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Background: Physical activity closely relates to cognition and brain structure as we
age. However, the neural mechanisms underlying this relationship in humans remain
less clear. Functional connectivity (FC), measured by task-free functional MRI (tf-fMRI)
is a dynamic marker of network activity and may be a sensitive indicator of the brain’s
response to exercise over time. We aimed to test the longitudinal relationship between
physical activity and FC trajectories in functionally normal older adults.

Methods: Two hundred and twelve functionally normal, longitudinally-followed older
adults completed the Physical Activity Scale for the Elderly (PASE) and tf-fMRI scans
at each visit [mean = 1.5 visits (range:1–3)]. We studied FC of the default mode network
(DMN), frontal-parietal (FP), subcortical networks (SubCort), and frontal-subcortical
inter-network connectivity (FS), given that previous studies implicate these regions in
age-related changes. Linear mixed-effects models examined the relationship between
within-person changes in PASE and FC (in SD units), covarying for age, sex, education
and systemic cardiovascular risk factors (heart rate, BMI and systolic blood pressure).
We additionally examined models covarying for DTI fractional anisotropy (FA) and mean
diffusivity (MD) of tracts underlying networks of interest, as a marker of cerebrovascular
disease. Furthermore, we examined the longitudinal relationship between PASE and
neuropsychological trajectories.

Results: In our first model, within-subject increases in physical activity tracked with
increasing SubCort (β = 0.33, p = 0.007) and FS inter-network (β = 0.27, p = 0.03)
synchrony, while between-subject parameters did not reach significance (β = −0.042 to
−0.07, ps> 0.37). No significant longitudinal associations were observed between PASE
and DMN (β = −0.02 p = 0.89) or FP networks (β = 0.15, p = 0.23). Adjusting for
markers of cerebrovascular health (FA/MD) did not change estimated effects (SubCort:
β = 0.31, p = 0.01, FS inter-network: β = 0.28, p = 0.03). Associations between changes
in physical activity and neuropsychological trajectories were small (β = −0.14 to 0.002)
and did not reach statistical significance (p-values >0.42).

Frontiers in Aging Neuroscience | www.frontiersin.org 1 April 2020 | Volume 12 | Article 104

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2020.00104
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2020.00104&domain=pdf&date_stamp=2020-04-28
https://creativecommons.org/licenses/by/4.0/
mailto:kaitlin.casaletto@ucsf.edu
https://doi.org/10.3389/fnagi.2020.00104
https://www.frontiersin.org/articles/10.3389/fnagi.2020.00104/full
https://loop.frontiersin.org/people/856715/overview
https://loop.frontiersin.org/people/626579/overview
https://loop.frontiersin.org/people/906399/overview
https://loop.frontiersin.org/people/602020/overview
https://loop.frontiersin.org/people/607042/overview
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Dorsman et al. Physical Activity and Functional Connectivity

Conclusions: Our findings suggest that changes in exercise over time are specifically
associated with frontal-subcortical processes in older adults. This relationship appears to
be independent of cardio- or cerebrovascular disease, possibly driven by a more direct
neural response to exercise.

Keywords: brain health, physical activity, neuroplasticity, neuroimaging, functional MRI, functional connectivity

INTRODUCTION

Cognitive decline is a public health issue of global proportions,
as rates of dementia are rapidly increasing around the world.
Currently, about 50 million people are living with dementia,
and this number is projected to increase threefold in the
next 30 years (Adams et al., 2005; Patterson, 2018). The
burden of cognitive decline is pervasive, affecting individuals,
families, communities, and society at large. As such, it is
increasingly important to identify protective factors of cognitive
aging decline, so that empirically-based primary and secondary
prevention strategies can be developed. Physical activity has
been identified as one of the most potent modifiable lifestyle
factors to be associated with brain health in aging. While the
evidence is mixed, with some studies suggesting that exercise
may not benefit cognitive outcomes (van Uffelen et al., 2008;
Young et al., 2015; Zuniga et al., 2016; Lamb et al., 2018),
meta-analytic reviews and several large-scale epidemiological
works have demonstrated that engaging in regular physical
activity is consistently linked to a reduced risk of cognitive
impairment and dementia (Laurin et al., 2001; Young et al.,
2015; Northey et al., 2018). For instance, individuals who engage
in higher levels of physical activity are estimated to have an
approximately 25% lower risk of developing dementia (Hamer
and Chida, 2009), and greater physical fitness in midlife is
associated with delayed onset of dementia by up to 9.5 years
(Hörder et al., 2018). Furthermore, randomized controlled
studies make a case for a causal relationship between physical
activity and cognition (Erickson et al., 2011), encouraging the
implementation of exercise-related intervention strategies across
the life span. This is especially appealing because there are
countless ways to move, and being active does not necessarily
require special equipment, social support, or financial assets.
Thus, no matter the socioeconomic status of a community
or an individual, an exercise intervention may be attainable.
As evidence shows that the rising rates of dementia are most
prevalent in low- and middle-income countries (Patterson,
2018), the possibility of developing low-cost prevention strategies
is of particular interest.

Although various studies have identified physical activity as
a possible primary preventive protective factor for brain health
(Yaffe et al., 2001; Blondell et al., 2014; Daskalopoulou et al.,
2017), the mechanisms by which physical activity affect cognitive
function are not fully understood. Until recently, it was thought
that physical activity was beneficial to brain health by means of
reducing the impact of known risk factors, such as cardiovascular
and cerebrovascular disease, stroke or diabetes. However, there
is a growing body of literature from human and animal studies
that indicates that the benefits may be more direct, involving the

promotion of synaptogenesis, neuroplasticity, and growth and
survival of neurons, as well as the reduction of inflammation and
stress (Macpherson et al., 2017; Mattson and Arumugam, 2018).

The field of cognitive aging is constantly seeking more reliable
biomarkers that accurately reflect the brain’s functioning and can
help us better understand the mediating pathways of protective
and/or risk factors that impact brain structure and functioning.
Task-free Functional Magnetic Resonance Imaging (tf-fMRI),
also referred to as ‘‘resting-state fMRI,’’ is a widely-used tool to
explore the integrity and function of large-scale brain networks.
Functional connectivity (FC) is one factor that has been reported
to be affected by the aging process. It is thought to reflect typical
cognitive changes in aging (Onoda et al., 2012; Geerligs et al.,
2015), including associations with episodic memory, processing
speed and working memory (Andrews-Hanna et al., 2007;
Siman-Tov et al., 2017; Staffaroni et al., 2018). Previous literature
has documented disruptions in major large-scale networks
during aging in the absence of disease; however, these findings
have focused mostly on the default mode network (DMN) and
its connections to other regions.

Previous studies on the effects of physical activity on the
brain have typically focused on structural changes, and most are
based on short-term interventional studies (Stillman et al., 2019).
More recently, some interventional, tf-fMRI-based studies have
shed light on how connectivity is affected by physical activity.
For example, in a 12-week physical activity intervention, the
relationship between the primary motor regions and the DMN
were found to be associated with better motor performance
(McGregor et al., 2018), and after 6 months of moderate-
or high-intensity aerobic exercise, older adults with amnestic
mild cognitive impairment (MCI) showed increased FC in the
prefrontal cortex (Hugenschmidt et al., 2017). However, there
is currently not sufficient longitudinal data to allow us to
understand physical activity’s long-term effects on FC.

In the present study, we examined the longitudinal
relationship between FC and self-reported changes in physical
activity in community-dwelling older adults. Given that the
DMN, the frontal-parietal network (FPN, also known as the
central executive network), and the subcortical network (SN)
are widely-examined networks that are associated with abilities
such as introspection, executive function, and motor function,
respectively, we focused our preliminary investigations on
connectivity within these three networks. We hypothesized that
an increase in exercise would relate to increased synchrony
within these networks. By providing longitudinal data on the
relationship between physical activity and the brain’s FC, we
hope to inform how this widely-accessible modifiable lifestyle
factor may impact brain health, and how FC could be used to
track those changes.
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MATERIALS AND METHODS

Participants
In this study, we included 212 older adults who were
longitudinally-followed in the Hillblom Healthy Aging Study
at the UCSF Memory and Aging Center (see Table 1). The
Hillblom Aging Network cohort consists of neurologically-
and functionally-intact, community-dwelling older adults. The
UCSF Committee on Human Research approved the study
protocol and, per their guidelines, all subjects provided
written, informed consent. During the initial screening visit,
participants underwent a comprehensive neurological and
neuropsychological clinical examination. An interdisciplinary
team reviewed each case to confirm clinically-normative status.
Subjects were assigned a clinical dementia rating (CDR) based
on a semi-structured interview with a collateral source. The CDR
is a global clinical scale with established diagnostic capabilities,
designed to evaluate cognitive performance regarding an
individual’s functioning in everyday tasks, with an average global
score ranging from 0, indicating no impairment, to 3, indicating
severe disability. Exclusion criteria for the Hillblom Aging
Network cohort includes a CDR above 0, and/or a diagnosis
of dementia, MCI, other neurological conditions, or severe
mental or psychiatric disorders (such as stroke, brain tumor,
schizophrenia, major depressive disorder, active substance use
disorder, or bipolar disorder).

Physical Activity
Physical activity was measured using the Physical Activity Scale
for the Elderly (PASE), a validated measure of self-reported
activity levels for the geriatric population. This measure was
developed in older adults and asks participants to describe their
physical activity engagement over 7 days, including questions
aimed to assess duration, frequency, exertion level, and amount
of physical activity. A composite score was calculated according
to the scoring manual (Washburn et al., 1993). PASE scores
in the current sample ranged from 0 to 361 (possible scores
range 400+), with higher scores indicating higher levels of
physical activity.

Neuroimaging
MRI acquisition
Subjects were scanned at the UCSFNeuroscience Imaging Center
on a Siemens Trio 3T scanner. A T1-weighted MP-RAGE
structural scan was acquired with an acquisition time = 8 min
53 s, sagittal orientation, a field of view of 160 × 240 × 256 mm
with an isotropic voxel resolution of 1 mm3, TR = 2,300 ms,

TABLE 1 | Population demographics.

Mean (SD or range) or Count (%)

Sample size 212
Number of observations 320
Female 108 (51%)
Average number of visits 1.5 (1–3)
Age 73.3 (6.2)
Years education 17.4 (2.2)
PASE scores 126.2 (64.1)

TE = 2.98 ms, TI = 900 ms, flip angle = 9◦. Task-free
T2*-weighted echoplanar fMRI scans were acquired with an
acquisition time = 8 min 06 s, axial orientation with interleaved
ordering, the field of view = 230 × 230 × 129 mm, matrix
size = 92 × 92, effective voxel resolution = 2.5 × 2.5 × 3.0 mm,
TR = 2,000 ms, TE = 27 ms, for a total of 240 volumes. During
the 8-min tf-fMRI acquisition protocol, participants were asked
to close their eyes and concentrate on their breath.

fMRI Preprocessing
fMRI processing and network construction has been previously
described in greater detail (Ashburner, 2007; Ashburner and
Ridgway, 2013; Staffaroni et al., 2018). For each fMRI scan, the
first five volumes were discarded. SPM121 and FSL2 software
were used for subsequent fMRI preprocessing (Ashburner and
Friston, 2005; Jenkinson et al., 2012). The remaining 235 volumes
were slice-time corrected, realigned to the mean functional
image and assessed for rotational and translational head motion.
Volumes were next co-registered to the MP-RAGE image,
then normalized to the standard MNI-152 healthy adult brain
template using the SPM segment, producing MNI-registered
volumes with 2mm3 isotropic resolution. These volumes were
spatially smoothed with a 6-mm radius Gaussian Kernal and
temporally bandpass filtered in the 0.008–0.15 Hz frequency
range using fslMaths. Nuisance parameters in the preprocessed
data were estimated for the cerebrospinal fluid (CSF) using
a mask in the central portion of the lateral ventricles and
for the white matter using a mask of the highest probability
cortical white matter as labeled in the FSL tissue prior mask.
Additional nuisance parameters included the three translational
and three rotational motion parameters, the temporal derivatives
of the previous eight terms (WM/CSF/6motion), and the squares
of the previous 16 terms (Satterthwaite et al., 2013). Subjects
were included only if they met all of the following criteria: no
inter-frame head translations greater than 3 mm, no inter-frame
head rotations greater than 3◦, and less than 24 motion spikes
(defined as inter-frame head displacements> 1 mm), 10% of the
total frames.

Regions with insufficient fMRI BOLD signal to noise ratio
were excluded using a previously described procedure (Staffaroni
et al., 2018). Based on this procedure, we dropped nine scans
and 45 nodes (which were excluded before deriving network
metrics). Those excluded nodes that were part of the DMN
networks were: left frontal medial cortex (47), right frontal
pole (48), left inferior (95) and middle (81) temporal gyri,
posterior divisions. Excluded nodes from the frontoparietal
network included posterior, temporal gyrus (99, 101), the right
frontal pole (46), and right inferior temporal gyrus (100, 102),
and cerebellar regions (255, 258). Numbers in parentheses
correspond to the nodes in the Brainnetome atlas (Fan et al.,
2016). No subcortical nodes were excluded.

Network Construction
Functional networks were defined in a data-driven fashion
using a set of 75 healthy older adult control subjects (our
‘‘Hillblom Aging Network’’ group; mean age = 65.3 ± 10.0 years,

1http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
2http://fsl.fmrib.ox.ac.uk/fsl
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33 females/42 males, mean education = 17.3 ± 2.1 years, 68 right
handed/7 left-handed), scanned and analyzed using the same
pipeline as the subjects in the longitudinal portion of this
study. The details of our process have been described elsewhere
(Staffaroni et al., 2018). Briefly, we utilized a modularity-based
method for identifying which nodes comprised each module
or ‘‘intrinsic connectivity network,’’ adopting a strategy that
is conceptually similar to that used by Power et al. (2011),
implementing the Brain Connectivity Toolbox3. Of the 418 time
points for Hillblom Aging Network controls with PASE data and
MRI scans, 341 scans were included in the primary analysis.
18 were removed pre-resting state (due to missing imaging
acquisitions, sleep, scanner issues, or abnormalities such as
temporal lobe cysts), 16 were removed pre-processing (due to
coregistration failure, melodic failure, T1/coregistration failure,
or missing data), 34 were removed due to motion, and nine were
removed due to insufficient BOLD signal as described above.
In Hillblom subjects, we determined the whole-brain functional
connectome using 228 regions from the Brainnetome atlas
(Fan et al., 2016). Networks analyzed in this study included
the DMN, Frontoparietal, and Subcortical networks. For each
participant, we calculated four mean FC values by taking the
mean of the edges between all nodes within (Intra-) or between
networks: (1) Intra-DMN; (2) Intra-Frontoparietal; (3) Intra-
Subcortical; and (4) Cortico-Subcortical (between subcortical
and frontoparietal networks).

Diffusion Tensor Imaging (DTI)
Our DTI pipeline has been described previously (Elahi et al.,
2017). Briefly, FSL software (Jenkinson et al., 2012) was
used to co-register the diffusion direction images with the
b = 0 image, then a gradient direction eddy current and distortion
correction were applied. Diffusion tensors were calculated using
a non-linear least-squares algorithm from Dipy (Garyfallidis
et al., 2014). After quality control, participants’ tensors were
registered linearly and non-linearly into a common space using
DTI-TK (Zhang et al., 2006).

Neuropsychological Outcomes
Composite Cognitive Measures
Composite measures were used to summarize
neuropsychological performance across domains. Episodic
memory was assessed using the Benson Figure Recall (Kramer
et al., 2003), a measure of visual memory, and subscores of
the California Verbal Learning Test, second edition (CVLT-II;
Delis et al., 2000): immediate recall total, long (20 min) delay
free recall total, and recognition discriminability (d’). Executive
functions were evaluated with the Stroop interference test
(Stroop, 1935), modified Trail Making Test (Kramer et al.,
2003), lexical fluency (D-words/min; Kramer et al., 2003), digit
span backward (Wechsler, 1997), and Design Fluency (D-KEFS
Condition 1; Delis et al., 2001). Processing speed was assessed
using six computerized visuospatial processing speed tasks that
have been previously described elsewhere (Kerchner et al., 2012;
Casaletto et al., 2019).

3https://sites.google.com/site/bctnet/

Cardiovascular Covariates
As part of the neurological examination, subjects completed
vital measurements that have been identified as risk factors for
dementia and may be indicative of brain health, including height
and body weight [which were used to calculate body mass index
(BMI)], resting heart rate, and resting blood pressure.

Brain Structure Covariates
To determine the relative independence of the relationship
between physical activity and fMRI connectivity from white
matter changes (as a proxy for cerebrovascular health) or gray
matter atrophy in the queried networks, we then extracted
fractional anisotropy (FA), mean diffusivity (MD), and gray
matter volume from the specific networks of interest. Based
on known anatomical relationships, DTI-based white matter
tracts were extracted for: subcortical network: anterior limb
of the internal capsule and the posterior thalamic radiation;
executive-subcortical network: anterior limb of the internal
capsule, posterior thalamic radiations, superior longitudinal
fasciculus, genu, body, and splenium of the corpus callosum.
The Brainnetome regions comprising the tf-fMRI networks
(subcortical and executive-subcortical) were then applied to the
T1 scans to extract gray matter volumes. The regional volumes
for all regions comprising a given network were summed to
obtain the network’s gray matter volume.

Statistical Analyses
First, we fitted baseline cross-sectional multivariable linear
regression models examining the relationship between PASE
scores and FC in our networks of interest, covarying for
demographic factors (age, sex, years of education). Parallel
models examined the relationship between PASE scores and
neuropsychological test performances, again adjusting for age,
sex, and years of education. Our primary analyses focused on
our three networks of interest (the DMN, the FPN, and the SN).
Then, in the networks that reached statistical significance, we
conducted secondary analyses to examine their inter-network
relationships, to better understand the associations at play.

Next, we conducted linear mixed-effects models to examine
the longitudinal relationship between changes in PASE scores
and FC trajectories in the networks of interest, as well as between
PASE scores and cognitive performance. In all models, following
(Neuhaus and Kalbfleisch, 1998; Neuhaus andMcCulloch, 2006),
we decomposed PASE scores into within- (i.e., change per
visit) and between- (i.e., average) subject effects to associate
purely within-subject changes in physical activity with changes
in fMRI and cognitive outcomes, as well as to avoid estimation
bias resulting from incorrectly assuming common within- and
between-subject effects.

In our first longitudinal model, we examined how between-
and within-subject changes in PASE scores related to changes
in FC, adjusting for demographic factors (sex, age and years of
education), as well as markers of cardiovascular health (time-
varying heart rate, BMI and systolic reading) as covariates.
Models in which networks significantly tracked with changes
in PASE scores (at p < 0.05) were selected for follow-up
analyses, to explore whether this relationship upheld after
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adjusting for markers of cerebrovascular integrity. For this
purpose, we conducted parallel models covarying for gray
matter volume and FA, or gray matter volume and MD
in the gray matter ROIs and white matter tracts associated
with the given network of interest. We re-scaled predictors
to standard deviation units, in concordance with standardized
beta coefficients, as seen in Table 2. Lastly, we examined the
longitudinal relationship between within- and between-person
increases in PASE scores with neuropsychological trajectories
(separate models per cognitive composite).

RESULTS

Physical Activity Level, FC, and Cognition
at Baseline Demonstrate Small,
Non-statistically Significant Associations
At baseline, reported physical activity levels demonstrated weak
negative relationships with FC in brain regions of interest:
intra-DMN network connectivity (β = −0.09, p = 0.20), intra-
executive network connectivity (β = −0.12, p = 0.08), intra-
subcortical network connectivity (β = −0.05, p = 0.51), and
executive-subcortical inter-network connectivity (β = −0.07,
p = 0.35). Similarly, the cross-sectional relationship between
physical activity and cognitive performance was small and
nonsignificant (processing speed β = 0.01, p = 0.92; executive
functioning β = −0.06, p = 0.38; and memory β = −0.01,
p = 0.91).

Longitudinal Increases in Reported
Physical Activity Relate to Increases in FC,
Independent of Demographics and
Cardiovascular Health Markers
Adjusting for age, sex, education, and cardiovascular health,
within-subject increases in PASE scores, but not overall between-
person PASE, tracked with greater intra-subcortical network
(PASEwithin-subject: β = 0.33, p = 0.007; PASE between-subject:
β = −0.04, p = 0.57) and frontal-subcortical inter-network
(PASE within-subject: β = 0.27, p = 0.03; PASE between-subject:
β = −0.07, p = 0.37) synchrony over time on fMRI. Neither
within-person nor between-person changes in PASE scores were
significantly related to DMN (PASE within-subject: β = −0.02
p = 0.89; PASE between-subject: β = −0.05, p = 0.49) or intra-
frontoparietal network (PASE within-subject: β = 0.15, p = 0.23;
PASE between-subject: β = −0.11, p = 0.15) connectivity (see
Table 2, Figure 1).

Longitudinal Increases in Reported
Physical Activity and Greater tf-fMRI
Connectivity Relationship Upheld After
Controlling for Network-Specific White
Matter Microstructure and Gray Matter
Volume
Additionally, adjusting for FA and gray matter in the networks
that demonstrated significant longitudinal relationships with
PASE demonstrated the same pattern of results, with similar

effect sizes. Within-subject increases in PASE scores tracked
with greater intra-subcortical network synchrony (β = 0.31,
p = 0.01), while between-subject effects continued to be small
and did not reach statistical significance (β = −0.04, p = 0.56).
Similarly, within-subject increases in PASE scores tracked with
greater inter-executive-subcortical network synchrony (β = 0.28
p = 0.03), yet between-subject effects were small and did not
reach statistical significance (β = −0.06, p = 0.43). Moreover,
we examined parallel models adjusting for MD and gray matter
and observed the same pattern as when controlling for FA (see
Table 2).

PASE Scores and Cognitive Outcomes Did
Not Show Statistically Significant
Longitudinal Associations in Typically
Aging Adults
Both within- and between-subject self-reported levels of physical
activity demonstrated small, nonsignificant associations with
cognitive performance (within-subjects β range =−0.14 to 0.002,
ps< 0.98; between-subjects β range = −0.04 to 0.008, ps< 0.93).

DISCUSSION

Summary
This study examined the longitudinal relationship between
physical activity and FC in different regions of the brain.
We found that specific within-person increases in physical
activity may track closely with FC. Importantly, there appears
to be specificity regarding the regionality of this effect.
Our findings suggest that within-person increases in physical
activity are specifically associated with greater frontal-subcortical
and within-subcortical network synchrony. Increased FC in
these networks may further support the positive effect of
physical activity on brain health markers and adds to this
literature by suggesting that within-person augmentation of
personal exercise regimes may relate to within-person brain
changes, regardless of activity level or cognitive status at
baseline.

Additionally, and consistent with previous literature, in our
study, FC in the DMN did not appear to be affected by
increases in physical activity. While the DMN has received
the most attention in fMRI studies, given its important role
in the development of age-related neurodegenerative processes
(i.e., Alzheimer’s disease; Biswal et al., 2010), this network
appears to be less importantly related to brain-exercise benefits,
but it has historically limited the focus on alternative networks,
including subcortical processes. The subcortical network is
formed by a group of structures that are vastly connected with
the rest of the brain. This network has been described to be
responsible for highly advanced motor tasks and movement
coordination (Fama and Sullivan, 2015). Likewise, the FPN is
accountable for goal-driven, organized and controlled execution
of behaviors (Marek and Dosenbach, 2018). Both networks are
heavily involved in executive processes, suggesting that FC,
improved by physical activity engagement, could ultimately
act as a protective factor for executive function in typically
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TABLE 2 | PASE scores and Functional Connectivity after controlling for markers of cardiovascular health (Model 1; N = 179) and cerebrovascular health (Model 2; N = 175).

Intra subcortical Inter executive-subcortical

Beta Coefficient Lower 95% CI Upper 95% CI P > |z| Beta Coefficient Lower 95% CI Upper 95% CI P > |z|

Model 1
Age 0.003 −0.020 0.025 0.797 −0.008 −0.031 0.080 0.374
Education 0.047 −0.018 0.111 0.158 0.060 −0.006 0.125 0.073
Sex 0.027 −0.259 0.313 0.852 −0.086 −0.375 0.203 0.559
Blood 0.002 −0.005 0.009 0.0560 0.002 −0.005 0.009 0.595
pressure −0.014 −0.025 −0.002 0.017 −0.007 −0.019 0.004 0.220
Heart rate 0.021 −0.011 0.053 0.205 −0.005 −0.037 0.027 0.764
BMI
Within-subject PASE 0.329 0.090 0.569 0.007 0.266 0.023 0.509 0.032
Between-subject PASE −0.042 −0.187 0.103 0.573 −0.066 −0.212 0.080 0.374
Model 2
Age −0.002 −0.026 0.022 0.872 −0.010 −0.035 0.015 0.434
Education 0.042 −0.023 0.107 0.201 0.059 −0.007 0.124 0.081
Sex 0.014 −0.299 0.327 0.929 −0.112 −0.431 0.207 0.493
Blood 0.0001 −0.007 0.007 0.971 0.0002 −0.007 0.008 0.960
pressure −0.013 −0.025 −0.001 0.032 −0.007 −0.019 0.006 0.005
Heart rate 0.023 −0.009 0.056 0.162 −0.0001 −0.033 0.033 0.995
BMI
Network FA −1.358 −5.378 2.661 0.508 −2.647 −6.581 1.286 0.187
Subcortical 0.00001 −0.00009 0.0001 0.824 −0.00009 −0.0002 0.00005 0.187
GMV — — — — 0.00002 −0.000001 0.00004 0.151
Exec GMV
Within-subject PASE 0.313 0.071 0.554 0.011 0.277 0.023 0.531 0.032
Between-subject PASE −0.043 −0.190 0.103 0.562 −0.060 −0.208 0.088 0.428

Note. Network FA/MD/GMV reflects either striatal or frontal-striatal structures for the intra subcortical and inter executive-subcortical FC models, respectively. Abbreviations: BMI, body mass index; PASE, Physical Activity Scale for the
Elderly; FA, fractional anisotropy; MD, mean diffusivity. The significance of bold values is p< 0.05.
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FIGURE 1 | Within-person changes in Physical Activity Scale for the Elderly (PASE) scores in ROIs, controlling for demographic and cardiovascular health factors.

aging older adults. Although our results do not demonstrate a
strong relationship between self-reported physical activity and
longitudinal cognitive trajectories, particularly in those domains
related to executive functioning and processing speed, there
is still exhaustive work to be done to explore this possibility
more in-depth. Possibly our current neuropsychological battery
is not sensitive enough to detect changes in cognition that are
related to the observed augmentation of network synchronicity.
Alternatively, the characteristics of our sample (well-educated,
high socioeconomic status) could have affected the expression
of these changes during cognitive testing. The weak association
between physical activity and cognition in our results may be
due to our cohort’s high level of cognitive function, as previous
literature suggests that exercise effects are more potent in
cognitively impaired individuals (Sanders et al., 2019). Therefore,
it would be prudent to study how these results would vary if
examined in populations that are more vulnerable to age-related
brain changes, where changes in cognitive trajectories and
expressions of these changes may be more variable. That being
said, the fact that our data demonstrate a significant association
between FC and increased physical activity, even in a cognitively-
intact and highly-functional cohort, may be particularly robust.

Our findings are aligned with previous literature in the field
that has shown a link between physical activity and brain health
(Daskalopoulou et al., 2017; Macpherson et al., 2017). On the
one hand, scientists are becoming increasingly interested in the
search for a harmonized definition and breakdown of what

physical activity represents, the optimal quantity required for
salubrious effects, and a standardized unit of measurement.
On the other hand, as we move towards a precision medicine
approach, we may realize there is no universal recipe for physical
activity, and instead fully embrace the multiple benefits that
exercise offers us.

Similarly, the benefits of physical activity are likely not
attributable to a single mechanism, but a wide range of biological
changes within the body at a multiorgan level. Scientists have
examined this hypothesis mostly in animal models, describing
for example how exercise increases brain-derived neurotrophic
factor (BDNF) levels (Pedersen, 2019). Synaptic growth seems
to be another plausible effect of physical activity on FC, which
could be playing a role in our results as well. Our findings are
therefore especially novel in demonstrating the importance of
frontal and subcortical networks in exercise. Furthermore, by
showing a longitudinal relationship between physical activity
and functional connectivity that is independent of cardiovascular
and cerebrovascular factors, we are opening the door to better
understand how physical activity may change brain integrity on
a cellular level.

Limitations
Although this study sheds light on the possible neural networks
by which physical activity affects the brain, there are some
notable limitations. Firstly, there may be limitations regarding
the generalizability of our results, as this study consists of
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a convenience sample that may be affected by selection bias
regarding the type of individual that decides to participate
in research. Of course, this is a limitation that spans across
the majority of research projects (Hedt and Pagano, 2011).
The UCSF Memory and Aging Center’s Community Outreach
Program is aiming to address this issue by engaging with the
San Francisco community and encouraging participation among
more diverse populations. Given that data were pulled from an
ongoing, longitudinally-followed cohort, as we continue data
collection, we plan to continue to examine these questions in
larger, more demographically- and clinically-diverse samples
with greater timepoint accrual. Still, ours is one of the first studies
to examine the longitudinal relationship between exercise and
neural networks in older adults, and it represents an important
first step in understanding these relationships.

Another possible limitation lies in the use of self-reported
measures of exercise, which may be biased due to factors such as
measurement error (Butler et al., 1987), social desirability/recall
bias (Adams et al., 2005), or longitudinal response-shift bias
(Rosenman et al., 2011). That being said, the PASE is a
widely-used measure of physical activity that has been previously
validated through comparison to both indirect and direct
measures of physical activity (Logan et al., 2013).

Finally, although the current study used longitudinal data to
examine within-person variability in physical activity and FC,
due to the utilization of an observational study design, we cannot
determine causality. Still, our within-subject findings provide
compelling support for the tight coupling between the brain
and exercise behaviors. To fully disentangle directionality, future
research should examine within- and between-person changes
in brain synchrony through the utilization of an interventional
study design across extended longitudinal timepoints.

Future Directions
Further investigation of various physical activity behaviors is
critical to improving the brain health outcomes of the growing
aging population. We and others are expanding work on
objective actigraph-based activity data to ameliorate the potential
self-report bias effects (Spartano et al., 2019). Continued work
implementing experimental physical activity interventions would
allow us to determine causality in the relationship between
physical activity and FC, and thus give us further support for
directionality and the mediating role of brain synchrony in the
relationship between physical activity and brain health.

Regarding clinical practices, our findings suggest that
it may be worthwhile for clinicians to encourage even
incremental increases in physical activity, to benefit brain
network functioning. This may be of particular importance
to individuals manifesting symptoms involving the frontal-

subcortical networks that we identified as related to physical
activity, such as cerebrovascular or Parkinson’s disease (Zhu
et al., 2019). Going forward, there is a clear need for more
prospective human studies examining the benefits of various
types and quantities of exercise, as well as the motivational
aspects of encouraging increased physical activity in older
adults. We plan to work on disentangling the contributions of
exercise intensity, frequency, and duration, while also looking
into the relationship between brain connectivity and markers
of inflammation.
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