope varied by subject were also included in the
lmemodel. The random intercept and slope were modeled with a
possible correlation between them.

RESULTS

Behavioral Results
The total of 175 participants took part in the CANVAS study
at one or more time points (6 weeks, 3 months, 12 months):
see Table 1 for the description of the whole cohort and
Supplementary Figure S1 for the lesion overlap map in stroke
participants. Predicted age data were obtained from participants
who completed a structural MRI scan at least for one time point.
The sample size varied for each time point: N = 125 at 6 weeks,
N = 164 at 3 months, and N = 151 at 12 months. For more
in-depth cross-sectional analysis we used data at 3 months, given
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FIGURE 1 | (A–D) Correlations between chronological and predicted age for
each of the brain measures. Black line shows the perfect correlation, red
circles represent stroke participants, gray circles represent control
participants. Note the tendency for underestimated predicted age in control
participants in most measures (gray circles below the black line).

the highest number of available participants and the fact that
3 months after stroke is considered an early but relatively stable
stage following stroke. For longitudinal analyses, we used data
from all 175 participants, even though some of them had missing
data (all three time points were available for 39 control and
65 stroke participants).

Age Prediction Performance With Different
Brain Measures
We calculated correlations between predicted and chronological
age, using data at 3 months, see Figure 1 for the correlation plots,
showing controls and stroke participants separately (correlations
by group are shown in Table 2). There were significant
correlations for all measures: stacked anatomy (r = 0.75,
p < 0.001; coefficient of determination R2 = 0.48, MAE = 6.1),
cortical thickness (r = 0.75, p < 0.001; R2 = 0.5, MAE = 5.9),
surface area (r = 0.71, p < 0.001; R2 = 0.38, MAE = 6.8), and
subcortical volume (r = 0.63, p < 0.001, R2 = 0.03, MAE = 8.3).
Note that for the subcortical volume measure, when 1 outlier

FIGURE 2 | Lesion location for the participant with an outlier age prediction
based on the subcortical volume.

(predicted age of 125) was removed the correlation was r = 0.69,
p < 0.001, R2 = 0.18). The location of the striatocapsular
infarction for this participant is shown in Figure 2. Note also that
in the group results shown inTable 2 someR2 values are negative,
especially for the control group. The chronological age in our
sample is narrowly centered around 70 years; there is a known
negative bias in predicting older age by the model (Le et al.,
2018; Liang et al., 2019) where predicted age is underestimated.
In the stroke group, where the predicted brain age appears
older, it is less of a problem, but in the controls this systematic
underestimation results in ‘‘poor’’ performance of the model due
to the shift in absolute predicted values that are reflected in the
negative R2 scores, despite a reasonable correlation r and MAE.

Comparison Between Stroke and Control
Participants in Predicted Age
A comparison of brain aging scores between control and stroke
participants using 3 months data showed a significant difference,
accounting for years of education for all measures, see Table 3.
The comparison of brain aging scores between the groups
computed from stacked anatomy revealed the mean brain aging
score in the control group was Mean (SD) = −5.7 (6.4) and
for stroke group −1.9 (7.2); for cortical thickness the values
were −4.4 (5.6) and 0.6 (7.7); for surface area −6.3 (6.0) and

TABLE 2 | Correlations between biological and predicted age for each measure and group.

Measure Stroke Control

r p-value R2 MAE r p-value R2 MAE

Stacked anatomy 0.79 <0.001 0.60 6.02 0.71 <0.001 −0.68 6.47
Cortical thickness 0.78 <0.001 0.56 6.01 0.71 <0.001 −0.17 5.56
Cortical surface area 0.75 <0.001 0.50 6.66 0.56 <0.001 −0.77 7.34
Subcortical volume 0.66 <0.001 0.12 8.13 0.61 <0.001 −1.57 8.87
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TABLE 3 | Differences in brain aging scores between control and stroke
participants, controlling for years of education.

Measure Average difference
in predicted age

(Stroke > Control),
years (SD)

Statistical results

Stacked anatomy 3.87 (1.34) F(1,161) = 8.385, p = 0.004
Cortical thickness 5.26 (1.38) F(1,161) = 14.498, p < 0.001
Cortical surface area 4.17 (1.39) F(1,161) = 9.079, p = 0.003
Subcortical volume 8.73 (1.93) F(1,161) = 20.424, p < 0.001

−3.0 (7.8), for subcortical volume −7.9 (7.0) and 0.5 (11.0),
respectively (see Figure 3).

We also specifically investigated the relationship between
lesion volume and stroke severity on the age prediction
(predicted age and brain scores) at 3 months. No measures
(stacked anatomy, cortical thickness, cortical surface area,
subcortical volume) were significantly associated with lesion
volume, accounting for NIHSS at baseline in either predicted age
or brain scores.

Longitudinal Analysis of Predicted Age
Between Stroke and Control Participants
Longitudinal analysis performed on all 175 available subjects
with missing data in some of the time points, using mixed
linear regression, revealed no significant main effect of time or
time by group interaction, suggesting no change in predicted
age over 1 year in either of the groups. However, this analysis
replicated the main effect of group in each of the measures
[stacked anatomy (Estimate = 3.54, SE = 1.34, t = 2.63, df = 433,
p = 0.008, 0.9–6.2); cortical thickness (Estimate = 5.1806,
SE = 1.35, t = 3.8376, df = 433, p < 0.001, 2.5–7.8); surface area
(Estimate = 4.5844, SE = 1.3985, t = 3.278, df = 433, p = 0.001,
1.8–7.3); subcortical volume (Estimate = 9.0133, SE = 1.886,
t = 4.779, df = 433, p < 0.001, 5.3–12.7)].

DISCUSSION

In this study, we predicted participants’ brain age based on
various brain measures, using an existing brain prediction
model implemented in BARACUS (Liem et al., 2017).
We compared brain aging scores in stroke and control
populations at 3 months, then longitudinally over a period
of a year. Although stroke and control participants were
matched on their chronological age, their brain age was
significantly different at all time points. In the absence of
chronological age differences, brain aging score could be a
more sensitive measure of aging and should be investigated as
a biomarker of stroke risk and predictor of stroke recovery in
future studies.

Prediction of Age in a Stroke Cohort
Previous studies using the prediction model applied here (Liem
et al., 2017) showed that using different brain measures for
age prediction yield similar results, with the stacked anatomy
measures producing the smallest prediction error. In this study,
the most accurate age prediction (based on the whole cohort
correlation between chronological and predicted age) was using
stacked anatomy and cortical thickness measures. Age prediction
based on cortical thickness was also found to be more accurate
than surface area prediction in a previous study (Liem et al.,
2017). Note that stacked-anatomy predictions did not exceed a
value of around 75 years in this study (see Figure 1). This plateau
effect, which can also be seen in Figure 2 of Liem et al. (2017)
is due to the nature of the stacking approach. It uses Random
Forest models which cannot extrapolate beyond the age range of
the training set.

Overall, age prediction in stroke participants was feasible and
produced fairly accurate results for all measures (a correlation
of 0.7 between chronological and predicted age). On average,
the predicted age results were not significantly associated with
lesion extent. However, one outlier showing predicted age of

FIGURE 3 | Brain aging score (chronological minus predicted age) for control vs. stroke participants, at 3 months after stroke.
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125 based on the subcortical volume measure was observed in
a stroke participant with a rather extensive subcortical lesion.
At the same time, the possibility to predict brain age based on
cortical, subcortical measures or their combination, overcomes
the potential problem arising from specific lesion distribution.
For example, for this participant with a chronological age of 62,
the other derived measures showed predicted age of 75 (stacked
anatomy), 77 (cortical thickness) and 68 (surface area), which are
all within the normal range of predicted values and can be used
as biomarkers of age.

Note that we applied this prediction model in a group of
older ischemeic stroke patients, however, the same method was
used for stroke and healthy participants alike, and no specific
limitation on the age of the group was set, making the model
versatile and potentially useful for different stroke types and
age cohorts.

Differences Between Stroke and Control
Participants in Brain Age
We observed consistently lower predicted age in control
participants, compared to stroke subjects. Typically, the age
prediction model that we used (Liem et al., 2017) tends
to overestimate age in younger adults and underestimate
age in older adults. A previously reported prediction error
(underestimation for older adults) for this model in normal
population is 4.83–7.29 years, depending on the measure
used. With controls in our study we observed brain aging
scores between −4.39 and −7.86 years. Although in our
study we cannot calculate prediction error and disentangle
it from the brain age estimates, the predicted age values
are within the same range (i.e., underestimated) for our
control population.

The brain aging scores for stroke participants were between
−3 years (underestimation) and 0.6 years (overestimation).
This means that stroke participants’ brain age was estimated
as higher in both relative and absolute terms; i.e., compared
to our control subjects and compared to the previous normal
population showing underestimation. Figure 1 demonstrates
that control participants’ age in our study is underestimated (gray
circles below the black line), whereas stroke participants’ age
is not.

Although there were no differences between the groups in
chronological age, there were more participants under 45 in
the stroke sample. To rule out the possibility that systematic
over-estimation in younger stroke participants would explain
higher brain scores in the stroke group, we repeated both cross-
sectional and longitudinal analyses excluding participants under
45 (N = 8). All the reported results remained significant.

Previously, Liem et al. (2017) found that the discrepancy
between predicted age and chronological age also captured the
degree of cognitive impairment, with the strongest differences
in brain aging between the participant groups observed in
the model using subcortical data. In our study, subcortical
volume data also produced the biggest numerical between-
group difference in brain aging scores. The measure of cortical
thickness also showed a strong group effect in both cross-
sectional and longitudinal analyses. Note that both subcortical

volume and cortical thickness measures showed a positive
mean brain aging score (higher predicted than chronological
age), whereas surface area measure showed a negative score.
Our results are consistent with the finding that cortical
thickness-based prediction is better than surface area results
(Hogstrom et al., 2013).

Rate of Brain Aging
Previous studies have shown that the brain continues to show
signs of neurodegeneration after stroke, such as thalamic volume
decline (Tamura et al., 1991; Ogawa et al., 1997; Yassi et al., 2015).
Contrary to our expectation, there were no differences between
stroke and healthy control participants in the rate of brain aging.
This could be due to a number of reasons.

It is possible that we lacked sensitivity to observe an
effect over just 1 year. No main effect of time was observed,
even in control participants, although raw predicted age on
average increased in all participants over time, suggesting some
longitudinal sensitivity. The brain segmentations that were used
here were based on a cross-sectional FreeSurfer approach, which
is less sensitive to longitudinal changes. Our analysis focused
on the brain aging score, which includes not only information
about the age (and its progression over time) but also any
changes in brain state. During the first year after stroke there
is an ongoing, large-scale brain reorganization associated with
recovery and decline. It is, therefore, possible that any changes
over time were obscured by these complex, non-linear, and
within-group individual differences in recovery. The measures
we used were whole-brain or whole subcortical measures. Brain
decline after stroke is often localized or network-specific (Wu
et al., 2008; Schaapsmeerders et al., 2015; Egorova et al., 2018;
Veldsman et al., 2018), so that at a global whole-brain level,
minor longitudinal changes were not observable using the
current model of age prediction. Finally, it is possible that
even with 175 subjects, we lacked the power to observe the
interaction effect.

Implications and Future Directions
The lack of longitudinal changes poses an interesting question
on the nature of the group difference in brain age at
baseline. On the one hand, the presence of an acute lesion
would affect the brain age negatively, as suggested by Saver
(2006) postulating the brain decline rate of about 3.6 years
per hour in untreated stroke. However, we did not observe
any significant relationship between biological age and stroke
lesions or stroke severity. Furthermore, despite some expected
post-stroke neurodegeneration in the first year after stroke, such
as in the hippocampi and thalami, no significant decline and
sustained difference between stroke and control participants
were observed over the course of 1 year. This suggests that
in principle, the measured brain age at baseline, which was
obtained as early as 6 weeks after stroke, was the reflection
of longer-term brain damage accumulated possibly even before
the stroke event itself. Note also that although our control and
stroke groups were matched on chronological age, they differed
significantly in their level of education, as well as a number of
vascular risk factors. While we attempted to account for the
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education differences, which have been previously shown to be
associated with brain age (Steffener et al., 2015), vascular risk
factors, such as hypertension, type 2 diabetes, atrial fibrillation
often accompany stroke and difficult to dissociate from the
stroke diagnosis. In other words, it is possible that vascular
risk factors, gradual cerebrovascular burden accumulation and
brain degeneration prior to stroke influenced the estimates of
brain age analyzed here. If so, future studies could investigate
brain age as a sensitive predictor of stroke, compared to
chronological age.

In addition to assessing stroke risk, brain age could be
a sensitive biomarker of recovery. It has been shown that
biological age estimated based on DNA methylation is a better
predictor of outcome after acute stroke than chronological
age (Soriano-Tárraga et al., 2017). Future studies could focus
on identifying the utility of brain age estimates on stroke
outcome prediction and compare the biological age derived
by imaging to the biological age obtained with the DNA
methylation technique.

Finally, the finding that there is a significant difference
between chronological and biological age between stroke and
control participants has important implications for clinical trials.
Future clinical studies could include matching controls and
stroke patients on biological age. This may allow the detection of
treatment effects that might be otherwise masked by accelerated
structural brain aging associated with stroke and cerebrovascular
risk factors.

The data that support the findings of this study are
available on reasonable request from the corresponding
author. The data are not publicly available as CANVAS is
a prospective, ‘‘live’’ study, with an expected completion
of data acquisition in mid-2020 for the 5-year scanning
timepoint. All requests for raw and analyzed data will
be reviewed by the CANVAS investigators to determine
whether the request is subject to any intellectual property or
confidentiality obligations.
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