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Biological aging is a complex process involving multiple biological processes. These
can be understood theoretically though considering them as individual networks—e.g.,
epigenetic networks, cell-cell networks (such as astroglial networks), and population
genetics. Mathematical modeling allows the combination of such networks so that they
may be studied in unison, to better understand how the so-called “seven pillars of aging”
combine and to generate hypothesis for treating aging as a condition at relatively early
biological ages. In this review, we consider how recent progression in mathematical
modeling can be utilized to investigate aging, particularly in, but not exclusive to, the
context of degenerative neuronal disease. We also consider how the latest techniques
for generating biomarker models for disease prediction, such as longitudinal analysis
and parenclitic analysis can be applied to as both biomarker platforms for aging, as well
as to better understand the inescapable condition. This review is written by a highly
diverse and multi-disciplinary team of scientists from across the globe and calls for
greater collaboration between diverse fields of research.
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INTRODUCTION

Aging is the inescapable consequence of life that is common to all. However, the impact of aging on
individuals can be very different, where some people live to a high age whilst maintaining excellent
physical/mental health yet others may accumulate detrimental symptoms of aging relatively young.
This leads to the distinction between ‘‘chronological’’ and ‘‘biological’’ age, where chronological age
is an unwavering constant, biological age is a consequence of genetics, environmental exposure, and
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lifestyle and may be used as a metric to predict health
risks. Unlike chronological aging, the rate of biological aging
can change—the potential to distinguish biological from
chronological aging, to treat or even reverse it, is the ambition
of modern medicine.

Aging is a complex phenomenon in which the combination
of genetic, environmental, and stochastic factors leads to highly
personalized age-phenotypes. In the past years, researchers have
attempted to identify the key tenants of the aging process (López-
Otín et al., 2013; Kennedy et al., 2014; Figure 1). Despite some
differences in the proposed hallmarks of aging, both the studies
underline their large interconnectedness. These pillars are not
discrete processes and an impact in any area can be propagated
through all the other pillars.

Interestingly, the impairment of several (if not all)
hallmarks/pillars of aging results in the accumulation of
damaged and/or misplaced self-molecules that fuel inflammatory
responses, promoting a status of chronic, low-grade and sterile
(that is, occurring in the absence of infections) inflammation,
that has been termed ‘‘inflamm-aging’’ (Franceschi et al.,
2006). Although inflammaging is usually referred to as a
systematic proinflammatory status, characterized by an increase
in circulating levels of pro-inflammatory cytokines (such as IL-6,
CRP), it should be taken into account that (1) inflammaging
derives from a balance between pro-inflammatory and
anti-inflammatory molecules; and (2) systemic inflammation
is the result of the sum of multiple local inflammation events,
occurring at the level of specific tissues, organs, and systems
(Franceschi et al., 2017a). Inflammaging has been recognized as
one of the main triggers of age-related diseases (Franceschi and
Campisi, 2014; Furman et al., 2019). In turn, age-related diseases
can promote a pro-inflammatory status, thus establishing a
vicious circle between inflammaging and age-related diseases
(Vitale et al., 2013; Franceschi et al., 2018).

To further compound the complexity, the mechanistic
processes of aging occur on many levels, from the molecular
(epigenetic, somatic mutation, metabolomic, etc.) in individual
cells, tissues and organs, to the population level (genetic).
At each strata, the rate and processes of aging and their
contribution to inflammaging can be different, leading to a
truly chimeric condition in both individuals and the greater
population. Several studies suggest, for example, that the liver
can age successfully, compared to other organs/systems (Bacalini
et al., 2018; Morsiani et al., 2019), and yet this ability changes
with age. Genome sequencing has demonstrated that cirrhotic
livers have a higher mutational burden compared to normal
livers (Brunner et al., 2019). As a consequence, the aging
trajectories of an individual are the result of the interaction
between organs/systems, each of which, in turn, derives from the
combination of specific developmental programs, environmental
exposures (i.e., biographies) and genetic backgrounds (Grignolio
et al., 2014; Franceschi et al., 2017b, 2019).

Whilst it has been shown that analysis of serum metabolites
can distinguish between different organ systems and nutrition
(Sato et al., 2018), their variability and sensitivity to change
make it challenging to correlate these to disease or age.
However, the chemical environment of a cell is not only

FIGURE 1 | The seven pillars of aging according to Kennedy et al. (2014;
blue outer nodes) are connected, such that perturbation in one pillar can
affect each other pillar. The impairment of one or more pillars results in a
chronic pro-inflammatory status—inflammaging. Inflammaging in a single part
of the body can have distal effects on other systems (central circle) and thus
can propagate aging. Studying the interaction of all these systems requires a
systems biology approach. Given that each pillar or biological process can be
represented by its network, this requires a network-of-networks solution.

determined by its extracellular environment, but also by its
genomic signature.

Several genomic loci have been associated with metabolites
(reviewed in Suhre and Gieger, 2012) and a genome-wide
association study, reported associations of 400 metabolites
with 145 genomic loci (Shin et al., 2014). Analysis of single
nucleotide polymorphisms (SNPs) associated with aging and
longevity has identified genes in insulin-like growth factor
signaling, DNA repair/telomerase maintenance and reactive
oxygen species scavenging pathways. Dato et al. (2018) highlight
that a single SNP can affect the resultant phenotype by its
transmission through multiple genes, therefore to associate
SNPs with aging requires the analysis of SNP-SNP interactions.
Furthermore, we think this should be extended to links
between SNPs and other genetic factors such as epigenetic
marks. Analysis of the association between SNPs and aging
underpins the genetic contribution to longevity. On one
hand, this variation is relatively static and thus their analysis
is not affected by chronological age or circadian rhythms.
On the other hand, whilst SNPs can be associated with
various phenotypic traits, variation in gene expression during
aging as a consequence of environment (disease, diet, UV-
exposure, etc.) is due to other regulatory pathways, such as
epigenetic reprogramming.

Therefore, to fully understand aging, we should consider
all age-related processes in unison. This is a challenging
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problem, not only from an experimental design perspective
but also from the point of data analysis and mathematical
modeling. Indeed, it is only now that such an approach may
be conceivable using multi-‘omic technologies, big data analysis
techniques, and super-computing. Significant advancement
in the field of medical statistics has been made in the
last decade with peak computing performance of 1EFLOP
being achieved (Top500.org, 2020). With the corresponding
technologies and frameworks, scientists and engineers have
unprecedented opportunities to prototype and test various
architectures of complex multilevel artificial neural networks
and other deep learning techniques capable of analyzing
such big data. Indeed, deep neural networks have been used
to predict a person’s age using a basic blood test (Putin
et al., 2017). In general, recent achievements of scientists
show that modern systems, including those built on deep
neural networks and supercomputer computations, open up
new perspectives in the early diagnosis and treatment of
several diseases.

This review, aimed towards researchers both in the field of
biological aging as well as mathematical modeling, considers
the use of multiplexed networks and longitudinal analysis to
study the problem of aging, with examples drawn from the
study of astroglial cell networks and epigenetics studies of the
‘‘biological clock.’’ We also consider approaches to study aging
as a longitudinal, continuous phenomenon, rather than in a
discrete-ordinal manner. Finally, we comment on the increasing
complexity of this field, looking at the future directions, moving
from population-level data to generating personalized aging
profiles and treatments. The review calls for greater multi-
disciplinary research to exploit modern and future capabilities for
the study of aging and longevity.

EPIGENETIC AGING AND BIOLOGICAL
CLOCK

Epigenetic modifications include a wide range of molecular
mechanisms that play a pivotal role in the regulation of gene
expression and genomic architecture. Among them, one
of the best characterized is DNA methylation, a covalent
modification of DNA that occurs preferentially at cytosines in
a CpG dinucleotide. DNA methylation patterns are established
early during development and can be stably maintained
during cell divisions (Jones and Liang, 2009). Besides being
relatively stable from a biological point of view, DNA
methylation marks are well maintained during DNA and
chromatin precipitation. This consideration, combined with the
availability of several approaches to measure DNA methylation
at a gene-targeted, genome-wide, and whole-genome level,
makes this epigenetic modification an ideal candidate to
identify longevity biomarkers. Indeed, DNA methylation
is dynamically remodeled during several physiological and
pathological conditions (Luo et al., 2018) including aging
(Bacalini et al., 2017; Ciccarone et al., 2018; Unnikrishnan et al.,
2019). Different types of changes to DNA methylation occurs
during aging:

(1) Reproducible directional changes (prevalently
hypermethylation, but also hypomethylation) of specific
CpG sites (Hannum et al., 2013; Horvath, 2013);

(2) Hypomethylation of CpG sites within repetitive regions
(Cardelli, 2018);

(3) Increase in the variability of methylation levels of a certain
CpG position, considering a general population of individuals
(Slieker et al., 2016);

(4) Increase in stochastic epi-mutations, that is, changes in DNA
methylation levels of a certain CpG site that are not shared
among the individuals of a general population.

So far, attention has been mainly focused on directional
age-associated changes in DNA methylation and several CpG
sites with tissue-specific age-dependent methylation levels have
been described (Hannum et al., 2013). Unfortunately, it is often
difficult to establish a causative link between DNA methylation
remodeling and aging phenotype. In the studies that assessed
methylation and gene expression from the same tissue, only a
minor subset of genes with age-associated correlations between
DNA methylation and gene expression was identified (Reynolds
et al., 2014; Tserel et al., 2015). On the contrary, most of
the loci showing hyper- or hypomethylation during aging
were associated with genes with low transcription or without
age-dependent expression changes (Reynolds et al., 2014; Tserel
et al., 2015; Bacalini et al., 2018). Despite this, interesting hints
resulted from the analysis of the pathways/ontologies enriched
in loci with differential methylation during aging. Several of
these studies were performed in whole blood or isolated blood
cell types, and accordingly, pathways related to the regulation
of immune functions were reproducibly enriched (Wang et al.,
2016; Li et al., 2019). Other pathways enriched in loci with
age-dependent methylation levels are linked to functions of the
extracellular matrix (Wang et al., 2016; Li et al., 2017) and
neurotransmission (Ong andHolbrook, 2014). Finally, it is worth
noting that multiple studies reported that loci showing hyper- or
hypomethylation with aging are enriched in bivalent chromatin
domains, usually located in the promoters of developmentally
regulated genes.

In recent years researchers have exploited the increased
knowledge of age-associated directional changes by developing
epigenetic clocks, which are mathematical models that combine
the methylation of specific CpG sites (usually below 600) to
provide an estimate of the epigenetic age of an individual
(Bartlett et al., 2014). Several epigenetic clocks, differing in
both the included CpG sites and the human tissues on which
they have been validated, have been proposed (Hannum et al.,
2013; Horvath, 2013; Weidner et al., 2014; Horvath et al.,
2018; Levine et al., 2018). Although with some differences,
these clocks have been comprehensively shown to detect age
acceleration effects associated to different age-related conditions,
spanning from neurodegenerative diseases to cancer and also
prospectively reviewed in (Field et al., 2018; Horvath and Raj,
2018). Despite these successful results, much has still to be done
in this sense. In particular, the use of appropriate mathematical
approaches will likely permit us to develop epigenetic clocks
based not only on directional changes in DNA methylation,
but also on the other aspects of age-related DNA methylation
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remodeling (hypomethylation of repetitive elements, increase in
variability and epimutations), thus improving the performance
of predictors and broadening the spectra of age-related diseases
that could benefit from early diagnosis.

NETWORK MODELING

Mathematical modeling aims to reduce complex problems into
defined parameters; adjusting the parameters of the models to
provide insight into real systems. Networks present a simple
framework to model complex systems that comprise of a large
number of interacting elements. The network for any biological
system can be represented by nodes (vertices) and links (edges).
For example, biomolecules may be represented by vertices and
their intermolecular interactions by edges. In this way, all
biological systems can be studied in a single framework. Network
spectra (eigenvalues) are known to provide rich information on
the topological structure and diffusion of signals within them
(Sarkar and Jalan, 2018), providing an indirect blueprint of
complex systems. With age-related diseases, cancer has received
the most attention, from a network theory perspective. For
example, network spectra provide a comprehensive approach
to analyzing proteomic data for breast, oral, ovarian, cervical,
lung, colon, and prostate cancer (Rai et al., 2017). This analysis
demonstrated that the protein-protein interaction networks of
the normal and cancerous tissues associated with the seven
cancers have overall similar topological and spectral properties
but some changes in the complexity were unique to different
cancers under their study. Similarly, network spectra have been
successfully used in many other instances to classify disease
states from healthy states of a tissue (Jalan et al., 2015; Rai
et al., 2015). Importantly, analysis of common proteins in all
cancer networks have helped to reveal proteins which not
only occupied significant positions in all the layers, but are
also directly involved in causing cancer (Rai et al., 2017). The
prediction and analysis of micro-RNAs targeting these proteins
provide a hint towards their possible roles in tumorigenesis. This
novel approach of network spectra should help in understanding
cancer at the fundamental level and provide a clue to develop
promising single-drug therapy for multiple diseases as well as
personalized medicine.

Biological age acceleration, expressed in epigenetic
biomarkers, has not been explicitly related to network signatures
of cancer or other age-related diseases. The first step to
address this was made by Krivonosov et al. (2020), where
parenclitic network analysis (Zanin et al., 2014) was employed
to characterize differential DNA methylation of mothers and
siblings of Down Syndrome patients. Network indices revealed
age and group dependence, and the constructed networks
as a whole suggested some associated molecular functions,
according to Gene Ontology analysis. The developed approach
is a promising tool to access the other cases of accelerated and
decelerated aging.

Simplifications are necessary and unavoidable to build
a meaningful mathematical model to identify the major
biological mechanisms. Finding the right balance between a
detailed description and a deeper understanding is an enduring

challenge. Already very strong simplifications can lead to
unexpected and barely understood behavior as soon as large
networks of interacting players are involved. The mammalian
brain with its network of spiking neurons is probably one
of the most prominent examples in biology. The individual
neurons and the synaptic communication amongst them are
quite well understood but the orchestrated function as a whole
is still puzzling. Mathematical modeling offers an approach
to bridge gaps in understanding. For example, at rest, the
neurons in the brain are far from being inactive but generate
spontaneous firing activity. Detailed functional magnetic
resonance imaging (fMRI) of the spontaneous activity has
been used as a baseline to classify task-related activation in
cognitive studies. These have shown that resting-state activity,
first considered as simple noise, contains much more structure
and information in a complex non-Gaussian activity pattern,
than previously the information contained can be used to reveal
functional connections (DeWeese and Zador, 2006; Murphy
et al., 2009; Harris and Thiele, 2011; Foster et al., 2016). Invasive
and non-invasive electrophysiological recordings and fMRI
reveal a remarkable correspondence between spontaneous and
task-based parcellations of large-scale functional brain networks
across many spatiotemporal scales. This demonstrates that
structural properties of neural networks and their functional
repertoire can be inferred by the spontaneous neural activity,
with clinical applications (Fox and Greicius, 2010). However, the
use of fMRI and its variants (e.g., time-varying functional
connectivity fMRI) for studying neuronal connectivity
remains somewhat controversial owing to the difficulty in
suitable controls and a need for better statistical models
(Lurie et al., 2020).

Substantial effort has been made to develop simple models
of excitatory and inhibitory spiking neurons, aiming to mimic
the cortical activity (Gutkin and Ermentrout, 1998; Rauch et al.,
2003; Jolivet et al., 2004, 2006; Shlizerman and Holmes, 2012). A
review by Gerstner and Kistler (2002) gives some guidelines for
extracting relevant dynamical features of networks of integrate-
and-fire neuron models to connect these with real measurements
(Gerstner and Kistler, 2002). The spontaneous activity or the
persistent, selective delay activity are examples of in vivo
neuron properties that can be linked to simple integrate-and-fire
neuron models.

Collective Irregular Dynamics (CID) in so-called balanced
networks of spiking neurons can act as a mathematical testbed
for the background activity at rest. Balanced networks are such
that the excitatory and inhibitory activities compensate each
other (Vogels et al., 2005). The CID is a dynamic phenomenon
known from dynamic system theory and we propose to transfer
the concept to spontaneous background activities observed in
the brain. It is a macroscopically observable phenomenon that
originated with an orchestrated interplay of individual neurons
(Ullner et al., 2018). The considered neuronal networks of
spiking neurons are random (Brunel, 2000; Ostojic, 2014). The
network is free of any external driving or input and so the
resulting complex behavior is fully self-generated. Although the
setup of the mathematical model seems simple, the joint activity
is far from being trivial. The overall scenario of CID in the
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balanced spiking network is reminiscent of the background
activity of the brain at rest state.

How can such a paradigmatic model help the medicine
to achieve healthy aging? The brain represents one of the
target organs of damage for several diseases and undergoes
structural and functional changes over its life span. For instance,
classical galactosemia is a rare genetic metabolic disorder that
impairs the ability to metabolize the sugar galactose. It results
in chronic deterioration with a significant influence on the
quality of life and general cognitive performance, including
alterations to rest-state behavior (van Erven et al., 2017). In
another recent example, fMRI or echocardiogrammeasurements
pointed to a possible connection between the modulations of
intrinsic resting-state and chronic migraines of female patients
(Androulakis et al., 2017). These results demonstrated an overall
decrease in resting-state functional connectivity of the default
mode network, the salience network, and the central executive
network in women with chronic migraines. The connections
between the CID phenomenon, the brain’s background activity
at rest, and age-related diseases are a speculative proposal at
an early stage to illustrate the benefits and challenges of such
a cross-disciplinary approach. However, mathematical models
bridge gaps in knowledge and can be used as a hypothesis
testbed to address critical conditions. Brain dynamics at rest
might reveal early precursors before changes on cellular or organ
levels are detectable. These findings, in turn, inform molecular
biology to identify the underlying molecular mechanisms or
to understand malfunctions on tissue or organ strata. The real
benefit of mathematical modeling unfurls if neuronal data related
to diseases are available. The mathematical model could be
used to identify the critical network parameter that generates a
malfunction. The continuous path from the healthy rest state to
pathological behavior in the mathematical model might reveal
early precursors to intervene the progression in patients.

Mathematical modeling is a powerful bottom-up tool if
developed in close interaction with the biological and medical
progress. Aging, understood as a dynamic system, has the
potential to change the paradigm from a vain endeavor to
fight a disease to a journey in a complicated and diversified
landscape with many possible tracks (Hedden and Gabrieli, 2004;
Grady, 2012).

Applications to Age-Related Diseases
Aging of the brain is associated with neurodegenerative
disorders, the most prevalent of which is Alzheimer’s and
Parkinson’s diseases. These are the most common causes of
dementia in the elderly, affecting over 10% of the population
over the age of 65 in the United States (Querfurth and
LaFerla, 2010). Despite significant research progress, the
pathogenesis of Alzheimer’s and Parkinson’s diseases remain
fragmentarily understood, partly due to the extremely complex
intercellular cross-talks taking place throughout the aging
process (Henstridge and Spires-Jones, 2018; Jagust, 2018; Styr
and Slutsky, 2018). Considering the complexity of cellular
and molecular interactions, mathematical modeling provides
a unique opportunity to further understand the pathogenetic
mechanisms of age-related neurodegenerative disorders. There

are two recent reviews about mathematical modeling efforts on
the whole in neurodegenerative diseases (Lloret-Villas et al.,
2017) and in particular in Parkinson’s disease (Bakshi et al.,
2019). Noteworthy are several mathematical models of the
pathogenesis of Alzheimer’s disease (AD) which describe the
dynamic cross-talks that occur among microglia, astroglia,
neurons, and amyloid-β (Aβ; Figure 2). Kyrtsos and Baras (2015)
proposed a model to study the role of the glymphatic system
induced clearance of Aβ from the brain via the perivascular space
surrounding cerebral blood vessels in AD.

Experiments have shown that astrocytes play an important
role not only in the process of elimination of soluble proteins
and metabolites from the central nervous system (CNS;
Rasmussen et al., 2018) but also in regulating cellular functions
and information transmission in the nervous system (Perea
and Araque, 2010; Araque et al., 2014). In contrast with
neuronal cells, astrocytes do not generate electrical excitations
(action potentials). However, their intracellular dynamics have
shown similar excitable properties for changes in calcium
concentration (Nadkarni and Jung, 2003; Semyanov, 2019).
These signals can affect neuronal excitability and the efficiency
of synaptic transmission between neurons by Ca2+-dependent
release of gliotransmitters (e.g., glutamate, D-serine, ATP;

FIGURE 2 | Neuronal networks—cell types and factors interacting with each
other affect age-related diseases. There are three main types of cells within
neural cellular networks. A neuron or nerve cell is an electrically excitable cell
that communicates with other neurons via specialized connections called
synapses. They are the basic (functional and structural) unit of nervous tissue
and the central nervous system (CNS). Astrocytes support neuronal function
by providing essential structural and nutritional support, neurotransmitter
trafficking and recycling and may also contribute to brain information
processing. Astrocytes function as versatile metabolic sensors of CNS milieu
and play an important role in the maintenance of brain metabolic homeostasis
(for a recent review see Marina et al., 2018). Microglia are the only immune
cells that permanently reside in the CNS. In the past decade, studies on
microglia have expanded from investigating their function as resident
macrophages of the brain and mediators of injury, neuroinflammation and
neurodegeneration (reviewed in Salter and Stevens, 2017; Tay et al., 2017) to
understanding their origins and non-immunological roles in the CNS.
Networks of these cells are under the influence of different factors affecting
the development of age-related diseases (pink arrows) and are supporting
their metabolism by the interchange of metabolic products with blood vessels.
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Savtchouk and Volterra, 2018). It has emerged that astrocytes
are interconnected into networks by gap junction channels.
Networks of astrocytes accompanying neuronal cells generate
collective activity patterns that can regulate neuronal signaling
by facilitating or by suppressing synaptic transmission (Perea and
Araque, 2010; Araque et al., 2014; De Pittà et al., 2016).

Despite efforts in recent years to model the role of astrocytes
in information processing in the CNS (Oschmann et al.,
2018; Kanakov et al., 2019), only a few computational models
are investigating the role of astrocytes in neurodegenerative
diseases. The most popular pathological behavior of astrocytes
investigated by modeling is epilepsy (Ullah et al., 2009; Volman
et al., 2012; Amiri et al., 2013; Tewari and Parpura, 2013) and
AD (Lenk et al., 2016). These computational studies describe
the abnormal astrocyte regulation of synaptic transmission and
pathological release of gliotransmitters from astrocytes. There
has been no model developed to study the age-induced changes
in the morphology of astrocytes. However, in experimental
studies, it was shown that pathology astrocytes undergo
morphological and functional remodeling that is dependent
on an injury, neurodegenerative disease, and aging processes
(Dossi et al., 2018; Verkhratsky, 2019; Verkhratsky et al.,
2019). Such models can be developed based on existing models
that take into account realistic cell morphology (Savtchenko
et al., 2018; Gordleeva et al., 2019; Wu et al., 2019). The
role of astrocytes in neurodegenerative diseases and the aging
process requires further investigation. Biophysical models of
astrocytic regulation of synaptic transmission in neuronal
circuits both at the level of individual cells and at the network
level should be developed and investigated for aging based
on experimental data. Simulation experiments in large-scale
neuron-glial networks reproducing the signaling observed in
experiments with aging and neurodegenerative diseases are
expected. The need for such studies is related to the identification
of targets for the effects of pharmacological agents in the
treatment of neurodegenerative diseases caused by violations of
neuronal signaling.

Further, there has been no model developed to investigate
the role of cellular senescence and the propagation of senescent
associated secretory phenotype (SASP) molecules through brain
tissue in aging and age-related diseases (Baker and Petersen,
2018). This idea has been conceptualized as inflammageing
linked to garb-aging (Franceschi et al., 2018) and is based on a
hypothesis that the progressive accumulation of senescent cells
(and their pro-inflammatory SASP phenotype) in all organs
and tissues contribute to aging/inflammaging and this state can
propagate through the tissue or brain network. It will be very
interesting to develop a networkmodel describing the interaction
between healthy and senescent microglia and astrocytes, the
concentration of garbage accumulated during neuronal activity
(cellular and molecular garbage: cell debris, resulting from
cell death, misplaced/altered/oxidized molecules, gut microbiota
products, internal exposome, among others) and cleaned by
healthy glial cells via the glymphatic system (Benveniste et al.,
2019), and propagation of the signaling SASP molecules in
some volume of the brain tissue. Models of such type can
help to understand the mechanisms of the inflammageing

propagation through the brain network resulting in aging and
age-related diseases.

On a molecular level, computational modeling could be a
useful way to studyADby handling numerous parameters related
to ion channels and electrophysiology. We have noted 10 models
are published inModelDB with the software NEURON (Markaki
et al., 2005; Ferrante et al., 2008; Morse et al., 2010; Bhattacharya
et al., 2011; Culmone and Migliore, 2012; Romani et al., 2013;
Bianchi et al., 2014; Rowan et al., 2014; Coskren et al., 2015;
Rumbell et al., 2016; Table 1). Here, neural networks are
introduced and interfaced with amyloid effect and chemical or
electrical stimulation. So far, different channels, chemical agents,
synapses, and morphological properties have been modeled for
AD. As we understand more about the mechanisms modulating
the excitability of AD neurons to a greater extend, modeling
brings insights into how to mediate the ongoing damage of
AD by chemicals or low-intensity electrostimulation. However,
comprehensivemodeling of the neural environment, e.g., the role
of glial cell-networks during AD is missing.

In addition to the amyloid hypothesis, brain inflammation
(increased microglia and astrocyte activation) has been
increasingly recognized as a potential mechanism of AD
pathogenesis (Heppner et al., 2015; Parbo et al., 2017; Sawikr
et al., 2017). Evident changes have been found in microglia and
astroglia in the post-mortem brains of AD patients (Heneka
et al., 2015). Also, genome-wide analysis suggests that several
genes increasing the risk of AD modulate the glial clearance of
misfolded proteins and inflammation. The understanding of
immune/inflammatory pathways in AD and their regulatory
mechanisms should offer opportunities for drug development
targeting neuroinflammation (Fu et al., 2019). However, to date,
most of the anti-inflammatory drug candidates undergoing
clinical trials have failed. Thus, a systems approach to studying
AD by combining detailed morphological reconstruction and
advanced neural network modeling to cover both neurons
and glia of the AD brain may highlight new therapeutic
opportunities. The quantitative and systems thinking will
provide a big picture for probing AD and effective treatment
approaches in the future.

EMERGING STRATEGIES FOR EARLY
DIAGNOSIS OF AGE-RELATED DISEASES:
BAYESIAN ESTIMATION, NEURAL
NETWORKS AND PARENCLITIC ANALYSIS

It has been shown that many of the molecular and cellular
mechanisms involved in aging are closely related to those driving
the appearance and development of cancerous tumors, either
because they are shared or because they are divergent (Finkel
et al., 2007; Aunan et al., 2017). Such mechanisms include
the role of genomic instability, telomere attrition, epigenetic
changes, loss of proteostasis, decreased nutrient sensing and
altered metabolism, cellular senescence, and stem cell function
(Maslov and Vijg, 2009; Campisi, 2013; Hou et al., 2015). As
a consequence, the recent exploration and progress of new
technologies to detect early signs of oncological disorders should
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also be relevant for the assessment of significant mismatches
between chronological and biological age.

One of the main trends of modern healthcare is directed
towards personalizedmedicine. All individuals differ in genotype
and phenotype and thus should be managed differently
for disease prevention, detection, and treatment. Modern
‘omics technologies are capable of acquiring large amounts
of quantitative, or semi-quantitative data (mass spectrometry,
quantitative PCR, microarrays, etc.) relatively cheaply, thus there
is a large potential to delivering truly personalized medicine
based on an individual’s molecular profile.

Significant improvements in screening procedures for early
cancer detection can be attained by using quantitative tools
for the analysis of longitudinal biomarkers—instead of simple
cut-off values (McIntosh et al., 2002). This has been recently
shown, e.g., for the case of invasive epithelial ovarian cancer,
where the use of a single threshold rule is the current norm
for interpretation of serum Cancer Antigen 125 (CA125) as
a first-line test in ovarian screening (Blyuss et al., 2018). It
was demonstrated in the recent United Kingdom Collaborative
Trial of Ovarian Cancer Screening (UKCTOCS; Menon et al.,
2015), that it is not an individuals’ CA125 measurement
that indicates cancer development, rather a deviation from
personal baseline. Therefore, recent approaches in ovarian
cancer are directed towards constructing personalized baselines
based on patients’ serial measurements with analyzing further
sequential measurements from the perspective of previous
history (Whitwell et al., 2020). For example, three approaches
have been applied to longitudinal serological data from
ovarian cancer: (1) the methods of mean trends (MMT)
algorithm (Blyuss et al., 2018) which evaluates the dynamics
of longitudinal markers using weighted derivatives of marker
changes as well as the average area under the time series,
coefficient of variation and ‘‘center of mass’’ as predictors
in logistic regression; (2) The Risk of Ovarian Cancer
Algorithm (ROCA), that fits Bayesian hierarchical change-
point model on CA125 serial data (Skates et al., 2001); and
(3) Parametric Empirical Bayes (PEB) that evaluates deviation
from normality based on population characteristics such as
the population mean and within-subject and between-subject
variances. They significantly outperform single CA125 cut-offs,
demonstrating the effectiveness of the personalized approach,
both in terms of area under the receiver operating curve
(AUC) and in terms of sensitivity at a fixed, clinically
relevant, specificity.

Sophisticated procedures for early detection of oncological
diseases, such as Bayesian computationmethods or deep learning
techniques (Goodfellow et al., 2016), involving more than
one biomarker can further reduce human intervention in the
diagnostic process. In particular, it has been recently shown
(Mariño et al., 2017) that the combined analysis of a group
of specific biomarkers (namely CA125 and Human Epididymis
Protein 4 or Glycodelin) improves the detection of change-points
(from personal baseline to deviance) in multiple time series data
(compared to the analysis of CA125 alone) which, in turn, can
be associated with the development of tumors. Similar processes
related to the loss of proteostasis play a key role in biological
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aging and they can be detected at an early stage employing the
same class of quantitative analysis techniques.

Although not as straightforward to interpret, from a
clinical point of view, as Bayesian models, deep learning
techniques are currently attracting attention in many biomedical
applications. In particular, recurrent neural networks can
integrate information of multiple biomarkers without the need
to construct explicit probabilistic models, as opposed to Bayesian
analysis methods. This has been recently shown in (Vázquez
et al., 2018), where a quantitative performance study of these two
approaches for the diagnosis of ovarian cancer from longitudinal
biomarker data has been carried out.

The challenge with large, multi-omic data sets is in analyzing
them in a biologically meaningful manner. The difficulty in
interpreting large scale data sets is due to the non-linearity
of molecular pathways; i.e., for each pathway, there are
multiple branching points and multiple levels of regulation
such that a perturbation of a single analyte (mRNA, protein,
metabolite) may have a cellular effect that is not immediately
obvious (Haas et al., 2017). Therefore, taking large data sets
and analyzing fold-change of single analytes (mRNA, protein,
metabolites, etc.) without taking into account everything else,
lacks biological context. To overcome this, it is possible to use
pre-defined annotations (gene ontology, pathways) to identify
biological patterns. However, this requires prior knowledge
regarding the analytes function, currently (November 2019)
Swissprot, a manually curated database of proteins contains 561,
356 annotated proteins, whereas TrEMBL, a related database
comprised of computationally curated annotations contains 181,
787, 788 proteins—highlighting the enormous black hole that
exists in experimentally verified annotations (Bateman et al.,
2017), a crucial limitation in these approaches.

One way to address this issue is to use techniques that require
no a priori knowledge of the analytes. Parenclitic networks,
first published by Zanin et al. (2014), identify global changes
between two data sets through graph-based analysis, where
nodes (vertices) represent analytes and edges between nodes
are present if that pair of analytes differ between the two data
sets. Thus, analytes that are changing become well connected
within the network whereas those that change only a little
or not at all are weakly connected. Since the construction of
these networks is not based on fold change or p-value (α-value)
they are not affected by the inherent bias of these commonly
used statistics. The seminal parenclitic article analyzed transcript
data from Arabidopsis, and since then have been applied to
DNA methylation data (Karsakov et al., 2017), proteomic data
(Whitwell et al., 2018) and credit card fraud detection (Zanin
et al., 2018). A full description of how to construct parenclitic
networks are presented in Whitwell et al. (2018), in which
multiple approaches to network construction and the integration
of categorical variables into the network are also discussed.
When applied to ovarian cancer, the networks provide two
levels of information. First logistic regression models of the
network topologies were able to distinguish case/control, and
second, analysis of individual nodes suggested granzyme H and
fibroblast growth factor-binding protein 1 as changing as early as
34 months pre-diagnosis.

The critical feature of longitudinal analysis is to detect, in
an individual, when a marker is changing, thus overcoming
natural variation of an analyte within a population that maymask
diagnosis using simple threshold-based diagnosis. Of course,
whilst it is trivial to include new biomarkers in logistic regression
models, the lack of available biomarkers hampers the application
of this approach. Combining longitudinal analysis with holistic
techniques, such as parenclitic networks, that can exploit
personalized ’omics screening (e.g., routine transcriptomic,
proteomic analysis) could be an important advancement in
this field.

SUMMARY AND FUTURE PERSPECTIVE

Without any doubt, the rapid development of artificial
intelligence will lead to a new generation of personalized patient
tools. Each patient will be associated with a digital profile,
analyzed by an algorithm, which will recommend a personalized
treatment based on previous learning, data mining, and even
communication with other artificial intelligence algorithms
through the worldwide web.

It remains that the practical utilization of neural networks for
the analysis of medical data is a challenging problem. Recently
there has been explosive-like progress in the development of
artificial intelligence machine learning methods for pattern
recognition of different kinds. These results have included deep
learning convolutional neural networks, generative adversarial
networks, and state-of-the-art architectures of recurrent neural
networks including Long Short Time Memory and Gated
Recurrent Unit networks. However, in contrast to image
processing, except for some rare examples (Angermueller et al.,
2017; Putin et al., 2017), the application of deep learning
neural network for the early diagnosis of cancer (and thus
applications for aging), based on the analysis of proteomic
and epigenetic data has not progressed a lot. The major
challenge is the application of deep neural networks for an
analysis of high dimension low sample size data vital for
diagnostics of age-related diseases. Feature selection methods,
such as Lasso, have been suggested to solve this problem.
However, Lasso ignored the nonlinearity and interactions
among features. More efficient methods have included Hilbert-
Schmidt Independence Criterion Lasso (HSIC-Lasso) and Least
Angle Nonlinear Distributed feature selection (LAND) methods
(Yamada et al., 2016), and did not require training with a
large sample size. The same advantage was implemented in
the Deep Neural Pursuit networks (Liu et al., 2017) and deep
feature selection. The efficiency and usability of these new
methodologies seem to be very promising and are under active
investigation now. This approach should be also definitely
linked with other network methods because network biology
can provide insightful models for genetic phenomena such as
penetrance, epistasis, and modes of inheritance, all of which are
integral aspects of Mendelian and complex diseases (Furlong,
2013). In particular, it looks very promising to link deep learning
networks with recently developed parenclitic network analysis
(Whitwell et al., 2018). The advantage of this approach is
the possibility to represent data in the form of a connected
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graph, even in the cases when no known interactions between
parameters are available. The outcomes of this representation
can be then used for training the deep neural network. This
approach will, however, require a detailed investigation of
this methodology and comparison with other abovementioned
methods and with well-established machine learning algorithms
such as feature vector machines, random forest, or other
sparse methods.

Effective data analysis will be impossible without an
understanding of underlying biological mechanisms and,
hence, we should work on the integration of data analysis
and mathematical modeling. The most challenging problem
here is the automatic integration of experimental data with
mathematical models. Many fundamental principles governing
brain functioning are unclear: What are its properties? How
do these properties change over time? How to integrate
realistic morphological data into computational modeling of
aging-related neural diseases?

Through this review, we have highlighted and discussed
several analytical tools and modeling approaches that can be
applied to the field of personalized medicine and aging. The very
realistic future of personalized medicine and understanding of

the complex biological super-network underpinning aging lies in
the conflation of these ideas.
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