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Pericytes are unique, multi-functional mural cells localized at the abluminal side of the
perivascular space in microvessels. Originally discovered in 19th century, pericytes had
drawn less attention until decades ago mainly due to lack of specific markers. Recently,
however, a growing body of evidence has revealed that pericytes play various important
roles: development and maintenance of blood–brain barrier (BBB), regulation of the
neurovascular system (e.g., vascular stability, vessel formation, cerebral blood flow, etc.),
trafficking of inflammatory cells, clearance of toxic waste products from the brain, and
acquisition of stem cell-like properties. In the neurovascular unit, pericytes perform these
functions through coordinated crosstalk with neighboring cells including endothelial,
glial, and neuronal cells. Dysfunction of pericytes contribute to a wide variety of diseases
that lead to cognitive impairments such as cerebral small vessel disease (SVD), acute
stroke, Alzheimer’s disease (AD), and other neurological disorders. For instance, in
SVDs, pericyte degeneration leads to microvessel instability and demyelination while in
stroke, pericyte constriction after ischemia causes a no-reflow phenomenon in brain
capillaries. In AD, which shares some common risk factors with vascular dementia,
reduction in pericyte coverage and subsequent microvascular impairments are observed
in association with white matter attenuation and contribute to impaired cognition.
Pericyte loss causes BBB-breakdown, which stagnates amyloid β clearance and the
leakage of neurotoxic molecules into the brain parenchyma. In this review, we first
summarize the characteristics of brain microvessel pericytes, and their roles in the
central nervous system. Then, we focus on how dysfunctional pericytes contribute to
the pathogenesis of vascular cognitive impairment including cerebral ‘small vessel’ and
‘large vessel’ diseases, as well as AD. Finally, we discuss therapeutic implications for
these disorders by targeting pericytes.

Keywords: pericytes, mural cells, small vessel disease, vascular cognitive impairment and dementia, Alzheimer’s
disease (AD), stroke, neurovascular coupling (NVC), blood–brain barrier (BBB)
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INTRODUCTION

Pericytes are mural cells, embedded within the basement
membrane, and surrounding microvessels as illustrated in
Figures 1 and 2. These cells were originally described in late
19th century (Eberth, 1871; Rouget, 1873) and initially named
“pericytes” in 1923 by Zimmermann (Zimmermann, 1923) in
accordance with their location enveloping the endothelium,
and their being embedded in the basement membrane outside
the microvessels (Zimmermann, 1923; Armulik et al., 2011;
Geranmayeh et al., 2019). Although pericytes were considered
to contribute to architectural maintenance and contraction of
capillaries (Sandison, 1931; Zweifach, 1934; Clark and Clart,
1940), little had been known about their multifunctional
characteristics and roles in neurological disorders until late 20th
century (Brown et al., 2019). In the last 20 years, however,
using a combination of markers and advancing technologies,
a variety of functions of pericytes in health and disease have
been revealed. Especially, microvascular pericytes in the central
nervous system (CNS) have come into focus as they contribute
to the maintenance of blood–brain barrier (BBB) (Armulik et al.,
2010; Bell et al., 2010; Daneman et al., 2010; Quaegebeur et al.,
2010), regulation of cerebral blood flow (CBF) (Peppiatt et al.,
2006), and clearance of toxic waste products from the brain
(Lendahl et al., 2019) as well as other multifunctional properties.

MURAL CELLS IN THE BRAIN SMALL
VESSELS: VASCULAR SMOOTH
MUSCLE CELLS AND PERICYTES

The brain constitutes ∼2% of the adult human body weight
but receives ∼20% of the cardiac output through CNS vascular
network (Xing et al., 2017). In the brain, small vessels can
be largely classified as three different types by their size and
constituent cell types: (1) arterioles, (2) capillaries, and (3)
venules (Attwell et al., 2016). There are gradual transitions
between these vessel types; the transitions between arterioles
and capillaries are called as pre-capillary arterioles while those
between capillaries and venules are called as post-capillary
venules (Dalkara and Alarcon-Martinez, 2015).

The arterioles branch from large arteries and follow the
outer rim of the brain via the meninges (Bevan et al., 1999;
Onodera, 2011). They penetrate perpendicularly into the cortex
(penetrating arterioles), and upon entering the white matter,
they begin to coil, loop, and spiral (Nonaka et al., 2003).
Running through the brain parenchyma, the arterioles further
split into smaller arterioles (Yamazaki and Kanekiyo, 2017). As
their diameters and constituent cell types are changed, the vessels
make a transition to capillaries. The capillaries then increase their
diameter again and transition into the post-capillary venules,
which join to form collecting venules that collect into larger veins
(Landau and Davis, 1957; Harnarine-Singh et al., 1972; Onodera,
2011; Itoh and Suzuki, 2012; El-Bouri and Payne, 2016). In the
small vessels (from the arterioles to venules), there are two types
of mural cells separately located outside of endothelial layer: (1)
vascular smooth muscle cells (SMCs) and (2) pericytes (Figure 1).

Smooth muscle cells and pericytes express shared mural
cell markers including neuron-glial antigen 2 (NG2, or
transmembrane chondroitin sulfate proteoglycan; CSPG4)
platelet derived growth factor receptor beta (PDGFRβ), alanyl
aminopeptidase (ANPEP, or CD13), vimentin, regulator of G
protein signaling 5 (RGS5) (Itoh and Suzuki, 2012; Yang et al.,
2017; Smyth L. et al., 2018; Vanlandewijck et al., 2018). Other
mural cell markers such as α-smooth muscle actin (αSMA, or
actin alpha 2, smooth muscle; ACTA2), transgelin (or smooth
muscle protein 22-α; SM22α), calponin1 (CNN1), desmin,
and melanoma cell adhesion molecule (MCAM, or CD146)
are expressed more in SMCs than pericytes (Smyth L. et al.,
2018; Zeisel et al., 2018). On the other hand, pericytes, but not
SMCs, express ATP binding cassette subfamily C member 9
(ABCC9) (Bondjers et al., 2006) and preferentially internalize or
take up the fluoroNissl dye NeuroTrace 500/525 when applied
to the brain surface (Damisah et al., 2017). Most of the gene
expression of pericytes, however, overlaps between SMCs and
a certain subtype of pericytes. Furthermore, the expression of
all these markers changes during growth and development,
and may be up- or down-regulated in pathological conditions
(Hughes and Chan-Ling, 2004; Armulik et al., 2011). Therefore,
cell morphology and anatomical position should be taken
into consideration to distinguish SMCs and pericytes. Table 1
provides anatomical differences in the cerebral small vessels and
mural cell markers.

The classification of small vessels is sometimes complicated
and controversial because of the definition of constituent mural
cells. Although there is a consensus that SMCs are located
in arterioles and venules as well as larger arteries and veins
(Iadecola, 2017; Sweeney et al., 2018), the classification and
nomenclature of pericyte-surrounding vessels have been greatly
debated mainly due to the heterogeneity of pericytes (Cheng et al.,
2018). Pericytes in the capillaries gradually transition to SMCs in
the arterioles; drawing a clear line between those vessels is quite
difficult (Zimmermann, 1923). Originally, Zimmermann defined
pericytes including their transition form to SMCs, residing on the
three consecutive vessels, namely, (1) pre-capillary arterioles, (2)
capillaries, and (3) post-capillary venules (Zimmermann, 1923).
Zimmermann therefore differently named the pericytes on each
vessel: (1) pre-capillary pericytes, at the last arterial ends that
merge into the capillary system; (2) capillary pericytes, at the
capillaries in the narrowest sense; and (3) post-capillary pericytes,
on post-capillary venules up to veins showing regular, fusiform
smooth muscle fibers.

As techniques such as three-dimensional live imaging have
been developed, the branching order coming off penetrating
arterioles has also been taken into consideration to define the
vessels in rodent brains. The definition of the vessels, however,
has varied depending on the studies. While some studies have
defined all vessels including proximal and distal branches coming
off penetrating arterioles as capillaries (Peppiatt et al., 2006;
Hall et al., 2014; Cai et al., 2018; Khennouf et al., 2018; Grubb
et al., 2020), others have defined proximal branches as pre-
capillary arterioles (Fernández-Klett et al., 2010; Hartmann et al.,
2015; Hill et al., 2015). To make matters more complicated, Hill
et al. (2015), have asserted that the mural cells on the proximal
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FIGURE 1 | Brain vessels and mural cells. The pial arterioles branch from pial arteries which follow the outer rim of the brain via the meninges. The arterioles
penetrate perpendicularly into the brain parenchyma (penetrating arteries) and further split into smaller arterioles. As their diameters and constituent cell types are
changed, the vessels make a transition to capillaries. The capillary join to form venules that collect into pial venules and further into pial veins. In the small vessels,
there are two types of mural cells separately located outside of endothelial layer: vascular smooth muscle cells (SMCs) and pericytes. SMCs are localized at the
arteries, arterioles, venules and veins whereas pericytes are localized at the capillaries and post-capillary venules. The proximal branches coming off penetrating
arterioles are sometimes called as pre-capillary arterioles. The subtypes of pericytes are differently called: ensheathing pericytes, transitional pericytes, pre-capillary
pericytes, smooth muscle cell-pericyte hybrids, arteriole SMC (aaSMCs), or pre-capillary SMCs in a few branches from arterioles; capillary pericytes, mesh pericytes,
thin-strand pericytes, helical pericytes, or mid-capillary pericytes in the middle part of capillary; mesh pericytes, stellate/stellate-like pericytes, or post-capillary
pericytes in the post-capillary venules.

branches coming off arterioles should be called as SMCs, which
have provided confusion in the field with the result that different
members of the field use different terminologies and definitions
about pericytes and pericyte-residing vessels (Hartmann et al.,
2015; He L. et al., 2016; Kisler et al., 2017a; Yang et al., 2017; Smyth
L. et al., 2018; Dalkara, 2019; Grant et al., 2019). Nowadays, to

avoid confusion, the researchers have claimed that the capillaries
should include transition to the arterioles, and the mural cells
on those capillaries should be called as “pericytes” (Attwell
et al., 2016). In this review, we will describe the differences
of mural cells in the small vessels, namely, (1) SMCs on the
arterioles and venules and (2) pericytes on the capillaries and
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FIGURE 2 | Constituents of the BBB in the capillary. In the BBB, tight junctions created by endothelial cells strictly regulate the movement of ions, molecules, and
cells between the blood and the brain. The tight junctions are controlled by the cells surrounding the endothelium, including pericytes, astrocytes, perivascular
OPCs, interneurons, perivascular macrophages, and microglia. Pericytes are localized on the abluminal surface of the endothelial layers and embedded in the
basement membrane. Astrocytes extend polarized cellular processes that almost completely ensheath the vessel tubes.

post-capillary venules, introducing the different terminology of
pericytes. Thereafter, we will focus on the pericyte function and
dysfunction in health and diseases.

Arteriolar SMCs
In the arterioles, SMCs continuously enwrap the abluminal
side of endothelial cell layer and make myoendothelial gap
junction (Aydin et al., 1991). The SMCs in the arterioles
have an inconspicuous soma and extend broad processes
(Attwell et al., 2016) that strongly express αSMA transgelin,
desmin, CD146, and CNN1 as well as shared mural cell
markers including NG2, PDGFRβ, CD13, vimentin, and RGS5.
Outside of the SMCs is perivascular space with fibroblast-like
cells, surrounded by collagen layer and endfeet of astrocytes
(Mastorakos and McGavern, 2019).

Capillary Pericytes
In the capillaries, the vessel size further decreases, and the
endothelial layer is intermittently surrounded by pericytes.
Compared to the peripheral vascular beds, CNS capillaries have
higher pericyte-to-endothelial cell ratios (1:1 to 1:3) and around
70–80% of the capillary surface area is covered with pericyte cell
processes (Bell et al., 2010; Winkler et al., 2010, 2014). Capillary
pericytes have a conspicuous protruding ovoid cell body with
long thin processes that course along the capillary for longer
distances and are embedded within the basement membrane.

The role of capillary pericytes in CBF control has long been
debated. Using mouse models, some researchers have reported
that arteriolar SMCs but not capillary pericytes regulate CBF in
response to neuronal activities or ischemic stress (Fernández-
Klett et al., 2010; Hill et al., 2015). Others, however, have shown
that capillary pericytes also change the vessel diameter and CBF
by stimuli, neuronal activation, or ischemia (Peppiatt et al., 2006;
Yemisci et al., 2009; Hall et al., 2014; Pieper et al., 2014; Kisler

et al., 2017b; Rungta et al., 2018), suggesting capillary pericytes
also contribute to CBF regulation.

Because pericytes are morphologically and functionally
heterogeneous, pericytes are sometimes subclassified according
to their topology, morphology, and the protein expression levels.

Pericytes in the Proximal Capillaries
The studies of mouse brain cortices using two-photon
microscopy have revealed the morphological and functional
distinction of the pericytes on the proximal branches (mostly
up to 2nd or 4th order) coming off penetrating arterioles from
those on the higher branch-order capillaries or larger arterioles
(Hartmann et al., 2015; Hill et al., 2015; Kisler et al., 2017a;
Yang et al., 2017; Smyth L. et al., 2018; Grant et al., 2019).
The pericytes located in this point of transition possess highly
visible and protruding ovoid soma with thin and circumferential
processes enveloping the vessels. These cells express more αSMA
than pericytes in mid-capillaries, but not as much as SMCs in
the penetrating arterioles (Alarcon-Martinez et al., 2018; Grant
et al., 2019). Aside from αSMA, the cells also express desmin
and transgelin, but hardly express CNN1 (Smyth L. et al., 2018;
Vanlandewijck et al., 2018).

Because these pericytes are positioned at the transition
between arterioles and capillaries, and have shared some
characteristics with SMCs, the terminology and classification
of these mural cells have been hotly debated. The cells have
been variably called as ensheathing pericytes (Smyth L. et al.,
2018; Grant et al., 2019), transition/transitional pericytes (Kisler
et al., 2017a; Arango-Lievano et al., 2018), pre-capillary pericytes
(Zimmermann, 1923), simply ‘pericytes’ or ‘capillary pericytes’
(Hall et al., 2014; Attwell et al., 2016; Cai et al., 2018; Khennouf
et al., 2018; Grubb et al., 2020), smooth muscle-pericyte hybrids
(Hartmann et al., 2015; Yang et al., 2017; Dalkara, 2019), arteriole
SMC (aaSMC) (Vanlandewijck et al., 2018), or pre-capillary SMCs
(Hill et al., 2015).
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TABLE 1 | Anatomical differences in brain small vessels and mural cell markers.

Arteriole Proximal capillary Mid-capillary Post-capillary
venule

Venule References

Perivascular
space

+
a/+

(BG/WM)b/−
(Cox)c

− - + + Zhang et al. (1990)b, Pollock
et al. (1997)c, Salzman et al.
(2005)c, Onodera (2011)a,
Morris et al. (2016)b

Mural cell SMC Pericyte Pericyte Pericyte SMC Zimmermann (1923), Hall et al.
(2014), Khennouf et al. (2018)

Different naming
of mural cell

Ensheathing
pericyte

Mesh
pericyte

Thin-strand
pericyte

Mesh pericyte Stellate
SMC

Dalkara (2019), Grant et al.
(2019), Smyth L. et al. (2018),
Yang et al. (2017)

Transitional pericyte Mid-capillary pericyte Stellate
pericytes

Kisler et al. (2017a),
Arango-Lievano et al. (2018),
Dalkara (2019)

Pre-capillary
pericyte

Capillary pericyte Post-capillary
pericyte

Zimmermann (1923)

Smooth
muscle-pericyte
hybrid

Hartmann et al. (2015), Yang
et al. (2017), Dalkara (2019)

aaSMC Vanlandewijck et al. (2018)

Pre-capillary SMC Hill et al. (2015)

SMCs and pericytes

CSPG4 (NG2) + ++ ++ ++ + Hartmann et al. (2015), Hill
et al. (2015), Yang et al. (2017),
Smyth L.C.D. et al. (2018),
Vanlandewijck et al. (2018)

PDGFRβ + ++ ++ ++ + Hartmann et al. (2015), Yang
et al. (2017), Smyth L.C.D.
et al. (2018), Vanlandewijck
et al. (2018)

ANPEP (CD13) + + + + + Kunz et al. (1994), Yang et al.
(2017), Smyth L.C.D. et al.
(2018)

Vimentin ++ + + + ++ Nehls and Drenckhahn (1993),
Itoh and Suzuki (2012)

RGS5 + + + + + Bondjers et al. (2006), Özen
et al. (2014), Yang et al. (2017)

SMCs preferential

ACTA2 (αSMA) +++ + ± ± ++ Boado and Pardridge (1994),
Bandopadhyay et al. (2001),
Itoh and Suzuki (2012),
Damisah et al. (2017), Yang
et al. (2017), Alarcon-Martinez
et al. (2018), Smyth L.C.D.
et al. (2018)

Transgelin ++ + − − ± Smyth L.C.D. et al. (2018),

CNN1 ++ ± − − − Berthiaume et al. (2018),
Vanlandewijck et al. (2018)

Desmin ++ − or ± − or ± − or ± ++ Nehls and Drenckhahn (1991),
Itoh and Suzuki (2012), Smyth
L.C.D. et al. (2018)

MCAM (CD146) ++ ± ± ± ++ Smyth L.C.D. et al. (2018)

Pericytes preferential

ABCC9 − ± ++ ++ + Bondjers et al. (2006),
Berthiaume et al. (2018),
Vanlandewijck et al. (2018)

Fluoro-Nissl dye − + ++ ++ ± Damisah et al. (2017)

ABCC9, ATP binding cassette subfamily C member 9; ACTA2, actin alpha 2, smooth muscle; ANPEP, alanyl aminopeptidase, membrane; BG, basal ganglia; CNN1,
calponin 1; Cox, cerebral cortex; CSPG4, chondroitin sulfate proteoglycan 4; MCAM, melanoma cell adhesion molecule; PDGFRβ, platelet derived growth factor receptor
beta; RGS5, regulator of G protein signaling 5; WM, white matter.
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At the same time, the vessels of proximal branches coming off
penetrating arterioles are also differently defined as pre-capillary
arterioles (Fernández-Klett et al., 2010; Hartmann et al., 2015;
Hill et al., 2015; Berthiaume et al., 2018; Erdener and Dalkara,
2019; Grant et al., 2019), post-arteriole capillaries (Gould et al.,
2016) or a part of capillaries (Hall et al., 2014; Attwell et al., 2016;
Cai et al., 2018; Khennouf et al., 2018; Grubb et al., 2020).

The cells in this proximal branches (especially, 1st to 2nd
branches) coming off arterioles has drawn attention as they highly
contribute to neurovascular coupling (NVC) (Hall et al., 2014;
Hill et al., 2015; Cai et al., 2018; Khennouf et al., 2018; Rungta
et al., 2018; Grubb et al., 2020) and no-reflow phenomenon after
acute ischemia (Hall et al., 2014; Hill et al., 2015). Although
referring to these mural cells as a subtype of “pericytes” has
become almost a consensus, the shifting nomenclature of these
cells and vessels has been the root of recent controversies on
pericyte roles as regulators of CBF (discussed below).

Pericytes in the Mid-Capillaries
In the mouse brain, pericytes in the mid-capillaries are divided
into two subtypes according to the morphology of their processes,
namely, (1) mesh pericyte and (2) thin-strand pericyte or helical
pericyte (Hartmann et al., 2015; Yang et al., 2017; Smyth L. et al.,
2018; Dalkara, 2019; Grant et al., 2019). The mesh pericytes
adopt a mesh-like appearance and are located on the proximal
side of a capillary with higher coverage area than thin-strand
pericytes (Hartmann et al., 2015; Grant et al., 2019). The thin-
strand pericytes or helical pericytes extend thin, meandering
processes that run along the vessel lumen. These two types
of pericytes express NG2, CD13, and PDGFRβ, and slightly
express CD146 and αSMA, but hardly express desmin, transgelin,
nor CNN1 (Alarcon-Martinez et al., 2018; Smyth L. et al.,
2018; Vanlandewijck et al., 2018; Zeisel et al., 2018). Instead,
pericytes express ABCC9 (Bondjers et al., 2006; Vanlandewijck
et al., 2018) and preferentially take up the fluoroNissl dye
NeuroTrace 500/525 (Damisah et al., 2017). The pericytes in
these capillaries play vital roles for BBB maintenance and small
molecule transport (Armulik et al., 2010; Bell et al., 2010;
Liu et al., 2012).

Post-capillary Pericytes
In the post-capillary venules, different shaped mesh pericytes,
also called stellate/stellate-shaped pericytes, surround the
endothelial layer. These cells have many slender and shorter
branching processes than capillary pericytes (Hashitani and
Lang, 2016; Yang et al., 2017; Arango-Lievano et al., 2018). They
express αSMA, ABCC9, cysteine sulfinic acid decarboxylase (P-
selectin), and endomucin (Marín-Padilla, 2012). The expression
level of αSMA is lower than the mural cells in the arterioles
and proximal capillaries (Grant et al., 2019). The pericytes
in the post-capillary venules are thought to regulate immune
cell entry to the brain parenchyma like those in other tissues
(Proebstl et al., 2012; Stark et al., 2013; Attwell et al., 2016;
Dalkara, 2019; Rudziak et al., 2019). Outside of the pericytes
are astroglial end-feet forming glia limitans. Between the
endothelial basement membrane and astrocytic basement
membrane is perivascular space, where antigen presenting cells

reside (Engelhardt et al., 2017; Mastorakos and McGavern,
2019). Fibroblast-like cells are within the astrocytic basement
membrane (Mastorakos and McGavern, 2019).

Venular SMCs
Post-capillary venules are collected to form ascending venules.
In the venules, the endothelial cell layer is surrounded by
stellate-shaped SMCs with broad leaf-like processes (Ushiwata
and Ushiki, 1990; Armulik et al., 2011). Venous SMCs express
NG2, CD13, PDGFRβ, αSMA, transgelin, ABCC9, but not CNN1
(Vanlandewijck et al., 2018). And the expression level of αSMA
and transgelin in the venous SMCs is lower than the mural cells
in the arterioles (Vanlandewijck et al., 2018; Grant et al., 2019).
SMCs in brain venules express NG2, which is different from the
venules of peripheral tissues (Murfee et al., 2005; Stark et al.,
2013). Outside of SMCs are perivascular space and fibroblast-like
cells (Mastorakos and McGavern, 2019).

FUNCTIONS OF PERICYTES

BBB Maintenance, Angiogenesis, and
Vessel Stabilizing
The CNS vascular system possess a highly selective
semipermeable border formed by the BBB wherein tight
junctions and adherens junctions created by endothelial cells
strictly regulate the movement of ions, molecules, and circulating
cells between the blood and the brain (Luissint et al., 2012;
Daneman and Prat, 2015). The tight and adherens junctions are
controlled by various types of cells surrounding the endothelium,
such as pericytes, astrocytes, perivascular oligodendrocyte
precursor cells (OPCs), interneurons, perivascular macrophages,
microglia, and other immune cells (Abbott et al., 2010; Seo et al.,
2014; Faraco et al., 2017; Stebbins et al., 2019) (Figure 2).

Capillary pericytes play especially crucial roles in the function
of the BBB. Pericyte ablation leads to breakdown of the BBB in
the mouse brain (Nikolakopoulou et al., 2019). Pericytes control
protein expression in the tight junctions, their alignment with
endothelial cells, and the bulk-flow transcytosis of fluid-filled
vesicles across the BBB (Armulik et al., 2010; Bell et al., 2010;
Daneman et al., 2010; Quaegebeur et al., 2010).

Pericytes also play a key role in the generation of new blood
vessels. During angiogenesis, a complex web of bidirectional
signaling pathways between endothelial cells and pericytes is
essential for forming and stabilizing new blood vessels (Gaengel
et al., 2009; Stapor et al., 2014). The signaling molecules involved
in these processes include platelet-derived growth factor B
(PDGFB)/PDGF receptor beta (PDGFRβ), transforming growth
factor beta (TGFβ), Notch, vascular endothelial growth factor
(VEGF), sphingosine-1 phosphate (S1P)/S1P receptor 1 (S1PR1
or EDG), and angiopoietin 1 and 2 (ANGPT1, ANGPT2)/TEK
receptor tyrosine kinase (TEK, or TIE2) all of which differentially
contribute to these signaling activities (Liu et al., 2000; Winkler
et al., 2011b; Zechariah et al., 2013; Eilken et al., 2017; Teichert
et al., 2017; Cheng et al., 2018). During angiogenesis, pericytes
are reported to be recruited from the bone marrow as well
as brain parenchyma in response to the PDGF-BB secreted
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from endothelial cells (Rajantie et al., 2004; Song et al., 2005;
Kokovay et al., 2006; Gaengel et al., 2009). On the other hand,
pericytes induce endothelial cell sprouting and stabilization via
secreting TGFβ, VEGF, and ANGPT1 (Paik et al., 2004; Durham
et al., 2014; Teichert et al., 2017; Blocki et al., 2018). Lack of
pericytes leads to endothelial hyperplasia and abnormal vascular
morphogenesis including microaneurysm (Lindahl et al., 1997;
Hellström et al., 2001). When a single brain pericyte is ablated,
the processes from neighboring pericytes are extended to contact
uncovered regions of the endothelial cells and maintain the vessel
diameter and vessel stability (Berthiaume et al., 2018).

Regulation of Capillary Diameter and
Blood Flow
Cerebral blood flow is dynamically altered in response to changes
of transient neuronal activity, which is referred to as NVC
(Abbott et al., 2010; Attwell et al., 2010; Kisler et al., 2017a). It
is controlled by the cells within the neurovascular unit (NVU)
including endothelial cells, pericytes, SMCs, astrocytes, OPCs,
and neurons (Peppiatt et al., 2006; Attwell et al., 2010; Hall
et al., 2014; Mishra et al., 2016; Kisler et al., 2017a,b; Rungta
et al., 2018). In response to the different neurotransmitters,
pericytes dilate capillaries and increase local CBF (Hamilton
et al., 2010). In pathological conditions such as ischemic stroke
(Hall et al., 2014; Yemisci et al., 2009) and AD (Nortley
et al., 2019), brain capillaries are constricted by pericytes. In
ischemic stroke mouse brains, damaged and dead pericytes
squeeze the capillaries and sustain the reduction of CBF
even after recanalization of the larger vessels, causing the no-
reflow phenomenon (Yemisci et al., 2009; Kloner et al., 2018).
The burden of amyloid beta (Aβ) oligomer causes pericyte
contraction and capillary stenosis, which decreases CBF in the
AD brains (Nortley et al., 2019).

The role of pericytes in regulation of vessel diameter has been
heatedly debated. When Rouget first describe the branched cells
on the capillary wall, which is nowadays called as pericytes, he
regarded them as contractile cells (Rouget, 1873). Thereafter, the
studies which supported or objected to the pericyte contractility
were successively reported (Krueger and Bechmann, 2010).
In terms of CBF regulation, SMCs located at arterioles were
traditionally thought to control CBF (Iadecola, 2004). This
view of CBF dynamics was revolutionized by the findings that
capillary diameter also changes with neural activity (Peppiatt
et al., 2006; Hall et al., 2014; Kisler et al., 2017b; Khennouf
et al., 2018; Rungta et al., 2018) and ischemia (Yemisci et al.,
2009; Hall et al., 2014). Furthermore, the loss of pericytes
has been reported to lead to diminishing CBF in response to
functional hyperemia in pericytes-deficient mice (Bell et al.,
2010; Kisler et al., 2017b, 2020). However, Hill et al. (2015)
refuted that pericytes are involved in the regulation of CBF,
and put forward the view that arteriolar SMCs may be the
key players regulating CBF. Fernández-Klett et al. (2010) also
showed pre-capillary and penetrating arterioles, but not pericyte
in capillaries are responsible for the CBF increase induced by
neural activity. These controversial reports most likely stem from
the different definitions of pericytes in the proximal capillaries.
Some of these reports concur that the mural cells in the

proximal branches coming off penetrating arterioles respond to
the stimulations outlined above and change vessel diameters
accordingly (Fernández-Klett et al., 2010; Hall et al., 2014; Hill
et al., 2015; Cai et al., 2018; Khennouf et al., 2018). Pericytes
residing at the proximal capillaries possess both characteristics of
pericytes and SMCs (Hartmann et al., 2015), which may lead to
discrepant interpretations by different investigators. Some groups
showed stimulation-evoked increases in synaptic activity and
capillary dilation starting mostly at the first- or second-order
capillary then propagating along arterioles and downstream
capillaries (Cai et al., 2018; Khennouf et al., 2018), which may
position the pericytes in the proximal capillaries as the major
regulators of CBF. In addition, Grubb et al. (2020) reported that
a pre-capillary sphincter, at the junction between the penetrating
arteriole and first order branch, modulated capillary flow while
protecting the downstream capillary bed from adverse pressure
fluctuations. Taken together, the proximal branches coming
off arterioles seem to be the gatekeeper that controls CBF in
the capillary beds.

Clearance of Materials From the Brain
Pericytes internalize small molecules and neurotoxic blood-
derived products which enter the breached BBB (i.e.,
immunoglobulins, fibrin and albumin) through receptor-
mediated endocytosis or non-specific pinocytosis (Armulik
et al., 2010; Bell et al., 2010; Schultz et al., 2017). Pericytes
also internalize large solid substance through phagocytosis.
Engulfed molecules are transported to lysosomes for enzymatic
degradation (Diaz-Flores et al., 2009) or possibly transported to
the blood circulation (Zhao et al., 2015). While tumor necrosis
factor alpha (TNFα) and interferon-γ (IFNγ) enhance phagocytic
uptake, TGFB1 attenuates phagocytic uptake in pericytes.

Pericytes may clear substances derived from the brain
parenchyma as well as around vessels. Pericyte loss aggravates Aβ

deposition in transgenic mice (Sagare et al., 2013). Aβ clearance
by pericytes is mainly performed through receptor-mediated
endocytic pathways, especially low-density lipoprotein receptor-
related protein 1 (LRP-1) (Shibata et al., 2000; Zlokovic et al.,
2010; Ma et al., 2018).

Another clearance system which might be related to pericytes
is the CNS lymphatic drainage system. In the CNS, there are
two major extracellular fluids, namely, (1) cerebrospinal fluid
(CSF) and (2) interstitial fluid (ISF). CSF drains to cervical
lymph nodes via the cribriform plate and nasal lymphatics
(Kida et al., 1993; Spector et al., 2015), as well as via dural
lymphatics (Aspelund et al., 2015; Louveau et al., 2015; Absinta
et al., 2017; Ahn et al., 2019) and along cranial nerves (Hatterer
et al., 2006; Aspelund et al., 2015). ISF containing metabolic
products of the brain as well as Aβ and tau drains to lymph
nodes by the shared or distinct pathways from CSF (Engelhardt
et al., 2017; Cheng and Wang, 2020). Two different pathways for
draining ISF to the periphery — the perivascular and paravascular
pathways — are controversially proposed (Engelhardt et al.,
2016). In the perivascular pathway, ISF and solutes from CNS
parenchyma enter the basement membranes of capillaries, where
pericytes are embedded, and drain directly via tunica media of
arterioles and arteries out of the brain to cervical lymph nodes
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(Carare et al., 2008, 2014; Engelhardt et al., 2016). Paravascular
pathway, also known as glymphatic system, denotes the moving
of CSF into the brain along arterial perivascular spaces and
successively into the interstitium to mix with ISF, which then
guides flow toward the venous perivascular spaces, removing
metabolic waste of ISF to the CSF via convective bulk flow
(Iliff et al., 2012). In the glymphatic system, astrocytes are
important for ion buffering and fluid exchange between the
CSF and ISF (Jessen et al., 2015). The exchange through the
glymphatic system is suggested to be dependent on the water
channel aquaporin-4 (AQP4) located in astrocytic endfeet (Iliff
et al., 2012). However, it remains enigmatic whether or not AQP4
is solely responsible for this fluid transport or not (Lendahl et al.,
2019). Recently, insufficient PDGFB signaling in the Pdgfbret/ret

mice has shown decreased pericyte coverage of the vessels with
decreased AQP4 polarization to astrocyte endfeet, which impairs
maturation of the glymphatic function (Munk et al., 2019). The
focal absence of pericytes correlates with relocation of AQP4
from astrocytic endfeet to the soma of astrocytes (Armulik
et al., 2010). Pericytes express laminin-α2 (LAMA2), laminin-
β1, and laminin-γ1, which encode the subunits of laminin
211 (Vanlandewijck et al., 2018). Laminin 211 deposits in the
vascular basement membrane and interacts with dystrophin in
astrocytes, which acts as a molecular bridge to AQP4 to keep
it in the astrocyte endfeet (Guadagno and Moukhles, 2004).
Indeed, Lama2 knockout in mice results in BBB abnormalities in
association with loss of AQP4 polarization to astrocyte endfeet
(Menezes et al., 2014). The above referenced reports suggest that
pericytes might influence the development of the glymphatic
system through deposition of laminin 211 in the vascular
basement membrane, which maintains the polarization of AQP4
at astrocytic endfeet. However, there are critical assessments of
the proposed glymphatic system (Hladky and Barrand, 2014,
2019; Abbott et al., 2018). Several observations or simulations do
not support the glymphatic mechanism (Jin et al., 2016; Smith
et al., 2017) nor convective fluid flow of CSF (Asgari et al., 2016;
Holter et al., 2017). Hence, the existence of the paravascular
pathway as a CNS drainage system is still under debate.

Inflammation and the Regulation of
Immune Cells
Brain pericytes have many properties of immune regulating
cells such as (1) responding to and expressing pro-inflammatory
and anti-inflammatory molecules, (2) regulating leukocyte
extravasation and trafficking, and (3) controlling immune
cell activation including T cells, macrophages, and microglia
(Rustenhoven et al., 2017; Thomas et al., 2017; Duan et al.,
2018; Smyth L.C.D. et al., 2018). In the mouse brain, pericytes
function as the initial sensor of systemic inflammation and
relay the infection signal to neurons by secreting chemokine CC
chemokine ligand 2 (CCL2, also known as monocyte chemotactic
protein-1, MCP1) (Duan et al., 2018).

Pericytes express and release several mediator molecules that
enhance leukocyte extravasation. Although the endothelial
cells are well known to induce leukocyte crawling and
extravasation (Muller, 2002), pericytes also contribute to

leukocyte transmigration (Proebstl et al., 2012). In vivo
observation of mouse skin vessels have demonstrated that
leukocyte extravasation occur only post-capillary venular
pericytes (Stark et al., 2013). After inflammation stimuli,
neutrophils exhibited transendothelial migration (TEM) and
sub-endothelial cell crawling along pericyte processes, which was
supported by pericyte-derived intercellular adhesion molecule-1
(ICAM-1) and its leukocyte integrin ligands, macrophage-1
antigen (Mac-1) and lymphocyte function–associated antigen-1
(LFA-1). Then, the leukocytes transmigrated to the interstitium
through the gaps between adjacent pericytes (Proebstl et al.,
2012). After extravasation, the leukocytes interact with capillary
pericytes as well. Pericyte-monocyte interaction is mediated
mainly by macrophage migration-inhibitory factor (MIF) and
CCL2, whereas neutrophil migration involves MIF and C-X3-C
motif chemokine ligand 1 (CXCL8, also known as interleukin 8,
IL8) (Stark et al., 2013).

Exposure of pericytes to cytokines such as interleukin 1
beta (IL1β) and TNFα triggers the release of inflammatory
molecules and matrix metalloprotease 9 (MMP9), leading
to BBB breakdown in vitro (Herland et al., 2016). The
immunomodulatory factors secreted by pericytes including
IL1β, TNFα, IFNγ, and interleukin 6 (IL6) induce a
proinflammatory state in astrocytes, microglia, and endothelial
cells, and cause apoptotic neuronal death (Kovac et al., 2011;
Matsumoto et al., 2018).

Conversely, pericytes can also secrete several anti-
inflammatory substances such as interleukin 33 (IL33) and
C-X3-C motif chemokine ligand 1 (CX3CL1) (Rustenhoven
et al., 2016, 2017; Yang et al., 2016), both of which are shown
to promote anti-inflammatory microglial phenotype in mouse
models (Cardona et al., 2006; Fu et al., 2016). Furthermore,
depletion of pericytes induced inflammatory responses in
endothelial cells and perivascular infiltration of macrophages
in mouse retinal vessels, suggesting pericytes exerts an anti-
inflammatory effect on endothelial cells under normal conditions
(Ogura et al., 2017).

Phenotype Changes
Pericytes display some similarities to mesenchymal stem cells
(Wong et al., 2015). Responding to the stimuli and environmental
changes, pericytes may transform into multipotent stem cells
and differentiate into various cells including neural, vascular,
and glial cells (Dore-Duffy et al., 2006; Nakagomi et al.,
2015b; Pombero et al., 2016). Pericytes extracted from ischemic
mouse brain and human brain pericytes under oxygen-glucose
deprivation states develop stem properties in vitro (Nakagomi
et al., 2015a). Pericytes under ischemic condition in vivo and
in vitro are also reported to acquire a microglial phenotype
corresponding with increased phagocytic property (Özen et al.,
2014; Sakuma et al., 2016).

These phenotype changes of pericytes under stimulation can
be beneficial for the compensatory remodeling after brain injury
and ischemia, rapid response to infection and inflammation, and
clearing compromised cells or neurotoxic substances breaching
an impaired BBB. However, no multipotency of pericytes in aging
and injury in vivo has been reported, challenging the current
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view of pericytes as tissue-resident multipotent progenitors
(Guimaraes-Camboa et al., 2017).

Scar Formation
Central nervous system injury evokes the recruitment of astroglia
and scar formation. Pericytes and OPCs as well as astrocytes are
observed within glial scars. After spinal injury or ischemic stroke,
pericytes proliferate and migrate to the injured region and form a
glial scar (Göritz et al., 2011; Makihara et al., 2015; Dias et al.,
2018; Hesp et al., 2018). Extracellular matrix proteins, such as
periostin have shown to be expressed in the extracellular space of
the injury region, which induces pericyte proliferation and leads
to scar formation (Yokota et al., 2017). The glial scar around
the injury site forms a barrier between the injured and the non-
injured tissue to prevent further neuronal loss, which eventually
hinders the axonal regeneration in the scarred area (Zhu et al.,
2015; Anderson et al., 2016; Cheng et al., 2018; Dias et al., 2018).
Recent evidence has demonstrated that the glial scar can also
promote CNS regeneration after injury (Anderson et al., 2016),
suggesting a dual function. The complexity and heterogeneity of
the glial scar derived from different cell types (i.e., astrocytes,
pericytes, and OPCs) at various phases in CNS diseases remains
to be elucidated.

CROSS TALK OF PERICYTES WITH
VASCULAR CELLS AND GLIA

Endothelial Cells and Pericytes
Pericytes and endothelial cells are connected to a shared
basement membrane by several types of integrin molecules.
In areas lacking the basement membrane, interdigitations of
pericytes and endothelial cell membranes, called peg and socket
contacts, form direct connections by N-cadherin and connexin
43 (Armulik et al., 2005; Winkler et al., 2011b). The crosstalk
between pericytes and endothelial cells is indispensable for
angiogenesis, vascular stability, and BBB formation. For CNS
pericytes and endothelial cells, PDGFB/PDGFRβ, TGFβ, Notch,
VEGF, and S1P/S1PR1 signaling events are well investigated
(Darland et al., 2003; Paik et al., 2004; Gaengel et al., 2009; Walshe
et al., 2009; Liu et al., 2010; Li et al., 2011). ANGPT signaling
is investigated in the retinal endothelial cells and pericytes
(Winkler et al., 2011b).

In the angiogenesis of the mouse brain, PDGF-BB secreted
by endothelial cells recruits PDGFRβ-positive pericytes
and progenitor cells (Tallquist et al., 2003; Gaengel et al.,
2009). PDGFB signaling also stimulates pericyte proliferation
(Geranmayeh et al., 2019), and sustained PDGF-BB–PDGFRβ

signaling in the adult CNS is required for pericyte cell survival
(Geraldes et al., 2009; Bell et al., 2010).

TGFβ signaling is vital for microvessel stability affecting
both endothelial cells and pericytes. Endothelially secreted
TGFβ regulates differentiation of pericyte progenitors (Ribatti
et al., 2011) and induces pericyte contractile protein expression
and extracellular matrix production and facilitates proper
pericyte attachment in coordination with Notch signaling (Li
et al., 2011; Winkler et al., 2011a). Pericyte-derived TGFβ

contributes to endothelial maturation through SMAD signaling
(Winkler et al., 2011b).

Vascular endothelial growth factor produced by pericytes
and endothelial cells also shows reciprocal interaction (Sweeney
et al., 2016). Pericyte-derived VEGF in the mouse brain
promotes endothelial sprouting and cell survival (Franco et al.,
2011; Eilken et al., 2017). VEGF treatment enhances pericyte
coverage of brain endothelial cells with increased N-cadherin
production (Zechariah et al., 2013). VEGF induces proliferation
and migration of pericytes as well as endothelial cell stabilization
(Darland et al., 2003).

S1P is originally described as secreted by endothelial cells. Its
receptor, S1PR1 is expressed in mural cells including pericytes.
S1P secreted by endothelial cells is essential for pericytes
coverage in the mouse brain (Allende et al., 2003) and stabilizes
endothelial/pericyte cell adhesion through N-cadherin (Paik
et al., 2004; Gaengel et al., 2009) and maintains the BBB (Yanagida
et al., 2017). Human pericytes secrete S1P, which induces the
expression of adhesion proteins in human retinal endothelial cells
in vitro (McGuire et al., 2011).

ANGPT1 and ANGPT2 differently contribute to angiogenesis.
The ANGPT1 is mainly expressed in pericytes and ANGPT2
is mainly expressed in endothelial cells. The ligand of ANGPT,
TEK is mainly expressed in endothelial cells (Sundberg
et al., 2002). Pericyte-derived ANGPT1 activates endothelial
TEK and promotes endothelial survival (Geevarghese and
Herman, 2014). TEK is also expressed at lower levels by
pericytes and its downstream signaling in pericytes is essential
for angiogenesis (Teichert et al., 2017). In angiogenesis,
ANGPT2 was thought to antagonize ANGPT1, but later
was found to act as both agonist/antagonist of TEK
signaling in the endothelium (Yuan et al., 2009; Akwii
et al., 2019). ANGPT2 expressed by mouse endothelial
cells leads to the dissociation of TEK expressing pericytes
from vessels, which initiates endothelial cell sprouting
(Armulik et al., 2005).

Crosstalk between pericytes and endothelial cells is also
mediated by circular RNA. Diabetes-related stress up-regulates
a circular RNA, cPWWP2A (PWWP domain containing 2A)
expression in pericytes, which inhibit microRNA-579 and regulate
vascular integrity (Liu C. et al., 2019).

Astrocytes and Pericytes
The crosstalk between pericytes and astrocytes contributes to
BBB maintenance, NVC, and white matter attenuation under
chronic hypoperfusion (Bonkowski et al., 2011).

Pericytes facilitate the attachment of astrocyte endfeet to the
BBB (Ihara and Yamamoto, 2016; Geranmayeh et al., 2019) and
pericyte-deficient mice lose AQP4 in the endfeet of astrocytes
(Armulik et al., 2010). On the other hand, astrocytes control
pericyte migration, differentiation, and the juxtaposition of
pericytes to endothelial cells (Nakagawa et al., 2009; Yao et al.,
2014). Astrocyte-derived apolipoproteins differently regulate
cyclophilin A (CypA) signaling in pericytes, which controls BBB
integrity (Bell et al., 2012). In NVC, astrocytic calcium signaling
mediates capillary dilation via pericytes (Mishra et al., 2016;
Kisler et al., 2017a).
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Oligodendrocyte Precursor Cells and
Pericytes
Oligodendrocyte precursor cells (OPCs) have recently emerged
as one of the contributors to BBB. According to their regional
differences, OPCs can be divided into two subtypes, namely,
perivascular OPCs and parenchymal OPCs (Maki, 2017; Kishida
et al., 2019). In the human and mouse brain, perivascular
OPCs are attached to cerebral endothelial cells and pericytes
through basal lamina, and thereby are thought to become novel
components of the BBB (Seo et al., 2013; Maki et al., 2015). OPC-
specific TGFβ1 depleted mice exhibited cerebral hemorrhage
and loss of BBB function, showing the role of OPCs for BBB
maintenance through TGFβ1 signaling (Seo et al., 2014). In vitro
experiments have shown that OPC-derived factors increase
pericyte proliferation whereas pericyte-derived factors support
OPC self-renewal and differentiation (Maki et al., 2015, 2018). In
the developing mouse forebrain, pericyte-derived TGFβ family
proteins contribute to the migration and distribution of OPCs
in brain parenchyma (Choe et al., 2014), while perivascular
OPC migration to the vessels in the developing CNS requires
interaction with endothelium but not pericytes (Tsai et al., 2016).

In the adult mouse brain, pericytes respond to toxin-induced
demyelination in the brain and stimulate OPC differentiation
during remyelination through Lama2 (De La Fuente et al., 2017).
Pericyte-derived Lama2 also instructs neuronal stem cells to an
oligodendrocyte fate (Silva et al., 2019).

A recent report has shown that odor triggers rapid Ca2+

elevations in OPC processes before pericytes and SMCs
dilate the vessels responding to synaptic activation, suggesting
possible relationship between OPCs and pericytes in the NVC
(Rungta et al., 2018).

Microglia and Pericytes
Microglia have been regarded as the main executor of
inflammation after acute and chronic CNS disorders. The
interaction between microglia and vascular cells – including
pericytes – has important roles for vascular inflammation,
angiogenesis, and BBB integrity (Ding et al., 2018; Thurgur and
Pinteaux, 2019). Although endothelial cells are thought to be
the main source of cytokines and chemokines which trigger
microglial activation upon vascular inflammation, pericytes are
also known to be key mediators in this process. In response to
TNFα, rat brain pericytes in vitro produce IL6 and macrophage
inflammatory protein 1 (MIP1), which trigger microglial
activation (Matsumoto et al., 2014). Activated microglia disrupt
the BBB, which triggers angiogenesis (Dudvarski Stankovic et al.,
2016; Shigemoto-Mogami et al., 2018). In the mouse brain,
pericytes initially respond to the systemic inflammation within
2 h and secrete CCL2 before the response of astrocytes or
microglia (Duan et al., 2018). Given that CCL2 is also known
to activate microglia (He M. et al., 2016; Zhang et al., 2017)
and microglial process motility dynamics are altered 48 h
after systemic infection (Gyoneva et al., 2014), pericytes might
modulate microglial process motility and physical dynamics
around the vessels in response to infection. Furthermore,
pericytes themselves acquire a microglial phenotype after

ischemic stroke as mentioned above (Özen et al., 2014;
Sakuma et al., 2016). Conversely, pericytes also secrete several
anti-inflammatory substances such as IL33 and CX3CL1
(Rustenhoven et al., 2016, 2017; Yang et al., 2016), both of which
has shown promote anti-inflammatory microglial phenotype in
mouse models (Cardona et al., 2006; Fu et al., 2016).

Perivascular Macrophages and Pericytes
In the human and mouse brain, perivascular macrophages lie
under the basement membrane alongside pericytes (Fabriek
et al., 2005; Goldmann et al., 2016). Perivascular macrophages
maintain tight junctions between endothelial cells and limit
vessel permeability, phagocytose potential pathogens before
they enter tissues from the blood and restrict inappropriate
inflammation (Zenker et al., 2003). Although pericytes and
perivascular macrophages are localized close to each other
and possess shared functions including regulation of vascular
permeability and phagocytosis, little is known about how
pericytes interact with perivascular macrophages in the vascular
niche (Lapenna et al., 2018).

PATHOLOGICAL ROLES OF PERICYTES
IN CEREBROVASCULAR DISEASES
AND AD

Blood–brain barrier breakdown and microvessel dysfunction
has been observed in various CNS disorders such as small
vessel disease (SVD), ischemic acute stroke, intracerebral
hemorrhage, Alzheimer’s disease (AD), traumatic brain
injury (TBI)/chronic traumatic encephalopathy (CTE),
multiple sclerosis (MS), amyotrophic lateral sclerosis
(ALS), Lewy body diseases (LBD), and epilepsy (Winkler
et al., 2013; Coatti et al., 2019; Erdener and Dalkara, 2019;
Geranmayeh et al., 2019). In particular, pericyte dysfunction
is thought to be a critical factor for aggravating dementing
diseases such as vascular cognitive impairment/dementia
and AD (Sagare et al., 2013; Montagne et al., 2018;
Nikolakopoulou et al., 2019).

Cognitive impairment/dementia related to vascular pathology
is classified according to the causative vessel size, that is,
‘small vessel’ disease and ‘large vessel’ disease, although
their crosstalk would be essential for the pathogenesis
of both disorders (Ihara and Yamamoto, 2016). Cerebral
SVD contributes to a wide range of pathological processes,
which affect the small vessels including small arteries,
arterioles, venules, and capillaries in the brain (Østergaard
et al., 2016; Staszewski et al., 2017; Parkes et al., 2018).
In contrast, large vessel disease in the brain may result in
stroke and hemorrhage, which affect various type of arteries
(Nomura et al., 2018). Table 2 provides the roles of CNS
pericytes in health and disease focusing on cerebrovascular
diseases and AD.

Small Vessel Disease
SVD is characterized by pathological changes in the small
vessels with a diameter < 100 µm, with concentric smooth
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TABLE 2 | The roles of CNS pericytes in health and disease.

Pericyte functions Pericyte roles under pathological conditions References

SVD Stroke AD

BBB maintenance BBB breakdown and
white matter
attenuation

BBB breakdown and
causes hemorrhagic stroke

BBB breakdown
and white matter
attenuation

Armulik et al. (2010), Bell et al. (2010), Daneman
et al. (2010), Seo et al. (2014), Nikolakopoulou et al.
(2019), Stebbins et al. (2019)

Angiogenesis Compensatory
angiogenesis

Revascularization and
blood vessel stabilization

Liu et al. (2000), Zechariah et al. (2013), Durham
et al. (2014), Eilken et al. (2017), Teichert et al.
(2017), Berthiaume et al. (2018), Blocki et al. (2018)

Regulation of CBF
(neurovascular
coupling)

Capillary constriction and
no-reflow phenomenon
after stroke

Capillary
constriction and
CBF reduction

Yemisci et al. (2009), Bell et al. (2010),
Fernández-Klett et al. (2010), Hamilton et al. (2010),
Hall et al. (2014), Hill et al. (2015), Kisler et al.
(2017b), Cai et al. (2018), Khennouf et al. (2018)

Clearance of the
brain

Trap toxic substances Trap toxic substances Aβ clearance Armulik et al. (2010), Bell et al. (2010),Sagare et al.
(2013), Schultz et al. (2017), Ma et al. (2018)

Acquire microglial
properties

Özen et al. (2014), Sakuma et al. (2016)

Immunological
property

Release inflammatory
substances

Release of pro- and
anti-inflammatory
substances

Release
inflammatory
substances

Kovac et al. (2011), Proebstl et al. (2012),
Guijarro-Muñoz et al. (2014), Herland et al. (2016),
Rustenhoven et al. (2016), Ogura et al. (2017),
Duan et al. (2018), Matsumoto et al. (2018), Smyth
L.C.D. et al. (2018)

Stem cell-like
property

Change to microglia-like
cells and stem cells

Özen et al. (2014), Nakagomi et al. (2015a),
Sakuma et al. (2016)

Scar formation Astrogliogenesis Make barrier between
infarcted and intact area

Göritz et al. (2011), Makihara et al. (2015), Dias
et al. (2018), Hesp et al. (2018), Uemura et al.
(2018)

Aβ, amyloid beta; BBB, blood–brain barrier; CBF, cerebral blood flow.

muscle thickening in arterioles, as well as pericyte degeneration,
basal membrane thickening, endothelial, and astrocyte end-
feet swelling in capillaries (Craggs et al., 2014; Bosetti
et al., 2016; Østergaard et al., 2016). The slowly progressive
worsening of microcirculatory structure and function results
in white matter changes, which can be detected by magnetic
resonance imaging (MRI).

Small vessel disease is commonly known to be co-morbid
brain pathology in a wide range of neurodegenerative diseases
including CTE, MS, LBD, and diverse tauopathies including AD
(Erdener and Dalkara, 2019). In sporadic SVD, pericytes play
pivotal roles as they reside in the small vessels and contribute
to maintenance of the BBB, vascular integrity, inflammation, and
angiogenesis. Chronic hypoperfusion in the rodent brain results
in degeneration of pericytes and decreased pericyte coverage in
brain blood vessels, and increased BBB permeability followed
by white matter attenuation (Ueno et al., 2002; Liu Q. et al.,
2019). Pericyte-deficient mice also cause circulatory failure in
the brain which can trigger white matter functional deficits
and neuronal loss (Bell et al., 2010; Montagne et al., 2018;
Nikolakopoulou et al., 2019).

A leaky BBB allows for the extravasation of toxic-blood
derived products such as fibrinogen, which accumulates around
the vasculature as insoluble fibrin (Bell et al., 2010; Montagne
et al., 2018; Nikolakopoulou et al., 2019). Fibrinogen/fibrin
infiltration results in clustering and activation of macrophages
and microglia as well as chemokine- and antigen presentation-
mediated recruitment and activation of T cells, causing axonal

degeneration (Davalos et al., 2012; Ryu et al., 2015). Pericytes
produce numerous pro-inflammatory mediators including
reactive oxygen/nitrogen species (ROS/RNS), which induces
neurons to undergo stress-induced apoptosis (Rustenhoven
et al., 2017). This pro-inflammatory status in the vessels induces
leukocyte adhesion and microglial activation (Matsumoto et al.,
2018; Erdener and Dalkara, 2019). Under chronic hypoperfusion,
bone morphogenetic protein 4 (BMP4) expression is increased
by pericytes, which induces astrogliogenesis and aggravates white
matter attenuation (Uemura et al., 2018).

Chronic hypoperfusion induces compensatory angiogenesis
by increasing the expression of angiogenetic factors such as
VEGF, ANGPT1/2, and MMP9 (Jian et al., 2003; Ohtaki
et al., 2006; Min-Soo et al., 2018). VEGF and ANGPT1
promote sprouting and proliferation of endothelial cells, and
recruitment of pericytes (Shane and Didier, 2011). MMP9
regulates the detachment of pericytes from vessels thereby
triggering angiogenesis (Joyce, 2005).

The importance of pericytes in SVD may be emphasized
by the fact that one of the most common inherited cerebral
SVD, cerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy (CADASIL),
shows aggregation of mutant Notch3 protein around capillary
pericytes as well as arteriolar SMCs (Ihara and Yamamoto,
2016). Pericytes express Notch3 and are first affected by Notch3
aggregation in Notch3R169C mice, suggesting pericytes might be a
main contributor in the pathogenesis of CADASIL (Ghosh et al.,
2015). A recent study, however, has shown no change in pericyte
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coverage in the white matter lesion of CADASIL patients nor
Notch3R169C mice, arguing against the prevailing hypothesis that
pericyte loss is the primary driver of white matter lesions (Rajani
et al., 2019). The jury is still out on the contribution of pericytes
to the white matter damage.

Cerebral Ischemic Stroke
Residing in the microvessels, pericytes have a great influence on
the condition of the brain following acute ischemic stroke caused
by thrombosis or embolism affecting larger vessels. The biological
roles of pericytes, such as regulation of CBF, BBB maintenance,
inflammation and immunological properties, angiogenesis, and
scar formation are all involved in the status of the ischemic brain
(Gautam and Yao, 2018).

During arterial obstruction, pericytes positioned on the
proximal capillaries constrict the vessels and impede capillary
blood flow, which lasts even after arterial recanalization,
developing a no-reflow phenomenon (Dalkara and Arsava, 2012;
Gursoy-Ozdemir et al., 2012; Hall et al., 2014, Hill et al., 2015).
The debate about whether these cells are pericytes or SMCs was
discussed above.

During stroke, BBB permeability is increased, and sustained
ischemia leads to increased BBB disruption (Simpkins et al.,
2016). Severe BBB disruption during stroke increases the risk
of hemorrhage in patients treated with intravenous tissue-type
plasminogen activator (Deguchi et al., 2014). During ischemia,
as in SVD, ROS production and MMP9 up-regulation in
pericytes contribute to BBB breakdown. An enzymatic source of
ROS production, nicotinamide adenine dinucleotide phosphate
oxidase 4 (NOX4), is highly up-regulated by pericytes in the
peri-infarct region of the mouse brain subjected to middle
cerebral artery occlusion (MCAO), and overexpression of NOX4
in pericytes induces BBB breakdown by up-regulating MMP9
(Nishimura et al., 2016). Pericytes also directly release MMP9
during ischemia, which interrupts the tight junctions between
endothelial cells and the binding of astrocyte endfeet to the
vascular wall (Underly et al., 2017). VEGF up-regulation by
pericytes under ischemic conditions has also been reported to
disrupt the BBB in vitro and in vivo (Zheng Gang et al., 2000;
Bai et al., 2015), and this triggers further angiogenesis. However,
a report has shown that prolonged exposure to VEGF enhances
post-ischemic BBB integrity and reduces infarct volume in mice
subjected to transient MCAO (Zechariah et al., 2013). Thus,
VEGF might have a pluripotent role in BBB integrity according
to the dosage and timing of its release.

Pericytes might also play a role in regulating ischemia-
induced leukocyte infiltration as pericytes express cell surface
adhesion molecules and induce leukocyte transmigration in
response to inflammatory mediators (Balabanov et al., 1999;
Pieper et al., 2013; Stark et al., 2013). Pericytes express ICAM-
1, which guide leukocyte migration through gaps between
pericytes by interacting with the integrin ligands on leukocytes
(Proebstl et al., 2012).

Aside from these detrimental roles, pericytes play a beneficial
role in ischemic stroke via promoting angiogenesis and scar
formation. During MCAO-inducing ischemia in the mouse
brains, pericytes are recruited from the periphery as well as

parenchyma, and are involved in angiogenesis and blood vessel
stabilization (Renner et al., 2003; Kokovay et al., 2006). Pericyte
migration to the infarcted area forming the core of the scar,
which is distinct from the astroglial scar surrounding the core
(Fernández-Klett et al., 2013). Consistent with that, Pdgfrb+/−
mice demonstrated decreased fibrosis in the ischemic area and
enlarged infarct volume (Makihara et al., 2015). Although glial
scar formation is beneficial to prevent toxic substances from
spreading, it should be noted that excessive or long-lasting
glial scar formation inhibits axonal regeneration and stalls the
recovery process (Dias et al., 2018). Furthermore, detachment of
pericytes from capillaries allows them to migrate toward ischemic
region thereby causing further leakage of the BBB. The same
is true of angiogenesis. While angiogenesis increases the blood
supply to the peri-infarct area, insufficient angiogenesis results in
leaky blood vessels leading to brain hemorrhage (Kuhnert et al.,
2010; Cullen et al., 2011).

Alzheimer’s Disease
AD is the most prevailing dementia among the elderly and
is defined pathologically by the presence of Aβ accumulation
in brain parenchyma as Aβ plaque and aggregation of
hyperphosphorylated tau as neurofibrillary tangles as well as
neuritic plaques and neuropil threads. Aβ also accumulate in the
vessels as cerebral amyloid angiopathy (CAA). Recently, it has
been increasingly recognized that the decreased CBF and white
matter attenuation associated with BBB breakdown correlates
with the accumulation of AD pathology, and contributes to the
onset and progression of dementia (Iturria-Medina et al., 2016;
Leijenaar et al., 2017; Park et al., 2019). CBF reduction, BBB
breakdown in the hippocampus, and an increase in PDGFRβ

level in the CSF occur even in the very early stages of cognitive
impairment (Iris et al., 2007; Montagne et al., 2015; Iturria-
Medina et al., 2016; Nation et al., 2019) as well as later stages
of AD (Miners et al., 2019). In AD patient brains, microvessels
are frequently narrowed and irregular in diameter especially
in the vicinity of the senile plaques, which is accompanied by
decreased capillary bed densities (Kitaguchi et al., 2007). Some
vessels in these area are collapsed with lacking endothelial cells,
and do not carry blood flow, called string vessels (Hunter et al.,
2012). In the mouse brain, infusion of Aβ caused endothelin-1
(ET1) upregulation in cerebral vasculature through receptor for
advanced glycation end products (RAGE), which contributes to
Aβ-induced CBF reduction (Deane et al., 2003). CBF reduction
accompanied by increased vascular RAGE and ET1 is also
observed in Tg2576 mice, which is ameliorated by blocking
Aβ and RAGE binding (Deane et al., 2003). A recent study
has shown that capillaries in the AD brains are constricted by
pericytes, which causes a decrease in CBF (Nortley et al., 2019).
In rat brains, Aβ oligomer-induced ROS triggers the release
of ET1 to stimulate pericytes contraction and CBF reduction
(Nortley et al., 2019). AD patients also show a decrease in pericyte
coverage with an increase in extravascular immunoglobulin G
and fibrin deposition (Sengillo et al., 2013). The apolipoprotein
E4 genotype, which is a major genetic risk factor for late-
onset AD, leads to pericyte loss and enhances CypA-MMP9
pathway of BBB degradation (Halliday et al., 2016). Pericytes
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express LRP1 and other Aβ-binding receptors such as the low
density lipoprotein receptor (LDLR), RAGE, and CD36 in brains
with AD pathology including CAA (Zenaro et al., 2017). Aβ

accumulation in pericytes is observed in human AD brains
and in the brains of APPsw/0 mice (Ma et al., 2018). At the
ultrastructural level of AD brains, pericytes are disorganized and
exhibit mitochondrial abnormalities, pinocytotic vesicles, and
accumulation of osmophilic material (Farkas and Luiten, 2001;
Baloyannis and Baloyannis, 2012).

Loss of BBB integrity caused by pericyte deterioration may
induce an influx of immune cells into the brain, driving
inflammation, and CBF stagnation and thereby impairing Aβ

clearance, all of which aggravate AD pathology (Mazza et al.,
2011; Kinney et al., 2018). Indeed, both the depletion of
pericytes in the APPsw/0 mice (APPsw/0; Pdfgfb+/−) (Sagare et al.,
2013) and chronic cerebral hypoperfusion in the APPSwInd Tg
mice (Kitaguchi et al., 2009; Yamada et al., 2011) aggravate
AD pathology such as increasing Aβ deposition and tau
phosphorylation followed by neuronal loss. Notably, a high-fat
diet, which leads to vascular related diseases, exacerbates AD
pathology accompanied by pericyte dysfunction in the APPsw/PS1

mice (Theriault et al., 2016).
Although Aβ is toxic to the pericytes, pericytes basically

take an active part in the clearance of Aβ by phagocytosis and
translocation through BBB (Winkler et al., 2014; Alla et al.,
2019). Pericytes clear Aβ aggregates via an LRP1/ApoE isoform-
specific mechanisms, suggesting a potential therapeutic target
for controlling Aβ clearance in AD (Winkler et al., 2014;
Ma et al., 2018).

THERAPEUTIC STRATEGIES FOCUSING
ON PERICYTES

Since pericytes have multifunctional properties and contribute
to the various neurological disorders, pericytes as a therapeutic
target, can be approached from various aspects: (1) prevention
of BBB dysfunction, (2) promoting angiogenesis and vascular
stability, (3) reduction of pericyte constriction under pathological
condition, (4) up-regulation of Aβ clearance, (5) control of
inflammation, (6) implantation therapy through multipotential
stem cell properties, and (7) regulation of proper scar formation.

As the BBB tightly restricts the passage of substances into the
CNS, it is challenging to deliver drugs from blood circulation
into the brain. Therefore, the delivery methods which enable the
drugs to pass through BBB may be beneficial as exemplified by
encapsulating drugs in liposomes or nanoparticles (Gaudin et al.,
2014; Fullstone et al., 2016; Zhou et al., 2018).

Prevention of BBB Dysfunction,
Promoting Angiogenesis, and Vascular
Stability
Loss of pericytes and BBB dysfunction are common in a variety
of neurological disorders including cerebrovascular diseases
and AD. Thus, promoting the interaction of pericytes and
endothelial cells by regulating PDGFB/PDGFRβ, TGFβ, Notch,

ANGPT/TEK, and VEGF signaling could be therapeutic by
preventing BBB dysfunction and facilitating proper angiogenesis
and vascular stability. For instance, increasing PDGF-BB in
the endothelial cells and/or PDGFRβ in the pericytes could
boost pericyte proliferation and migration to microvessels while
increasing TGFβ signaling could promote pericyte proliferation
and attachment to the vessels (Winkler et al., 2011b). Indeed,
administration of TGFβ showed increased BBB formation
under ischemic condition in vitro and in vivo (Shen et al.,
2019). VEGF treatment was also shown to enhance post-
ischemic BBB integrity and reduce infarct volume in rodent
models of MCAO (Zheng Gang et al., 2000; Zechariah
et al., 2013). Recently, regulating RNA for maintaining the
BBB has been investigated and overexpression of cPWWP2A
or silencing microRNA-579 expression promoted pericyte-
endothelial cell crosstalk and microvascular stability (Liu C.
et al., 2019). Administration of microRNA-149-5p attenuated BBB
permeability and improved the outcomes of rat subjected with
transient MCAO (Wan et al., 2018).

Reduction of ROS and MMP9 should also prevent pericyte-
mediated BBB breakdown. A recent study observed that MMP9
inhibitors reduced pericyte-associated BBB leakage (Underly
et al., 2017). A free radical scavenger edaravone has been
sown to ameliorate brain damage after ischemia via pericyte-
mediated angiogenesis and vessel stability (Deguchi et al., 2014).
Further, cilostazol – a phosphodiesterase 3 inhibitor – promoted
angiogenesis through pericyte proliferation with inhibition of the
MMP9, which maintained vascular integrity in spontaneously
hypertensive stroke prone (SHR-SP) rat (Omote et al., 2014)
while cilostazol also ameliorated cerebral hemorrhage in mice by
protecting the BBB (Takagi et al., 2017), suggesting cilostazol has
additional effects of vascular stability aside from antithrombosis.

Reduction of Capillary Constriction by
Pericytes Under Ischemia or Aβ

Accumulation
Since the no-reflow phenomenon hampers the tissue recovery
after recanalization in the arteries, researchers have tried to find
clues to prevent capillary constriction by pericytes after ischemia.
These ischemia-induced pericyte contraction have shown to
be relieved by suppressing ROS/RNS (Yemisci et al., 2009;
Deguchi et al., 2014; Hall et al., 2014), removal of external
Ca2+ (Hall et al., 2014), or administration of adenosine and
sodium nitroprusside (Neuhaus et al., 2017; O’Farrell et al., 2017).
Capillary constriction by pericytes and CBF reduction are also
observed in AD brains, which may aggravate cognitive decline.
Aβ infusion into mouse brain causes RAGE-ET1 mediated
CBF reduction, similar to the CBF reduction observed in aged
Tg2576 mice (Deane et al., 2003). Furthermore, a RAGE-
specific inhibitor recovered CBF and lowered the Aβ burden
in APPsw/0 mice (Deane et al., 2012). Aβ oligomers induce
pericyte constriction by ROS mediated ET1 release (Nortley
et al., 2019). This Aβ-evoked constriction was reversed by
applying the vasodilator C-type natriuretic peptide and could be
halted by blocking NOX4 or ET1 receptors, suggesting potential
therapeutic target for CBF reduction in AD.
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Up-Regulation of Aβ Clearance
Because pericytes take up Aβ, then degrade or excrete it into the
circulation, boosting pericyte function could be therapeutic target
for Aβ clearance in AD. Consistent with that, pericyte loss in
the APPsw/0 mice showed increased Aβ accumulation and tau
phosphorylation (Sagare et al., 2013). Pericytes internalize and
clear aggregated Aβ by LRP1-dependent ApoE isoform-specific
mechanism (Ma et al., 2018), highlighting up-regulation of LRP1
as a therapeutic target for Aβ clearance.

Control of Inflammation
Neuroinflammation is present in almost all neurological diseases.
Pericytes release both pro-inflammatory and anti-inflammatory
mediators and regulate recruitment of immune cells from
the blood to the brain parenchyma. Although inflammation
may have some positive aspects such as immunoprotection
against pathogens, clearance of toxic substances, and support of
angiogenesis, excessive inflammation causes BBB leakage, tissue
damages and neuronal loss.

Targeting ROS-mediated inflammation is a feasible
therapeutic target in terms of suppressing release of pro-
inflammatory cytokines by pericytes with preventing pericyte
loss and BBB dysfunction. A free radical scavenger edaravone
has been sown to ameliorate brain damage after ischemia
(Deguchi et al., 2014). Targeting receptor or downstream
signaling stimulated by pericyte-secreted cytokines may also be
potential therapeutic target. Blocking pericyte-derived BMP4 by
its receptor antagonist noggin treatment was shown to suppress
astrogliogenesis and alleviate white matter damage resulting
from chronic cerebral hypoperfusion (Uemura et al., 2018).
Targeting transcription factors that regulate immune functions
following inflammatory insults might be another option to
suppress the detrimental effects of inflammation.

Implantation Therapy, Application of
Multipotential Stem Cell Properties
Implantation of mesenchymal stem cell-derived pericytes in
mice that model AD plaque pathology reduces the Aβ burden,
demonstrating the possibility of cell-based therapy for AD
treatment (Tachibana et al., 2018). Easy accessibility of pericytes
for autologous transplantation highlights their capabilities for
future therapeutic studies (Geranmayeh et al., 2019). Since
pericyte-like cells derived from induced pluripotent stem cells
(iPSC) acquire BBB properties and are incorporated with
iPSC-derived endothelial cells, astrocytes and neurons (Faal
et al., 2019; Stebbins et al., 2019), iPSC-derived pericytes
might also be promising for implantation therapy of AD
and other neurological disorders. Pericytes themselves have
been shown to acquire stem cell-like and microglial properties
after ischemia (Özen et al., 2014; Nakagomi et al., 2015a),
which offers another potential therapeutic target for recovery
form CNS diseases.

Regulation of Proper Scar Formation
As discussed above, scar formation in the ischemic brain
and brain/spinal cord injury has pluripotent effects on diverse

CNS conditions. While the scar formation by pericytes and
glia play fundamental roles in promoting angiogenesis and
tissue remodeling (Hesp et al., 2018), reducing pericyte-
derived scar formation has been reported to promote axonal
regeneration and recovery from spinal cord injury (Dias
et al., 2018). Administration of periostin-neutralizing antibody,
which suppresses pericyte-induced scar formation, ameliorates
functional recovery after spinal cord injury (Yokota et al., 2017),
but further studies are needed to demonstrate the therapeutic
potential of these strategies including the appropriate timing and
degree of intervention.

CONCLUSION

All CNS cells and tissues need a blood supply coming from
outside the brain. Located at the interface between CNS tissue
and blood circulation and having multi-functional properties,
pericytes play a variety of fundamental roles in the healthy
CNS. As a result, pericytes offer many opportunities for
therapeutic intervention in a broad range of neurological
disorders, including cerebrovascular disorders and AD. Vascular
cognitive impairment/dementia and AD account for more than
3/4 of dementing diseases, and vascular pathology is often
observed in a various neurodegenerative disease, especially in
AD, where pericytes are thought to contribute. With increasing
knowledge about the molecular mechanisms operating in
pericytes and their crosstalk with neighboring cells, the targeting
pericytes as a therapeutic strategy has become increasingly
important and research on this topic is likely to accelerate
more in the future.
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