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Graphical, voxel, and region-based analysis has become a popular approach to studying
neurodegenerative disorders such as Alzheimer’s disease (AD) and its prodromal stage
[mild cognitive impairment (MCI)]. These methods have been used previously for
classification or discrimination of AD in subjects in a prodromal stage called stable
MCI (MCIs), which does not convert to AD but remains stable over a period of
time, and converting MCI (MCIc), which converts to AD, but the results reported
across similar studies are often inconsistent. Furthermore, the classification accuracy
for MCIs vs. MCIc is limited. In this study, we propose combining different neuroimaging
modalities (sMRI, FDG-PET, AV45-PET, DTI, and rs-fMRI) with the apolipoprotein-E
genotype to form a multimodal system for the discrimination of AD, and to increase
the classification accuracy. Initially, we used two well-known analyses to extract features
from each neuroimage for the discrimination of AD: whole-brain parcelation analysis
(or region-based analysis), and voxel-wise analysis (or voxel-based morphometry). We
also investigated graphical analysis (nodal and group) for all six binary classification
groups (AD vs. HC, MCIs vs. MCIc, AD vs. MCIc, AD vs. MCIs, HC vs. MCIc, and
HC vs. MCIs). Data for a total of 129 subjects (33 AD, 30 MCIs, 31 MCIc, and 35 HCs)
for each imaging modality were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) homepage. These data also include two APOE genotype data points for
the subjects. Moreover, we used the 2-mm AICHA atlas with the NiftyReg registration
toolbox to extract 384 brain regions from each PET (FDG and AV45) and sMRI image.
For the rs-fMRI images, we used the DPARSF toolbox in MATLAB for the automatic
extraction of data and the results for REHO, ALFF, and fALFF. We also used the
pyClusterROI script for the automatic parcelation of each rs-fMRI image into 200 brain
regions. For the DTI images, we used the FSL (Version 6.0) toolbox for the extraction of
fractional anisotropy (FA) images to calculate a tract-based spatial statistic. Moreover,
we used the PANDA toolbox to obtain 50 white-matter-region-parcellated FA images
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on the basis of the 2-mm JHU-ICBM-labeled template atlas. To integrate the different
modalities and different complementary information into one form, and to optimize the
classifier, we used the multiple kernel learning (MKL) framework. The obtained results
indicated that our multimodal approach yields a significant improvement in accuracy
over any single modality alone. The areas under the curve obtained by the proposed
method were 97.78, 96.94, 95.56, 96.25, 96.67, and 96.59% for AD vs. HC, MCIs vs.
MCIc, AD vs. MCIc, AD vs. MCIs, HC vs. MCIc, and HC vs. MCIs binary classification,
respectively. Our proposed multimodal method improved the classification result for
MCIs vs. MCIc groups compared with the unimodal classification results. Our study
found that the (left/right) precentral region was present in all six binary classification
groups (this region can be considered the most significant region). Furthermore, using
nodal network topology, we found that FDG, AV45-PET, and rs-fMRI were the most
important neuroimages, and showed many affected regions relative to other modalities.
We also compared our results with recently published results.

Keywords: Alzheimer’s disease, multimodal fusion, sMRI, FDG-PET, AV45-PET, DTI, rs-fMRI, APOE genotype

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder that
is characterized by chronic cortical atrophy (such as posterior
cingulate atrophy and medial temporal atrophy), and by a
progressive decline in cognitive function (Bishop et al., 2010;
Albert, 2011). AD is typically diagnosed in people older than
65 years (Qiu and Kivipelto, 2009). As the life span of the
population increases, the prevalence of AD and its costs to
society are also increasing. Therefore, the detection of AD
or its precursor forms, i.e., mild cognitive impairment (MCI)
(Petersen, 2004) is an important aim in biomedical research for
providing new therapeutics that help to slow the progression of
AD. MCI is a transitional phase (which signifies an intermediate
stage of functional and cognitive decline in normal aging and
dementia patients) that is characterized by memory disturbance
in the absence of dementia (Petersen, 2004; Angelucci et al.,
2010), followed by widespread cognitive deficits in multiple
domains until a disability threshold is reached. MCI is said to
be prodromal AD (Petersen, 2004); subjects go on to develop
an AD [this type of patient falls into an MCI-converting (MCIc)
group]. Symptoms emerge, on average, within 2–3 years (Lopez
et al., 2012). A prospective population-based study in the elderly
showed that the conversion rate of MCIc patients to AD or to
different forms of dementia is about 10–15% per year (Mitchell
and Shiri-Feshki, 2009; Lopez et al., 2012; Wei et al., 2016).
Despite our substantial knowledge of MCI converters, little is
understood about the 47–67% (Ganguli et al., 2004; Lopez et al.,
2012; Clem et al., 2017) of subjects diagnosed with MCI who
neither return to normal cognition nor convert to dementia.
In a study performed in a large community sample, 10 years
identified as a MCI, 21% of those suspected to be at a greater
risk for converting to dementia (Dubois and Albert, 2004; Jicha
et al., 2006) managed to remain with a diagnosis of MCI (Ganguli
et al., 2004; Clem et al., 2017). These studies suggest that certain
subjects may not convert to AD, but rather remain diagnostically
stable over a period of time (this type of patient falls into an

MCI-stable, or MCIs group). Recent results from neuroimaging
studies support the hypothesis that AD includes a disconnection
syndrome (implying network-wide functional changes due to
local structural changes) generated by a breakdown of the
organized structure and functional connectivity (FC) of multiple
brain regions, even in the early phase of MCI or before conversion
to AD (Dubois and Albert, 2004; Bishop et al., 2010; Daianu et al.,
2013; Clem et al., 2017; de Vos et al., 2018).

Previous studies have shown the potential of invasive and
non-invasive biomarkers to predict conversion from MCI to
AD dementia. For invasive markers, the APOE-ε4 genotype (for
the carriers of the APOE-ε4 allele, brain alterations associated
with AD may begin as early as infancy) (Liu et al., 2013;
Dean et al., 2014), and amyloid-beta (Aβ) accumulation and
neurofibrillary lesions are considered to be most important
biomarkers for AD (Murphy and LeVine, 2010). Apolipoprotein-
E (APOE) genotype polymorphism is considered to be the
most common polymorphism in neurodegenerative diseases and
has been consistently linked to normal cognitive decline in
AD and MCI patients. APOE-ε4 is the strongest genetic risk
factor, and it increases the risk for AD twofold to threefold.
Furthermore, it lowers the age of AD onset (Michaelson, 2014).
Recent developments in non-invasive neuroimaging techniques,
including functional and structural imaging, have given rise
to a variety of commonly used neuroimaging biomarkers for
AD. Among the multiple neuroimaging modalities, structural
magnetic resonance imaging (sMRI) has attracted significant
interest due to its ready availability for mildly symptomatic
patients and its high spatial resolution (Cuingnet et al.,
2011; Salvatore et al., 2015; Wei et al., 2016; Long et al.,
2017; Gupta et al., 2019b,c; Sun et al., 2019). sMRI can
also reveal abnormalities in a wide range of brain areas,
including gray matter (GM) atrophy in the medial temporal
lobe and hippocampal/entorhinal cortex, which are identified
as valuable AD-specific biomarkers for the discrimination
or classification of AD patients (Cuingnet et al., 2011). In
diffusion tensor imaging (DTI, or diffusion MRI), water diffusion

Frontiers in Aging Neuroscience | www.frontiersin.org 2 July 2020 | Volume 12 | Article 238

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-00238 July 28, 2020 Time: 18:0 # 3

Gupta et al. Classification of AD Using Six-Multi-Modalities

in the brain is interpreted as an MR signal loss. Because
neurodegenerative processes are accompanied by a loss of
obstacles that restrict the motion of water molecules (Acosta-
Cabronero and Nestor, 2014), DTI can reveal promising markers
of microstructural white matter (WM) damage in AD and MCI
patients. A connectivity-based analysis that applied graph theory
to DTI data demonstrated disrupted topological properties of
structural brain networks in AD, supporting the disconnection
theory. Specifically, regional diffusion metrics for the limbic WM
in the fornix, posterior cingulum, and parahippocampal gyrus
have shown better performance than volumetric measurements
of the GM in predicting MCI conversion (Sun et al.,
2019). In clinical studies, fluorodeoxyglucose-positron emission
tomography (FDG-PET), florbetapir-PET AV45 (amyloid protein
imaging), and resting-state fMRI (rs-fMRI) are the most
commonly used functional neuroimaging methods for AD
diagnosis (Hojjati et al., 2018, 2017; Gupta et al., 2019a; Pan et al.,
2019a,b). FDG-PET measures cerebral glucose metabolism via
18F-FDG in the brain, and helps to detect characteristic regional
hypometabolism in AD patients, which reflects the neuronal
dysfunctions in the brains of AD patients (Mosconi et al., 2008).
In contrast, florbetapir-PET AV45 measures the accumulation
of amyloid protein in AD brain homogenates and has faster
in vivo kinetics. The use of florbetapir in amyloid imaging was
recently validated in an autopsy study, and its safety profile allows
its clinical application for brain imaging (Camus et al., 2012).
Moreover, rs-fMRI imaging has been developed as a tool for
mapping the intrinsic activity of the brain and for depicting
the synchronization of interregional FC (Bi et al., 2018; de Vos
et al., 2018). A recent rs-fMRI study showed that the FC pattern
may be altered in some specific functional networks (default
mode network) of AD and MCI patients. The authors found
decreased FC between the hippocampus and several regions
throughout the neocortex, i.e., reduced FC within the default
mode networks and increased FC within the frontal networks
(de Vos et al., 2018).

From the above studies, we observe that there is no clear
evidence supporting the supremacy of any biomarker above
another (CSF vs. APOE-ε4 vs. imaging) for the diagnostic
estimation of AD. The choice of biomarkers mainly depends
on price and availability. Nevertheless, some authors argue
for the perfection of imaging above fluid biomarkers, given
that imaging modalities can distinguish the different phases
of the disease both anatomically and temporally (Khoury
and Ghossoub, 2019; Márquez and Yassa, 2019). The above-
mentioned studies used only a single modality to detect
biomarkers for the detection of the conversion of MCI to
AD. The proposed algorithm performance is approximately 80–
90%, which is low compared with that of recently published
multimodal studies (Zhang et al., 2011; Liu et al., 2014; Ritter
et al., 2015; Xu et al., 2016; Gupta et al., 2019a). To date,
it is true that no single imaging modality for biomarkers
meets all of the diagnostic requirements set by previous
studies (Hyman et al., 2012; Jack et al., 2018, 2016) (because
each biomarker has their own advantage over others) and
no single (whether genotype or fluid or imaging) biomarker
can by itself correctly discriminate a heterogeneous disorder

of AD with high accuracy, but several methods may provide
complementary information, which leads to a call to develop
a panel of neuroimaging biomarkers, or a combination of
imaging and APOE or imaging with CSF data that merges
information about the disease manner to improve diagnostic
accuracy (Márquez and Yassa, 2019). Combining information
(multimodal) from different types of neuroimaging (structural
and functional) with genotype (APOE) or biochemical (CSF)
information, as do sMRI, AV45-PET, FDG-PET, DTI, and
rs-fMRI, can help to improve diagnostic performance for
AD or MCI compared with single-modality methods (Zhang
et al., 2011; Young et al., 2013; Schouten et al., 2016;
Wei et al., 2016; Gupta et al., 2019a). Furthermore, it has
been noted lately that a combination of biomarkers yields a
powerful diagnostic technique for classifying the AD group with
cognitively healthy subjects, with specificity and sensitivity scores
reaching above 90% (Bloudek et al., 2011; Rathore et al., 2017;
Khoury and Ghossoub, 2019).

Multiple studies have reported a combination of different
neuroimaging modalities for investigating AD or MCI. Dai
et al. (2012) used regional GM volumetric measures and
functional measures (amplitude of low-frequency fluctuations,
regional homogeneity, and regional FC strength) as features.
They trained distinct maximum uncertainty LDA classifiers on
functional and structural properties and merged the output
of the classifiers by weighted voting. Zhang et al. (2011)
used a multimodal method for the discrimination of healthy
controls (HC) to AD patients. They used a kernel-based support
vector machine (SVM) classifier for the classification, and they
combined volumetric regional features with regional FDG-PET
and CSF biomarkers. Young et al. (2013) proposed a method
where they combined sMRI, FDG-PET, and APOE genotype
data for the discrimination of AD with HC. These authors
used Gaussian processes as a multimodal kernel method, and
they applied an SVM classifier for the classification of MCIs
vs. MCIc groups. However, their diagnostic accuracy was low.
Another study proposed a system where multiple kernel learning
(MKL) with the Fourier transform of the Gaussian kernels
was applied to AD classification using both sMRI and rs-
fMRI (Liu et al., 2014) neuroimages. Moradi et al. (2015)
used GM density maps, age, and cognitive tests as features,
and employed classification algorithms such as low-density
separation and random forest for AD conversion discrimination.
Another study proposed a novel method for the classification
of AD using a multi-feature technique (regional thickness,
regional correlative-calculated from thickness measures, and
the APOE genotype) using an SVM classifier (Zheng et al.,
2015). Schouten et al. (2016) combined regional volumetric
measures, diffusion measures, and correlation measures between
all brain regions calculated from functional MRI. They employed
a logistic elastic net for classification. In addition, Liu et al.
(2017) used independent component analysis and the COX
model for the discrimination of MCIs to MCIc. In their
study, they used sMRI and FDG-PET scans in combination
with APOE data and some cognitive measures. Hojjati et al.
(2018) combined the features extracted from sMRI (cortical
thickness) and rs-fMRI (graph measures) for the detection
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of AD, employing SVM for the classification. It is worth
noting that most of the above-presented multimodal methods
used brain atrophy from a few manually extracted regions
as a feature of sMRI and PET images for the detection
of AD among different groups. However, using only a
small number of brain regions as a feature in any imaging
modality may not accurately reflect the spatiotemporal pattern
of structural and physiological abnormalities as a whole
(Fan et al., 2008). Furthermore, simply by increasing the
number of modalities, combining modalities did not increase
predictive power.

Therefore, the primary goal of this study was to combine
five different imaging modalities (sMRI, AV45, FDG-PET,
DTI, and rs-fMRI) with the APOE genotype to establish a
multimodal system for the detection of AD. Moreover, in this
study, we used three methods (that were completely different
from each other) for the discrimination of AD from other
groups. Moreover, we also aimed to discover which single
modality of neuroimaging achieves high performance or plays
a significant role in classifying all six binary classification
groups (AD vs. HC, MCIs vs. MCIc, AD vs. MCIc, AD
vs. MCIs, HC vs. MCIc, and HC vs. MCIs) based on these
methods, and wanted to know which combined methods would
perform well in the classification stage (whole-brain or voxel-
wise analysis). Furthermore, we also aimed to discover the
regions where these six binary groups massively differed from
each other using voxel of interest (VOI) and graph methods.
Whole-brain parcelation and voxel-wise methods were used
to study regional and voxel differences in all six binary
classification groups. We used NiftyReg (Young et al., 2013;
Gupta et al., 2019a), the pyClusterROI script (Craddock et al.,
2012), PANDA (Cui et al., 2013), DPRASF (Chao-Gan and Yu-
Feng, 2010), and the CAT12 toolbox with the integration of
SPM12 (Ashburner and Friston, 2001) for the extraction of
features from the structural and functional neuroimaging data.
Furthermore, graph-based analysis (John et al., 2017; Peraza
et al., 2019) was performed to study the organization of (nodal
and group) network connectivity using anatomical features
(including GM volume, cortical thickness, and WM pathways
between GM regions), and using the regional time series of
the 200 brain regions included in the Craddock atlas. For this
graph-based analysis, we used the BRAPH toolbox (Mijalkov
et al., 2017). Later, we applied an MKL algorithm based on
the EasyMKL (Aiolli and Donini, 2015; Donini et al., 2019)
classifier for classification and for data fusion. This classifier
works by simultaneously learning the predictor parameters
and the kernel combination weights. Moreover, we applied a
leave-one-out cross-validation technique that helps to find the
optimal hypermeter for this MKL classifier. In this study, we
also applied the radial basis function (RBF)-SVM classifier to
compare its results with the results obtained from the EasyMKL.
Our results showed that grouping different measurements (or
complementary information) from the six different modalities
exhibited much better performance for all six binary classification
groups (using any combined-ROI, or combined-VOI, or a
combination of all) than using both classifiers with the best
individual modality.

MATERIALS AND METHODS

Participants
The participants included in this study were enrolled via the
ADNI, which was launched in 2003 as a multicenter public-
private partnership, guided by Principal Investigator Michael
W. Weiner, MD. The participants were enrolled from 63
locations across the United States and Canada. The primary
goal of ADNI was to test whether sMRI, PET, new biological
markers, and clinical and neuropsychological evaluation could
be combined to measure the development of MCI and early
AD. The criteria used for the inclusion of subjects were those
defined in the ADNI procedure.1 The enrolled subjects were
between 56 and 92 (inclusive) years old, had a study partner able
to offer an independent assessment of functioning, and spoke
either Spanish or English. All subjects were willing and able
to undergo all test trials, including neuroimaging, and agreed
to a longitudinal follow-up. Specific psychoactive medications
were excluded. For this study, we downloaded data from all
subjects for whom all five imaging modalities (sMRI, rs-fMRI,
FDG-PET, AV45-PET, and DTI) with their APOE genotype
were available on the ADNI homepage. A total of 129 subjects
were classified as either healthy controls (HC, n = 35), MCIc
(n = 31), MCIs (n = 30), or AD (n = 33), with matched sex
and age ratios. The groups were classified according to the
criteria set by the ADNI consortium (Petersen et al., 2010). In
the HC group, participants had global clinical dementia rating
(CDR) scores of 0, mini-mental state examination (MMSE)
scores between 27 and 30, functional activities questionnaire
(FAQ) scores between 0 and 4, and geriatric depression scale
(GDS) scores between 0 and 4. In the MCIs group, the
MMSE score was between 25 and 30, the FAQ score between
0 and 16, and the GDS score was between 0 and 13. In
the MCIc group, the MMSE score was between 19 and 30,
the FAQ score between 0 and 18, and the GDS score was
between 0 and 10.

In the AD group, patients had a global CDR score of 1,
an MMSE score between 14 and 24, an FAQ score between
3 and 28, and a GDS score between 0 and 7 (Morris, 1993).
We did not consider MCI subjects who had been tracked for
less than 18 months and did not convert within this period.
Table 1 shows participant demographic information, including
the mean age and the sex ratios per group. To assess statistically
significant changes in the demographics and clinical features
between these groups, a Student’s t-test was used with the
significance level set to 0.05. We found no significant differences
(p− value > 0.05) between the groups for age or sex ratio.
To attain unbiased estimates of performance, the classification
groups were then randomly split into two clusters in a ratio
of 70:30 for the training and testing sets. The model was
trained on the training set, and the performance measures
of diagnostic specificity and sensitivity were carried out on a
separate testing set. The splitting procedure preserved the age and
sex distribution.

1https://www.adni-info.org/Scientistis/AboutADNI.aspx#
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TABLE 1 | Demographic and neuropsychological characteristics of the
participants.

Group AD (n = 33) MCIc (n = 31) MCIs (n = 30) HC (n = 35)

Sex (M/F) 21/12 16/15 17/13 14/21

Age 75.65 ± 8.61 72.27 ± 7.40 72.90 ± 7.86 77.83 ± 6.17

Body weight (kg) 75.81 ± 13.60 80.71 ± 17.43 82.14 ± 15.03 75.76 ± 18.62

FAQ score 19.34 ± 6.53 6.16 ± 7.38 1.86 ± 2.99 0.13 ± 0.48

NPI-Q score 4.46 ± 4.01 2.64 ± 3.32 1.66 ± 1.61 0.33 ± 0.78

GDS score 2.37 ± 2.59 2.03 ± 2.02 1.26 ± 0.96 1.13 ± 1.79

MMSE score 19.59 ± 4.56 26.32 ± 3.85 28.03 ± 1.25 29.13 ± 1.20

Values are numbers or means ± standard deviations. FAQ: functional activities
questionnaire; NPI-Q: neuropsychiatric inventory questionnaire; GDS: geriatric
depression scale; MMSE: mini-mental state examination.

sMRI Acquisition
We acquired 1.5-T T1-weighted MR images from the ADNI
homepage. The MRI images were obtained from data centers
using Philips, GE, or Siemens Medical system scanners. Because
the acquisition protocol was different for each scanner, an
image normalization step was carried out by ADNI. The image
corrections included calibration, image geometry distortion due
to gradient non-linearity (grad-warp), and reduction in the
intensity non-uniformity due to waves, or residual intensity non-
uniformity of the 1.5-T scans utilized on each image by ADNI.
Further details about the sMRI images are available on the ADNI
website.2 All scans had a resolution of 176× 256× 256 with
1 mm spacing between each scan. In our study, we again pre-
processed the obtained sMRI images using the FMRIB Software
Library (FSL, v.6.0) (Smith, 2002) toolbox. For the anatomical
sMRI images, this included the extraction of non-brain tissue
from each image using the BET function. We then passed the
skull-stripped images to the ANTs (Tustison et al., 2010) toolbox
for N4 bias field correction to correct for inhomogeneous artifacts
in each image. For co-registration to the standard Montreal
Neurological Institute (MNI) 152 template (Grabner et al., 2006),
we also used the FSL toolbox (Jenkinson et al., 2012).

FDG-PET Image Acquisition
ADNI provides four different types of FDG-PET samples, which
are labeled as: (1) Co-registered Dynamic; (2) Co-registered,
Averaged; (3) Co-reg, Avg, Standardized image and Voxel size;
and (4) Co-reg, Avg, Std Img and Vox Siz, Uniform Resolution.
The type (3) baseline FDG-PET images were downloaded from
the ADNI homepage.

The downloaded baseline FDG-PET samples were in
DICOM format. In the first step, we converted these DICOM
format images to the Nifty format using the dcm2nii (Li
et al., 2016) toolbox. Later, these images were spatially
normalized to the MNI 152 template using the SPM12
toolbox (integrated within MATLAB 2019b) with a standard
91× 109× 91 tensor dimension image grid, having a voxel
size of 2× 2× 2 mm3. This image grid was oriented so that
the subjects’ anterior-posterior (AC-PC) axis was parallel to
the AC-PC line. The above normalization step was carried
out on two levels: a global affine transformation, followed

2http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/

by a non-rigid spatial transformation. The general affine
transformation requires a 12-parameter design, whereas
the non-rigid spatial transformation uses a sequence of the
lowest frequency elements of the three-dimensional cosine
transform. Furthermore, the intensity normalization step
was performed by splitting each voxel depth-wise with
the average score of the global GM, which was obtained
with the help of the AAL template image. More details
concerning the FDG-PET imaging can be found on the
ADNI homepage.3 Moreover, after the completion of these
pre-processing steps, we co-registered the FDG-PET images
to their corresponding sMRI T1-weighted images using
the SPM12 toolbox.

AV45-PET Image Acquisition
Alzheimer’s Disease Neuroimaging Initiative provides four
different types of AV45-PET samples, which are: (1) AV45
Co-registered Dynamic; (2) AV45 Co-registered, Averaged; (3)
AV45 Co-reg, Avg, Standardized image and Voxel size; and (4)
AV45 Co-reg, Avg, Std Img and Vox Siz, Uniform Resolution.
The type (3) baseline AV45-PET images were downloaded
from the ADNI homepage. For each scan, the 5-min frames
(four for florbetapir, acquired 50–70 min post-injection) were
co-registered to the frame (rigid-body translation/rotation, six
degrees of freedom) using the NeuroStat “mcoreg” routine
(followed by the ADNI organization) (Jagust et al., 2015). The
downloaded baseline AV45-PET samples were in DICOM and
ECAT formats. In the first step, we converted this DICOM and
ECAT format images to the Nifty format using the dcm2nii
(Li et al., 2016) toolbox. Later, these images were spatially
normalized to the MNI 152 template using the SPM12 toolbox
(integrated within MATLAB 2019b) with a standard 91× 109×
91 tensor dimension image grid, having a voxel size of 2× 2×
2 mm3 using the same process we introduced in section “FDG-
PET Image Acquisition” for the FDG-PET image. More details
about AV45-PET imaging can be found on the ADNI website
(see text footnote 3). Furthermore, after the completion of the
above stated pre-processing steps, we co-registered the AV45-
PET images to their corresponding sMRI T1-weighted images
using the SPM12 toolbox.

Resting-State Functional MR Image
Acquisition
A 3.0-T Philips Medical sMRI scanner was used to acquire
the fMRI images. All rs-fMRI images were obtained from the
ADNI homepage. The sample for each subject consisted of
6720 DICOM images. The patients were required to relax,
not to think, and to lie in the scanner during the scanning
procedure. The sequence parameters were as follows: pulse
sequence = GR, TR = 3000 ms, TE = 30 ms, flip angle = 80

◦

,
data matrix = 64× 64, pixel spacing X, Y = 3.31 mm and
3.31 mm, slice thickness = 3.33 mm, axial slices = 48, no
slice gap, time points = 140. Because the signal-to-noise ratio
(SNR) of the rs-fMRI images was limited, the collected data
were pre-processed to reduce the impact of noise on the

3http://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
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fMRI images. For the pre-processing of the rs-fMRI images,
we used the Data Processing Assistant for Resting-state fMRI
(DPARSF) (Chao-Gan and Yu-Feng, 2010) software, which
can be downloaded from http://d.rnet.co/DPABI/DPABI_V2.
3_170105.zip. For each subject, the entire pre-processing was
divided into nine steps as follows: converting the DICOM format
into the NIFTY format, removing the first ten time points,
timing the slicing, head motion correction to adjust the time
series of the images so that the brain was located in the same
orientation in every image, normalization, smoothing by full
width at half maximum (FWHM), removing the linear trend
to eliminate the residual noise that systematically increases
or decreases over time (Smith et al., 1999), temporal filtering
to retain 0.01–0.08 Hz fluctuations, and removing covariates
to eliminate physiological artifacts (Fransson, 2005), non-
neuronal blood oxygen level-dependent (BOLD) fluctuations,
and head motion.

Diffusion Tensor Imaging Image
Acquisition
Diffusion tensor imaging images were also downloaded from the
ADNI homepage. The DTI protocol used spin-echo diffusion-
weighted echo-planar imaging with a TR/TE of 12000/1046 ms,
a voxel size of 0.9375× 0.9375× 2.35 mm3, a matrix size of
256× 256, 45 slices, 30 gradient directions, and a b-value of
1000 s/mm2. More details about DTI imaging can be found
on the ADNI webpage.4 This ADNI protocol was chosen after
conducting a detailed comparison of several different DTI
protocols to optimize the SNR in a fixed scan time (Jahanshad
et al., 2013; Chen et al., 2018). The pre-processing of DTI data
was performed using the diffusion toolbox of FSL (Version
6.0, FMRIB, Oxford, United Kingdom). FSL pre-processing
included (i) corrections for eddy currents and head motion, (ii)
skull stripping, and (iii) fitting the data to the diffusion tensor
model to compute maps of fractional anisotropy (FA) and mean
diffusivity (MD). A single diffusion tensor was fitted at each
voxel of the eddy- and EPI-corrected DWI images using the
FSL toolbox. Scalar anisotropy maps were obtained from the
consequential diffusion tensor eigenvalues λ1, λ2, and λ3. FA, a
measure of the degree of diffusion anisotropy, was defined in the
standard way as

FA =
√

3
2

√
(λ1< λ >)2

+(λ2< λ >)2
+(λ3< λ >)2√

λ2
1+λ2

2+λ2
3

, ε[0, 1]

(1)

< λ > =
λ1+λ2+λ3

3
(2)

where < λ > is equal to the MD or average proportion
of diffusion in all directions. The resulting images
were smoothed with a Gaussian kernel of 5 mm
FWHM to improve the SNR and ensure a Gaussian
distribution of the maps.

4http://adni.loni.usc.edu/data-samples/data-types/

APOE Genotype
The APOE genotype for each subject was also obtained from the
ADNI homepage. The APOE genotype is known to affect the risk
of developing sporadic AD in carriers. The APOE genotype of
each subject was noted as a pair of numbers representing which
two alleles were present in the blood. This genetic feature was
a single categorical variable for each participant and could have
had one of five possible values: (ε2, ε3), (ε2, ε4), (ε3, ε3), (ε3, ε4),
and (ε4, ε4). The most common allele is APOE ε3, but carriers
of the APOE-ε4 variant have an increased risk of developing
AD, whereas the APOE ε2 variant confers some protection on
carriers (Michaelson, 2014). Of the three genetic polymorphisms,
APOE shows the highest correlation with MCI status and stability
(Brainerd et al., 2013). Several recent studies have linked the
APOE-ε4 status to a relatively late risk of preclinical progression
to AD. Until recently, ε4 variants (including ε4/ε4 and ε4/ε3
combinations) were inconsistently linked to the MCI status, likely
reflecting both clinical and methodological differences in status
classification. In this study, the genotype data were obtained from
a 10 ml blood sample taken at the time of the scan and sent
immediately to the University of Pennsylvania AD Biomarker
Fluid Bank Laboratory for analysis.

Three Feature Extraction Processes
Figure 1 shows a block diagram of the proposed framework. In
this study, we performed three types of analysis for the extraction
of features from each imaging modality:

(1) Whole-brain parcelation (or atlas-based segmentation) is
a quantitative method that provides a non-invasive way
to measure brain regions via neuroimaging. It works by
assigning tissue labels to the unlabeled images using sMRI
scans as well as the corresponding manual segmentation.
For sMRI, FDG, and AV45-PET scans, we used the 2-
mm Atlas of Intrinsic Connectivity of Homotopic Areas
(AICHA) template image (Joliot et al., 2015) for the
extraction of 384 regions of interest (ROIs) from each
image, whereas for the rs-fMRI and DTI scans, we used
the 2-mm Craddock atlas template (Craddock et al., 2012)
for the extraction of 200 ROIs from each rs-fMRI image
and the 2-mm Johns Hopkins University (JHU) WM labels
atlas for the extraction of 50 ROIs from each DTI image
(Hua et al., 2008).

(2) Voxel-wise analysis or morphometry (VBM) is a
computational approach to neuroanatomy that measures
differences in local concentrations of brain tissue through
a voxel-wise comparison of multiple brain images. It
uses statistics to recognize differences in brain structure
between groups of patients, which in turn can be used to
infer the presence of atrophy or normal-tissue expansion
in patients with disease. For sMRI, FDG, and AV45-PET
scans, we used the SPM12 toolbox to apply VBM, whereas,
for the rs-fMRI scans, we used the DPRASF toolbox
integrated with SPM12 to apply VBM. For the DTI scans,
we used the tract-based spatial statistics (TBSS) function
from FSL (v.6.0).
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FIGURE 1 | Overview of the multimodal framework. (A) Selection of five imaging modalities (sMRI, FDG-PET, AV45-PET, rs-fMRI, and DTI) and APOE genotype.
(B) Extraction of regional features using NiftyReg, pyClusterROI, and PANDA toolboxes. (C) Extraction of voxel features using SPM12, DPARSF, and FSL toolboxes.
(D) Leave-one-out cross-validation method. (E) Multiple kernel learning. (F) Diagnostic output.

(3) Graph theory methods are powerful methods for
quantifying the organization of a network by means of
brain anatomical features, including cortical thickness,
GM volume, and WM tracks between GM regions.
When applying graph theory to different neuroimaging
modalities, the outcome is a network with vertices or nodes
that are represented by brain voxels or regions defined
by a predetermined parcelation structure, while the edges
are denoted by inter-individual data relations between
the regions estimated, for example, as the intensity of
correlation between the regional measurements. Note that
the edges of a structural network are not always denoted by

correlations between regional capacities, but by the density
or number of WM tract-linking regions. In an analysis
of sMRI, FDG, and AV45-PET networks, the nodes are
generally defined using an anatomical segmentation or
parcelation of the brain into different regions. In this
study, we used the 2-mm AICHA atlas template image
(which was already segmented into 384 distinct regions)
for the extraction of 384 ROIs from each sMRI, FDG, and
AV45-PET image. In the case of functional networks, for
the rs-fMRI and DTI images, we used the 2-mm Craddock
atlas template image for the extraction of 200 ROIs, and
the 2-mm JHU-WM (ICBM-DTI-81) label atlas for the
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extraction of 50 ROIs from each DTI image. After the
nodes of the network were defined, the edges indicating the
relationship between different regions was computed. For
this, we used the BRAPH toolbox (Mijalkov et al., 2017)
integrated into MATLAB 2019a. In BRAPH, the edges
are calculated in a GUI graphical analysis as the statistical
correlation between the values of pairs of brain regions for
an individual or for a group of subjects, depending on the
neuroimaging technique.

Feature Extraction Using Atlas-Based Segmentation
After completing a series of image pre-processing steps for each
imaging modality as shown in Figure 1, we extracted the features
from each modality. The dashed pink line in Figure 1 shows
the feature extraction for a whole-brain analysis. For sMRI,
FDG, and AV45-PET images, we used the 2-mm AICHA atlas
template image for the extraction of 384 ROIs from each image
(Gupta et al., 2019a). We then processed these images using
the open-source NiftyReg toolbox (Modat et al., 2010), which
is a registration toolkit that performs fast diffeomorphic non-
rigid registration on images. After the registration process, we
obtained the subject-labeled image based on a template with 384
segmented regions. For each of the 384 ROIs in the labeled MR
and PET images, we computed the GM volume and the relative
cerebral metabolic rate of glucose from the baseline MRI, FDG,
and AV45-PET data, respectively and later used it as a feature.
Therefore, for each sMRI and PET image, we obtained 384
features. For the rs-fMRI images, we ran a pyClusterROI Python
script, which was downloaded from https://ccraddock.github.io/
cluster_roi/, for the extraction of 200 ROIs from each rs-fMRI
image. This method employs a spatially constrained normalized-
cut spectral clustering algorithm to generate individual-level and
group-level parcelations. A spatial constraint was imposed to
ensure that the resulting ROIs were spatially coherent, i.e., that
the voxels in the resulting ROIs were connected. Moreover, for
DTI images, we ran a pipeline to analyze the brain diffusion
images (PANDA toolbox), which can be downloaded from
https://www.nitrc.org/projects/panda/, integrated with MATLAB
R2019a in the Ubuntu 18.04 operating system for the processing
of diffusion MRI images. The PANDA pipeline uses the FMRIB
Software Library (FSL), Pipeline System for Octave and MATLAB
(PSOM), Diffusion Toolkit, and MRIcron packages for the
extraction of diffusion metrics (e.g., FA and MD) that are
ready for statistical analysis at the voxel level or atlas level.
For the parcelation of DTI images, it uses the 2-mm JHU-
WM (ICBM-DTI-81) label atlas, which is already segmented into
50 distinct ROIs. After completion of this process, we gained
the subject-labeled image based on a template with 50 distinct
segmented regions.

Feature Extraction Using Voxel-Wise Morphometry
The dashed and dotted red line in Figure 1 shows the pipeline
for the voxel-wise analysis (or the extraction of features) from
sMRI, FDG, AV45-PET, rs-fMRI, and DTI images. For the
voxel-wise analysis of sMRI, FDG, and AV45 images, we used
the statistical mapping method (SPM12) toolbox integrated
with the computational anatomy toolbox (CAT version 12),

which can be obtained from https://www.fil.ion.ucl.ac.uk/spm/
software/spm12/ and http://www.neuro.uni-jena.de/cat/. First,
the MRI data were anatomically standardized using the 12-
parameter affine transformation offered by the SPM template
to compensate for differences in brain size. We chose the East
Asian brain image template and left all other factors at their
default setting. The sMRI images were then parcellated into GM,
WM, and CSF images using the unified tissue segmentation
method after the image strength non-uniformity correction was
complete. The obtained linearly transformed and parcellated
images were then non-linearly distorted using diffeomorphic
anatomical registration via exponentiated lie algebra (DARTEL)
methods and modulated to create an improved template for a
DARTEL-based MNI152 template image, followed by smoothing
using an 8 mm FWHM kernel. The final step consisted of voxel-
wise statistical assessments. To construct a statistical parametric
map, we calculated contrast values based on general linear
model-estimated regression parameters. This technique executes
a two-sample t-test to determine if there are major regional
density differences between two sets of GM images. We obtained
these regional information values representing the major density
differences between two sets of GM images after executing a
false discovery rate (FDR) and family wise error rate (FWER)
correction. Based on this data, cluster values were obtained
to create ROI binary masks, which were subsequently used
to acquire GM volumes from GM brain images for use as a
morphometric feature. Moreover, before submitting FDG and
AV45 images to VBM analysis, the first step was to register the
FDG and AV45 images with their corresponding sMRI images.
We used the SPM12 toolbox for this registration. After the
registration, we followed the same method as was used for the
sMRI VBM analysis. SPM12 was used to produce statistical maps
of between-group alterations in the regional-to-whole-brain
dimensions of the cerebral metabolic rate for glucose (CMRgl)
consumption in likely AD, MCIs, MCIc, and HC groups.

For rs-fMRI images, to decrease the influence of the SNR, the
selected data should be pre-processed. In this study, we used the
DPARSF toolbox,5 which was integrated with MATLAB R2019a,
to calculate the whole-brain ALFF, fractional (fALFF), and REHO
feature maps, as shown in Figure 2. Spatial smoothing was
performed with a 4× 4× 4 mm FWHM Gaussian kernel before
the ALFF, FALFF, and REHO calculation. To minimize the low-
frequency drift, linear trending was removed from the process.
To explore the ALFF, fALFF, and REHO differences between the
AD patient group and the other groups, a random-effects two-
sample t-test was implemented on the individual ALFF, fALFF,
and REHO maps in a voxel-wise way by taking the patients’ age
as a confounding covariate. The ALFF was calculated by filtering
the time courses of each individual voxel of the subjects with a
fast Fourier transformation of the frequency area, and the power
range or spectrum was then gained. Because the power of a
specified frequency is relative to the square of the amplitude of
this frequency, the square root was computed at each frequency
domain of the power range, and then the averaged square root
was found across 0.01–0.08 Hz at each individual voxel. Later,

5http://d.rnet.co/DPABI/DPABI_V2.3_170105.zip
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FIGURE 2 | Pipeline showing feature extraction process for rs-fMRI image.

this averaged square root was taken as the ALFF index. The
fALFF was calculated as the ratio of the amplitude within the low-
frequency spectrum (0.01–0.08 Hz) to the total amplitude over
the full frequency spectrum (0–0.25 Hz). It is generally calculated
as a fraction of the sum of amplitudes across the entire frequency
range detectable in a given signal. REHO is a voxel-based measure
of brain activity that evaluates the similarity or synchronization
between the time series of a given voxel and its nearest neighbors
(Zang et al., 2004). It was calculated using Kendall’s coefficient of
concordance with the time series of every 27 neighboring voxels.
Then, a Kendall’s coefficient of concordance value (ranging from
0 to 1) was assigned to each voxel center. Voxels of higher
strength in the REHO maps show greater similarity with the
neighboring voxel’s time series. For the DTI images, FA maps
were then created using the DTIfit approach and were entered
into the TBSS environment to investigate changes in diffusivity
measures along the WM tract. First, all FA data were non-linearly
aligned to a common space (FMRIB58_FA), then the normalized
FA images were averaged to create the mean FA image and a
threshold set (FA > 0.2) (to exclude voxels that were primarily
GM or CSF) to create a mean FA skeleton. Next, each participant’s
FA data were projected onto the mean FA skeleton, followed
by voxel-wise statistical analysis. Voxel-wise statistical analysis
of FA in the WM skeleton was performed using Randomize,
FSL’s non-parametric permutation interference tool. Multiple
comparisons were corrected for by using threshold-free cluster
enhancement (p < 0.05). WM regions were identified with the
JHU-WM (ICBM-DTI-81) label atlas included in FSL.

Graph Generation and Construction of sMRI,
FDG-PET, AV45-PET, fMRI, and DTI Brain Networks
To assess the sMRI, FDG-PET, and AV45-PET network topology
in AD, MCIs, MCIc, and HC subjects, the T1 images of these
subjects were pre-processed using the NiftyReg toolbox with
the integration of the 2-mm AICHA atlas template image.
In total, 384 regions were extracted from each modality and
included as a node in the network study. The edges between
these brain regions were computed as a Pearson correlation,
and the negative correlations were set to zero. The network
connectivity analyses were carried out on the binary undirected

graphs while controlling the number of networks across a range
of densities from 5–25% with a step size of 0.5%. To assess the
functional network topology of rs-fMRI images, we used the
DPARSF toolbox integrated into MATLAB 2019a. Moreover, we
followed the same method for the extraction of features that
we followed for the rs-fMRI images in (see section “Feature
Extraction Using Voxel-Wise Morphometry”). A regional time
series of the 200 brain regions included in the Craddock template
atlas was extracted for each patient. To compute the relationship
between these regions, we used the Pearson coefficient and
performed network analysis on the binary undirected graphs. To
assess the DTI network topology in AD, MCIs, MCIc, and HC
subjects, the DWI images of these subjects were pre-processed
using the PANDA toolbox, which was integrated into MATLAB
2019b. The PANDA toolbox uses a 2-mm JHU-WM (ICBM-
DTI-81) label atlas template image for the extraction of 50 WM
regions from each DTI image. These extracted regions were later
included as a node in the network analysis. The same procedure
was followed with the same parameters as that described above
for constructing a network for sMRI brain images. Moreover,
several graph metrics were calculated to quantify the nodal or
global topological organization of the structural and functional
networks, including local efficiency, characteristic path length,
transitivity, and modularity. Local efficiency is a measure of
the average efficiency of data transfer within local subgraphs
or regions, and it is defined as the converse of the shortest
average path length between the regions of a given node and
all other nodes. The local efficiency of node i is defined as:
LEi = 1/di(di − 1)

∑
j=Gi

1/li,j, where di represents the number
of nodes in the subgraph (Gi) and li,j is the length of the shortest
path between nodes i and j. The distance between two vertices
in a graph is the length of the shortest path between them if
one exists. Otherwise, the distance is infinite, and the average
of the shortest path between one node and all remaining other
nodes is termed the characteristic path length. The characteristic
path length lG is computed as: lG = 1/n(n− 1)

∑
i6=j d(vi, vj),

where n is the number of vertices (v) in a graph network, and
d(vi, vj) denotes the shortest distance between vertices vi and
vj. Transitivity (or the clustering coefficient) is defined as the
ratio of paths that cross two edges to the number of triangles.
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Moreover, if a node is connected to a second node, which is in
turn is linked to a third node, the transitivity reproduces the
probability that the initial node is linked to the third node. It

can be computed by: T = 1
N
∑

k

∑
i,j aijaikajk
dk(dk−1)

, where aij is the (i, j)
entry of the binary connection matrix. aij = aji = 1 if there is a
link between nodes i and j, and aij = aji = 0 otherwise. There
are no self-loops in the network, thus aij = 0. Modularity is the
fraction of the network edges that fall within the given groups,
minus the expected fraction if edges were distributed at random.
It also calculates to what extent a network can be divided into
communities. It can be calculated by, Q =

∑
iεM
[qii − (

∑
jεM

qjj)2
],

where the network is fully partitioned into M non-overlapping
modules (or clusters), and qij represents the proportion of all
links connecting nodes in module i with those in module j.

Classification Techniques
In supervised learning, classification resembles the task of
determining to which category a new sample belongs, based
on a training set of data containing instances for which
associations have previously been identified. In neuroimaging,
different information sources may contain different imaging
modalities (e.g., sMRI, FDG, AV45, DTI, and rs-fMRI), different
ways of extracting features from the same modality (e.g., ROI-
based or voxel-based for every image), or a different feature
subset. In the present study, we applied three different methods
to extract features from the same neuroimaging modality
as follows: whole-brain parcelation, voxel-wise analysis, and
graphical representation. We were mainly interested in the first
two approaches, where we used feature subsets as a kernel for
each of the two methods. Later, we will combine (or concatenate)
the approaches. We were particularly interested in examining
models based on subsets of features extracted according to voxels
or an anatomical criterion to attain predictions that enabled us to
estimate the anatomical localization.

Multiple Kernel Learning
Kernel methods such as SVM (Cortes and Vapnik, 1995;
Samper-González et al., 2018), which are based on similarity
measures between data points, have been used with great success
for dimensionality reduction and classification. Kernelization
projects the native data space onto a higher-dimensional feature
space. Non-linear relations between variables in the original space
become linear in the transformed space. Let {x(i), y(i)

}
N
i=1 be

the training sample, where x(i)
= (x(i)

1 , x(i)
2 , · · · , x(i)

M )Tε<M is a
data sample, M is the number of features from all modalities,
and y(i)ε{1,−1} is the corresponding class label. The aim is
to simultaneously acquire an optimal feature description and a
max-margin classifier in kernel space because of its systematic
and elegant way of forming complicated patterns. Therefore, to
project the data, we will use the kernel trick. As we know, for
any kernel (K) on an input space (X), there exists a Hilbert space
(f ), called the feature space, and the projection ∅ is given by
the mapping φ : X→ f , such that for any two-object (x, y) in X,
K = (x, y) =< φ(x), φ(y) >, where < ., . > is the Euclidean or
inner dot product of the data point. Examples of kernel functions

include the linear, RBF, and others. Recent papers have shown
that using multiple kernels rather than using a single kernel can
improve the interpretability of a decision function, and in some
instances, it improves the final performance. In MKL, the data are
represented as a combination of base kernels. Each base kernel
represents a different modality or feature of the entity. MKL
seeks to find the optimal combination of base kernels so that the
analysis tasks that follow are benefited the most. Classification
tasks are represented especially well through MKL, as the optimal
combination is the one that gives the maximum classification
accuracy. The dual form of MKL optimization, as it is solved by
conventional solvers like LIBSVM, is given as

max
α

L(α) =
∑n

i=1 αi − 1/2
∑p

i,j
∑p

m=1 αiαjyiyjβmkm(xmi , xmj )

Subject to
∑n

i=1 αiyi = 0; 0 ≤ αi ≤ C; i = 1, ...., n
(3)

where αi, αj are Lagrange multipliers, which are the variables
obtained on converting the primal support vectors to the dual
problem, and km(xmi , xmj ) is the m-th kernel function, which is
applied to each pair of the samples, and C is the regularization
parameter that controls the distance between the hyperplane and
the support vectors. From the set of n training samples, the
features of the i-th sample from the m-th modality are in the
vector xmi , and its corresponding class label, yi, is either +1 or
−1. The weight on the m-th modality kernel, represented as βm,
is optimized using a grid search, or as a separate optimization
problem with fixed α. For each new test sample, s, the kernel
functions are computed against the training samples. An MKL
overview is depicted in Figure 3. Recent research has shown
that including the base datasets in more than one kernel,
each differing in their selection of kernel parameters, improves
performance. All kernels are then normalized to the unit trace
through the formula Km(x, y) = km(x, y)/

√
km(x, x)km(y, y).

Here, we set the weights accordingly to conform with sMRI,
FDG, AV45, DTI, rs-fMRI, and APOE genotype features. The
combined kernels can be described as follows,

K(x, y) = wsmriksmri(x, y)+ wfdgkfdg(x, y)+ wav45kav45(x, y)

+ wdtikdti(x, y)+ wrs−fmrikrs−fmri(x, y)

+ wapoekapoe(x, y)

With, wsmri + wfdg + wav45 + wdti

+ wrs−fmri + wapoe = 1 (4)

Then, we use the EasyMKL (Aiolli and Donini, 2015; Donini
et al., 2019) solver to search for the combination of basic
kernels that maximizes the classifier performances by optimizing
a simple quadratic problem addressed by SVM by computing an
optimal weighting. Besides its proven empirical success, a clear
advantage of EasyMKL compared with other MKL approaches is
its high scalability with respect to the number of kernels to be
combined. It finds the coefficients η that maximize the edges in
the training dataset, where the margin is calculated as the distance
between the convex hull of the positive and negative samples. In
particular, the general problem that EasyMKL aims to optimize
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FIGURE 3 | MKL classification process.

is the following,

(η∗, γ∗) = arg max
η:‖η‖2=1

min
γε0

λ0Y

( R∑
r=0

ηrKr

)
Yγ + λ ‖ γ ‖2

2

(5)
where y is a diagonal matrix with training samples on the
diagonal, and λ is a regularization hyperparameter, whereas
domain 0 signifies two probability distributions over the set of
negative and positive samples in the training set, that is 0 ={
γεRl+

∣∣∣∑yi=+1 γi = 1,
∑

yi=−1 γi = 1
∣∣∣} (Aiolli and Donini,

2015; Donini et al., 2019). Note that any element γε0 resembles a
pair of samples in the convex hull of the positive and negative
training samples. At the solution, the first expression of an
objective function denotes the obtained (squared) edge, which is
the (squared) distance between a point in a convex hull of positive
samples and a point in a convex hull of negative samples, in the
considered feature space. It enforces sparsity across modalities
while allowing more than one discriminative kernel to be chosen
from the same modality. In other words, there is sparsity across
modalities and non-sparsity within modalities, thereby making
it a convex optimization problem. Moreover, in addition to the
EasyMKL classifier, we also applied a RBF kernel (or Gaussian
kernel) with SVM classifier for the comparison of our obtained
results. An RBF kernel is a function with a score that depends
on the distance from the origin (or from some points). It is
represented by K(x1, x2) = e(‖x1−x2‖

2/2σ2), where ‖ x1 − x2 ‖
2 is

the squared Euclidean distance between two data points x1 and
x2. An RBF kernel has two parameters: gamma (γ) and C, and
its performance depends on them. When the C value is small,
the classifier is fine with misclassified input points (high bias,
low variance), but when the C value is high, the classifier is
severely penalized for misclassified data, and hence it leans over
backward to avoid any misclassified input points (low bias, high
variance). Moreover, when the γ value is low, the curve of the

decision margin is quite low, and therefore the decision area is
very large, but when the γ value is high, the curve of the decision
margin is high, which creates decision-boundary bars around
the input points. In our case, we applied the GridSearch method
from a scikit-learn (v0.20) (Pedregosa et al., 2011) library to find
the optimal hyperparameter (C and γ) value for the RBF-SVM
classifier. The GridSearch was performed over the ranges of C = 1
to 9 and γ = 1 e−4 to 7.

Cross Validation
Cross validation (CV) is one of the most widely utilized data
resampling methods for estimating the generalization knowledge
of a predictive design and for preventing under- or overfitting.
CV is largely applied in settings where the aim is prediction and
it is necessary to evaluate the accuracy of a predictive model.
For a classification problem, a model is generally fitted with a
known sample, called the training sample, and a set of unknown
samples against which the model is examined, known as the test
sample. The aim is to have a sample for testing the proposed
model in the training period, and then present insight into how
the particular model adapts to an independent sample. A round
of CV involves the partitioning of samples into complementary
subsets, then conducting analysis on an individual subset. After
this, the study is verified on other subsets (called testing samples).
To reduce variability, multiple rounds of CV are performed
using several different partitions, and later an average of the
outcomes is taken. CV is a powerful procedure in the evaluation
of model performance. In this study, we utilized leave-one-out
CV (LOOCV) from the scikit-learn (v0.20) (Pedregosa et al.,
2011) library. LOOCV is a CV process in which the bulk of
the fold is “1,” with “k” being fixed to the number of attributes
in the dataset. This means that the number of folds equals the
number of instances in the sample. Thus, the learning algorithm
is employed once for each instance, utilizing all other instances
as a training sample, and utilizing the selected instance as a
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single-item test sample. This type of CV is useful when the
training samples are of limited size and the number of attributes
to be verified is not high.

Implementation
Our classification framework and validation experiments were
implemented in Python 3.5 using an interface to the scikit-learn
v0.20 (Pedregosa et al., 2011) library to measure performance,
and using MKLpy (v0.5)6 for the MKL framework. The main
source code will be made available on the GitHub website.7 The
dataset list will be available in the Supplementary Material.
Nonetheless, please note that you must prepare the original image
features independently.

RESULTS

In this section, we present the performance results of each
classification (AD vs. HC, MCIs vs. MCIc, AD vs. MCI, AD
vs. MCIc, HC vs. MCIs, and HC vs. MCIc) for all five
neuroimaging and APOE genotype modalities using whole-
brain parcelation, the voxel-wise method, and the graphical
method. We implemented the multimodal fusion approaches for
the integration of the sMRI, FDG, AV45, rs-fMRI, DTI, and
APOE genotype data. We used the combined representation
to distinguish patients with AD from healthy subjects. The
combined approach is considered successful if the classification
task is performed with greater accuracy and higher AUC score,
higher precision, and better sensitivity and specificity against
unimodal classification. Along with the unimodal approaches,
we evaluated the classification of a concatenated data vector
comprising data from the five neuroimaging modalities and two
APOE genotype modalities, and used it as a baseline. Moreover,
after the completion of extracting features from each modality
using whole-brain parcelation and voxel-wise analysis, we passed
these extracted features through a polynomial kernel function
to map the original non-linear low-dimensional features onto
a higher-dimensional space in which they became separable.
After that, a data fusion technique was used to combine the
multiple kernel features into a single form before passing them
through the EasyMKL classifier for the binary classification of
the six groups. For an unbiased performance assessment, the
classification groups were randomly split into two sets at a 70:30
ratio as training and testing sets, respectively. In a training
set, finding the right values for the lambda (λ) parameter is
quite difficult, and their values influence the classification result.
Therefore, to find the optimal hyperparameter values for a
lambda from 0 to 1 of an EasyMKL algorithm, we used the leave-
one-out cross-validation technique on the training set. For each
method, the optimized values obtained for the hyperparameter
were then used to train the EasyMKL classifier using the training
group. The performance of the resulting classifier was then
estimated on the remaining 30% of the data in the testing
dataset, which was not used during the training step. Here, cross

6https://github.com/IvanoLauriola/MKLpy
7https://github.com/Alzheimer1/Classification-of-Alzheimer-s-disease

validation was used to assess how the result of the classification
analyses could generalize to an independent group. One round
of cross validation includes partitioning the data sample into
disjoint subsets of instances, performing the analysis on one
subsection (the training group), and validating the study on the
other subset (the testing or validation set). To reduce variability,
numerous rounds of cross validation are done using different
subsets, and the validation outcomes are averaged over the
rounds. In the present study, we used an LOOCV, which involves
separating a single instance (either control or patient) from the
complete example for testing while the remaining instances are
used for training purposes. This splitting is iterated so that each
instance in the whole sample is used once for validation. After
all iterations, the final accuracy is quantified as the mean of
the accuracies gained across each fold. In this way, we attained
unbiased estimations of the performance for each classification
problem. Moreover, after the completion of whole-brain and
voxel-wise analysis, we used the BRAPH toolbox to perform
the brain graphical analysis for each classification group with
the same five neuroimaging features (sMRI, FDG, AV45, rs-
fMRI, and DTI), which we extracted in the whole-brain analysis.
For each analysis, we measured the accuracy (ACC, calculated
as the average of the proportion of correctly classified subjects
from each class individually), the sensitivity (SEN, described
as true positive – the number of subjects correctly classified),
and the specificity (SPEC, described as true negative – the
number of healthy controls correctly categorized), precision
(PRE, referring to how well the measurements agree with each
other across multiple tests), F1-score (explained as a weighted
average of recall and precision, where an F1-score attains its
best value at one and its worst at zero), and AUC-ROC [a
receiver operating characteristic curve (ROC curve) is a graphical
plot that illustrates the diagnostic aptitude of a binary classifier
scheme as its differential threshold is varied]. An AUC-ROC
curve is constructed by plotting the true positive rate (TPR)
against the false positive rate (FPR). The TPR is the proportion
of observations that were correctly predicted to be positive out
of all positive observations [TP/(TP + FN)]. Likewise, the FPR
is the proportion of observations that are incorrectly predicted
to be positive out of all negative observations [FP/(TN + FP)].
The ROC curve shows the trade-off between sensitivity (or TPR)
and specificity (1− FPR). Classifiers that give curves closer to
the top-left corner show better performance. As a baseline, a
random classifier is expected to give points lying along the
diagonal (FPR = TPR). The closer the curve comes to the 45-
degree diagonal of the ROC space, the less accurate the testing
data are. For each classification group, we also measured Cohen’s
kappa values, which measures the inter-rater reliability between
two individuals (Cohen, 1960). Kappa measures the percentage
of information scores in the main diagonal of a table and then
adjusts these scores for the quantity of agreement that could
be assumed due to chance alone. The formula for calculating
Cohen’s kappa for two raters is given by K = p0 − pc/1− pc,
where p0 is the relative observed agreement among raters and
pc is the hypothetical probability of chance agreement. Kappa
is always less than or equal to 1. A value of 1 suggests perfect
agreement, and scores less than 1 suggest less than the best
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agreement. In rare circumstances, Kappa can achieve a negative
score. This signifies that the two groups agreed less than would be
predicted by chance alone.

Classification Performance Across
Single and Combined Modalities Using
Whole-Brain Parcelation Analysis
For the whole-brain analysis, we used the 2-mm AICHA atlas
template image for sMRI, FDG, and AV45-PET images with
the NiftyReg toolbox for the extraction of 384 ROIs from each
neuroimaging modality (as shown in Figure 1B). For each rs-
fMRI and DTI image, we used the 2-mm Craddock atlas template
and the 2-mm JHU-WM (ICBM-DTI-81) label atlas for the
extraction of 200 and 50 ROIs, from each rs-fMRI and DTI
image, respectively, using the pyClusterROI Python script and
the PANDA toolbox (as shown in Figure 1B). In total, we
obtained 1404 features for a single image, 384 features from
each sMRI, FDG, and AV45-PET image, 200 from each rs-
fMRI image, 50 features from each DTI image, and two features
from the APOE genotype data. Afterward, we passed these
obtained features through a normalization technique to minimize
the redundancy within the dataset. Furthermore, we passed
these low-dimensional, normalized features from the polynomial
kernel matrix to map them onto a high-dimensional feature
space. Then we fused all these high-dimensional features in
one form before passing them through the EasyMKL algorithm
for classification. The obtained AUC-ROC graph and Cohen’s
kappa scores are plotted in Figures 4, 5.

For the single modalities, whole-brain MKL analysis for AD
vs. HC (Table 2), using only the APOE genotype, achieved 85.71%
accuracy. Similar accuracy was obtained using sMRI (90.48%),
FDG-PET (91.5%), AV45-PET (89.39%), and rs-fMRI (92.42%).
Using DTI-FA, the accuracy was increased to 93.17% compared
with both genotype and functional imaging. When the combined-
ROI features were passed through the classifier, the accuracy
increased to 96.05%. Additionally, the obtained Cohen’s kappa
value was 0.9066, which is closer to 1 than the kappa values of
the individual modalities. Figure 5 shows the Cohen’s kappa plot
for the combined-ROI.

Here, for AD vs. HC classification, the combined-ROI features
performed very well compared with the single modalities.
Similarly, for the single modalities, whole-brain MKL analysis
for MCIs vs. MCIc (Table 2) using only the APOE genotype
achieved 85.24% accuracy. Similar accuracy was obtained using
FDG-PET (86.88%), AV45-PET (89.47%), and rs-fMRI (88.52%).
Using sMRI-extracted ROI features, the achieved accuracy was
lower (84.71%) in comparison with other single modalities.
Using DTI-FA, the accuracy increased to 91.80% in comparison
with both genotype and functional images. Moreover, when the
combined-ROI features were passed through the classifier, the
accuracy increased to 94.74% and the obtained Cohen’s kappa
value was 0.8950 (Figure 5), which is closer to 1 than that
for the individual modalities. Here, for the MCIs vs. MCIc
classification, the combined-ROI features performed very well
compared with the single modalities. Likewise, for the AD vs.
MCIc classification problem, the best performance was attained
using a combination of six modalities of features, which achieved

an accuracy of 94.89% with a Cohen’s kappa of 0.8502. In this
case, the rs-fMRI and DTI-FA unimodal features performed
better for classifying the (AD vs. MCIc) group than the other
unimodal features, and their obtained accuracies were 92.06 and
93.65%. For the AD vs. MCIs group, our proposed technique
achieved 93.59% accuracy, which was 1.66% higher than the
best accuracy obtained by the DTI-FA (unimodal) feature for
classifying this group. The Cohen’s kappa score obtained for
the AD vs. MCIs group was 0.8562 (Figure 5) which is close
to the maximum agreement value of 1. For the HC vs. MCIc
classification problem, our proposed method combining all
six modalities of a biomarker to distinguish between HC and
MCIc achieved good results compared with the single modality
biomarkers. For this classification problem, our proposed method
achieved 94.24% accuracy with a Cohen’s kappa of 0.8814
(Figure 5). In this case, from Table 2, we can see that all three
(FDG-PET, AV45-PET, and rs-fMRI) functional imaging features
performed well compared with the other unimodal features, and
their obtained Cohen’s kappa scores were 0.7610, 0.7981, and
0.8129, which are all close to 1. Likewise, for the HC vs. MCIs
group, our proposed technique achieved 95.55% accuracy, which
is 1.62% higher than the best accuracy obtained by the DTI-
FA (unimodal) feature for classifying this group. The obtained
Cohen’s kappa score for the HC vs. MCIs group was 0.8697
(Figure 5), which is close to the maximum agreement value of 1.
Therefore, from Table 2 and Figures 4, 5, we can state that for all
classification combinations, our proposed method attained a high
level of performance compared with the individual modality of
biomarkers, varying from 1 to 3%, and our proposed scheme also
attained a higher level of agreement between all six classification
combinations than the individual modality-based methods.

The number of extracted ROIs was slightly higher for the
sMRI, FDG-PET, and AV45-PET images than for the other
modalities, although the real number of features used as input for
each single and combined model varied across the models. Except
for the HC vs. MCIc group, in the (AD vs. HC, MCIs vs. MCIc,
AD vs. MCIc, AD vs. MCIs, and HC vs. MCIs) classification
sets, it is interesting to observe that even though the number of
extracted ROI features for sMRI, FDG-PET, AV45-PET, and rs-
fMRI were higher than the number of DTI-FA ROI features, the
obtained accuracy was lower than for the DTI-FA ROI features
for the stated classification groups. Out of the 1404 ROIs, 384
ROIs selected from sMRI, 384 ROIs selected from FDG-PET,
384 ROIs selected from AV45-PET, 200 ROIs from rs-fMRI, 50
ROIs from DTI-FA, and the remaining two ROIs from APOE
genotype corresponded to 27.3% (each of sMRI, FDG-PET, and
AV45-PET), 14.5% (rs-fMRI), 3.5% (DTI-FA), and 0.1% (APOE)
of the total number of features. In Figure 4, we show the ROC
curves (plots of the TPR vs. the FPR for dissimilar possible cut-
points) for each study presented in Table 2. The obtained AUC
is presented in each plot. Figure 4 shows that our proposed
method achieved higher AUC values for all classification sets than
did the individual modalities. For the AD vs. HC and HC vs.
MCIs classification groups, our proposed method achieved an
AUC greater than 95%, while for the MCIs vs. MCIc, AD vs.
MCIs, AD vs. MCIc, and HC vs. MCIc groups, the proposed
method achieved an AUC less than 95%, (MCIs vs. MCIc, AD
vs. MCIs, AD vs. MCIc, and HC vs. MCIc) < 95% < (AD
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FIGURE 4 | ROC curve for (A) AD vs. HC, (B) MCIs vs. MCIc, (C) AD vs. MCIs, (D) AD vs. MCIc, (E) HC vs. MCIs, and (F) HC vs. MCIc using whole-brain
parcelation analysis. The red solid line shows the result of a combined-ROI curve with single modality features.

FIGURE 5 | Cohen’s kappa plot for AD vs. HC, MCIs vs. MCIc, AD vs. MCIs, AD vs. MCIc, HC vs. MCIs, and HC vs. MCIc are grouped using whole-brain
parcellation analysis. The above graph clearly shows the benefit of the combined-ROI modality over any single modality.

vs. HC and HC vs. MCIs). The obtained result using
the RBF-SVM classifier can be found in Supplementary
Table S31. From Supplementary Table S31, we can say that the
combined-ROI features performed very well as compared with
the individual modality outcomes for all six binary classification
groups. Table 2 and Supplementary Table S31 clearly show the
advantage of using combined features over individual ones (see
Supplementary Table S31).

Classification Performance Across
Single and Combined Modalities Using
Voxel-Wise Analysis
For the voxel-wise analysis of the sMRI, FDG-PET, and AV45-
PET images, we used the SPM12 toolbox with the integration of
the CAT12 toolbox in MATLAB R2019a. For the DTI images,
we used the DTIfit and TBSS functions from the FSL toolbox.
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TABLE 2 | Classification results for AD vs. HC, MCIs vs. MCIc, AD vs. MCIs, AD vs. MCIc, HC vs. MCIc, and HC vs. MCIs groups using ROI features (EasyMKL).

Groups Features Classifier Performance measure

AUC ACC SEN SPEC PRE F1-score Cohen’s kappa

AD vs. HC APOE EasyMKL 88.18 85.71 88.89 83.33 80 84.21 0.6523

sMRI 90.38 90.48 87.5 92.31 87.5 87.5 0.7981

FDG-PET 92.73 91.5 100 84.62 80 88.89 0.7073

AV45-PET 87.27 89.39 87.87 90.90 90.62 89.23 0.6736

rs-fMRI 93.27 92.42 88.23 94.11 93.75 90.90 0.8150

DTI-FA 92.31 93.17 90.90 93.93 93.75 92.30 0.8233

Combined-ROI 95.45 96.05 94.11 100 100 96.96 0.9066

MCIs vs. MCIc APOE EasyMKL 85.56 85.24 84.37 86.20 87.09 85.71 0.6042

sMRI 84.44 84.71 75 100 100 85.71 0.5819

FDG-PET 86.9 86.88 87.09 86.66 87.09 87.09 0.6471

AV45-PET 90.11 89.47 100 85.71 77.78 87.5 0.7465

rs-fMRI 88.60 88.52 87.5 89.65 90.32 88.88 0.7060

DTI-FA 91.05 91.80 90.62 93.10 93.54 92.06 0.7684

Combined-ROI 94.33 94.74 100 90.91 90 94.74 0.8950

AD vs. MCIs APOE EasyMKL 78.89 77.68 72.73 75 80 76.19 0.6193

sMRI 88.64 88.52 90 87.09 87.09 88.52 0.6849

FDG-PET 85.56 84.95 83.62 85.71 84.89 84.25 0.6673

AV45-PET 90 90.16 93.10 87.50 87.09 90 0.7746

rs-fMRI 87.78 88.57 86.45 87.78 89.55 87.97 0.6802

DTI-FA 91.43 91.93 90.90 93.10 93.75 92.30 0.8180

Combined-ROI 93.86 93.59 93.75 93.33 93.75 93.75 0.8562

AD vs. MCIc APOE EasyMKL 86.9 85.21 80 88.89 88.89 84.21 0.6851

sMRI 89.77 88.88 93.10 85.29 84.37 88.52 0.7014

FDG-PET 90.48 90.47 93.33 87.87 87.5 90.32 0.7244

AV45-PET 91.11 89.47 88.89 90 88.89 88.89 0.7689

rs-fMRI 92.86 92.06 90.90 93.33 93.75 92.30 0.7745

DTI-FA 93.33 93.65 93.75 93.54 93.75 93.75 0.8285

Combined-ROI 94.05 94.89 100 94.77 91.67 95.65 0.8502

HC vs. MCIc APOE EasyMKL 85.45 85.71 83.33 88.89 90.91 86.96 0.7123

sMRI 89.42 88.05 88.88 87.09 88.88 88.88 0.7377

FDG-PET 91.35 91.04 94.11 87.87 88.88 91.42 0.7610

AV45-PET 90.48 90.48 82.31 87.5 92.31 92.31 0.7981

rs-fMRI 92.31 92.53 94.28 90.62 91.66 92.95 0.8129

DTI-FA 90 89.55 93.93 85.29 86.11 89.85 0.7557

Combined-ROI 94.93 94.24 100 88.89 92.31 96 0.8814

HC vs. MCIs APOE EasyMKL 87.88 87.87 86.84 89.28 91.66 89.18 0.6855

sMRI 90.11 89.06 90.90 87.09 88.23 89.55 0.7127

FDG-PET 88.54 89.39 89.18 89.65 91.66 90.41 0.6984

AV45-PET 92.31 92.42 94.28 90.32 91.66 92.95 0.7661

rs-fMRI 90.62 90.12 93.75 87.5 88.23 90.90 0.7070

DTI-FA 93.41 93.93 94.45 93.33 94.44 94.44 0.7854

Combined-ROI 95.6 95.55 100 90.90 91.66 95.65 0.8697

For the voxel-wise analysis of rs-fMRI images, we used the
DPARSF toolbox in MATLAB R2019a. Afterward, we passed
these obtained features with two features from the APOE
genotype data through a normalization technique to minimize

the redundancy within the dataset. Furthermore, we passed
these low-dimensional, normalized features from the polynomial
kernel matrix to map them onto a high-dimensional feature
space. Then we fused all these high-dimensional features in one
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form before passing them through the EasyMKL algorithm for
classification. The obtained result are shown in Table 3 and
Figure 6 shows the Cohen’s kappa plot for all six classification
groups using voxel-wise analysis.

AD vs. HC
We calculated the statistical values that represented the
significance levels of the groups in the activation map as
presented in Supplementary Tables S1–S5 after comparing the
outcomes of the statistical two-sample t-tests for the AD vs. HC
group. These tables specify the main affected area observed in
the AD vs. HC set and the obtained voxel cluster with detailed
information, including its peak areas in the form of the MNI
space, cluster-level p-score, and the peak intensity in the T-
score of each group. We used an uncorrelated threshold value
of puncorrected ≤ 0.001 at the voxel level, an FDR value of pFDR =
0.05, and an FWER value of pFWER = 0.05 at the cluster level to
achieve a bias alteration for multiple comparisons. An ROI binary
mask was created from the selected clusters of each modality,
and later the GM and WM volumes were removed from the two
sets of images (AD vs. HC) (see Supplementary Tables S1–S5).
Figure 7A shows the most significant regions where these groups
differ from each other using an AV45-PET neuroimage, and the
obtained voxel cluster is shown in Supplementary Table S3.
Likewise, Figure 8A shows the most significant regions where
these groups differ from each other using a DTI-FA neuroimage,
and the obtained voxel cluster is shown in Supplementary
Table S5 (see Supplementary Tables S3, S5).

MCIs vs. MCIc
Supplementary Tables S6–S10 show the main affected areas
in the MCIs vs. MCIc group, the obtained voxel clusters with
detailed information about its peak coordinates in the MNI
space, the cluster-level p-score, and the peak intensity in the T-
score of each group. For the MCIs vs. MCIc group, we used an
uncorrelated threshold value of puncorrected ≤ 0.001 at the voxel
level, an FDR value of pFDR = 0.05, and an FWER value of
pFWER = 0.05 at the cluster level to accomplish a bias alteration
for multiple comparisons. An ROI binary mask was created from
the selected clusters of each modality and later GM and WM
volumes were removed from the two sets of images (MCIs vs.
MCIc) (see Supplementary Tables S6–S10). Figure 7B shows the
most significant region where these groups differ from each other
using an AV45-PET neuroimage, and the obtained voxel cluster
is shown in Supplementary Table S8. Likewise, Figure 8B shows
the most significant region where these groups differ from each
other using a DTI-FA neuroimage, and the obtained voxel cluster
is shown in Supplementary Table S10 (see Supplementary
Tables S8, S10). Moreover, we followed the same procedure for
the calculation of voxel clusters for the AD vs. MCIc, AD vs.
MCIs, HC vs. MCIc, and HC vs. MCIs groups as we followed for
the AD vs. HC and MCIs vs. MCIc groups. The obtained voxel
clusters with detailed information about its peak coordinates in
the MNI space, the cluster-level p-score, and the peak intensity
in the T-score of each group are shown in Supplementary
Tables S11–S30 (see Supplementary Tables S11–S30). Likewise,
Supplementary Figures S1a,b show the most significant region

for the AD vs. MCIc and HC vs. MCIc groups using the DTI-FA
modality of the biomarker.

The obtained voxel cluster for these two groups is shown
in Supplementary Tables S15, S25 (see Supplementary
Figures S1a,b and Supplementary Tables S15, S25). After
completing the extraction of the series of features from each
individual modality, we passed these obtained features through
the polynomial kernel matrix to map these low-dimensional
features onto a high-dimensional feature space. We then fused all
these high-dimensional features in one form before passing them
through the EasyMKL algorithm for classification. Table 3 shows
the classification results for the AD vs. HC group using voxel-
wise features. It shows that the combined features performed very
well for this group compared with the single-modality results.
The combined features achieved a 95.55% AUC for classifying
the AD vs. HC group, as shown in Figure 9, with a Cohen’s
kappa value of 0.9014, which is close to 1, as shown in Table 3
and Figure 6. This indicates that these two groups have a good
level of agreement between them. Table 3 shows the classification
results for the MCIs vs. MCIc group using voxel-wise features.
This table also shows that the combined features performed very
well for classifying the MCIs vs. MCIc group compared with the
single-modality performances. The combined features achieved
an AUC of 94.90% when classifying the MCIs vs. MCIc group, as
shown in Figure 9. The Cohen’s kappa value was 0.8825, which
is close to 1, as shown in Table 3 and Figure 6. This indicates a
good level of agreement between the two groups. Furthermore,
for the AD vs. MCIc and AD vs. MCIs classification groups,
our proposed system attained a high level of performance and
agreement (0.9145 and 0.8869) compared with the individual
modalities biomarkers. For the AD vs. MCIc group, AV45-PET
and DTI-FA attained high classification accuracy compared
with other unimodal biomarkers, but their gained accuracy
was 3% less than the accuracy gained by the combined-VOI
process, which was 96.20% with a 0.9145 (Figure 6) Cohen’s
kappa score. Likewise, for the AD vs. MCIs group, the proposed
method achieved 95.16% accuracy with a 0.8869 (Figure 6)
Cohen’s kappa score. For the HC vs. MCIc classification group,
the AV45-PET individual modality biomarkers performed very
well compared with the other single modality biomarkers. The
obtained accuracy and Cohen’s kappa score using AV45-PET
biomarkers were 94.02% and 0.8481 (Figure 6). Moreover, we
then passed the combined-VOI features through the EasyMKL
classifier for the classification of the HC vs. MCIc group, and
after the classifier was applied, the accuracy increased by 1.5%.
This suggests that the combined-VOI features were beneficial for
classifying this group. Likewise, for the HC vs. MCIs classification
group, the rs-fMRI features of ALFF and fALFF achieved a good
level of performance and agreement (0.8386 and 0.8248)
compared with the other individual modality biomarkers. In
this case, the individual features of the APOE genotype also
performed well compared with the FDG-PET imaging modality
biomarker, but the individual modality biomarker’s performance
was not very good compared with the combined-VOI result
(Table 3). The combined-VOI features achieved a 94.43%
accuracy and an AUC of 94.67% with a 0.8864 Cohen’s kappa
score for classifying the HC vs. MCIs group. Figure 9 shows the
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TABLE 3 | Classification results for AD vs. HC, MCIs vs. MCIc, AD vs. MCIs, AD vs. MCIc, HC vs. MCIc, and HC vs. MCIs groups using voxel-wise (VOI)
features (EasyMKL).

Groups Features Classifier Performance measure

AUC ACC SEN SPEC PRE F1-score Cohen’s kappa

AD vs. HC APOE EasyMKL 88.18 87.71 88.89 83.33 80 84.21 0.6523

sMRI 87.5 87.87 100 81.81 73.33 87.61 0.6547

FDG-PET 91.35 89.39 92.59 87.17 83.33 87.71 0.7651

AV45-PET 93.64 93.93 90.62 97.05 96.66 93.54 0.8528

rs-fMRI-ALFF 89.81 90.12 92.85 89.47 86.66 89.65 0.6839

rs-fMRI-fALFF 91.52 90.90 90 91.60 90 90 0.7973

rs-fMRI-REHO 90.38 89.74 89.65 89.18 86.66 88.13 0.7345

DTI-FA 92.86 92.42 93.10 91.89 90 91.52 0.8213

Combined-VOI 95.55 95.24 93.33 100 100 96.55 0.9014

MCIs vs. MCIc APOE EasyMKL 85.56 85.24 84.37 86.20 87.09 85.71 0.6042

sMRI 87.88 88.52 87.5 89.65 90.32 88.88 0.6788

FDG-PET 83.33 84.21 85.71 80 92.31 88.89 0.5874

AV45-PET 91.03 91.80 90.32 93.33 93.33 91.80 0.7243

rs-fMRI-ALFF 87.78 89.47 100 83.33 77.78 87.5 0.6665

rs-fMRI-fALFF 85.56 85.24 84.37 86.20 87.09 85.71 0.6011

rs-fMRI-REHO 89.74 90.16 90.32 90 90.32 90.32 0.6907

DTI-FA 92.31 92.75 90.65 93.10 93.54 92.06 0.8175

Combined-VOI 94.9 93.57 92.86 100 100 96.3 0.8825

AD vs. MCIs APOE EasyMKL 78.89 77.68 72.73 75 80 76.19 0.6193

sMRI 88.18 88.70 87.09 90.32 90 88.52 0.6944

FDG-PET 90.91 90.32 90 90.62 90 90 0.7065

AV45-PET 89.09 89.48 87.5 93.34 93.34 90.32 0.7679

rs-fMRI-ALFF 92.73 92.45 90.32 93.54 93.33 91.80 0.8126

rs-fMRI-fALFF 87.27 87.09 86.67 87.5 86.7 86.7 0.6943

rs-fMRI-REHO 92.5 92.72 90 96 96.42 93.10 0.8467

DTI-FA 90 91.93 93.10 90.90 90 91.52 0.8211

Combined-VOI 94.96 95.16 93.54 96.77 96.66 95.08 0.8869

AD vs. MCIc APOE EasyMKL 86.9 85.21 80 88.89 88.89 84.21 0.6851

sMRI 84.62 85.48 86.20 84.84 83.83 84.74 0.6272

FDG-PET 88.54 88.89 85.29 93.10 93.54 89.23 0.7049

AV45-PET 92.71 93.75 96.67 91.17 90.32 93.54 0.8342

rs-fMRI-ALFF 90.62 90.47 87.87 93.34 93.54 90.62 0.7978

rs-fMRI-fALFF 87.5 87.30 87.09 87.5 87.09 87.09 0.7691

rs-fMRI-REHO 91.67 92.18 93.54 90.91 90.62 92.06 0.8173

DTI-FA 93.75 93.65 88.57 100 100 93.93 0.8666

Combined-VOI 96.67 96.20 96.77 96.87 96.77 96.77 0.9145

HC vs. MCIc APOE EasyMKL 85.45 85.71 83.33 88.89 90.91 86.96 0.7123

sMRI 90.28 90.76 91.42 90 91.42 91.42 0.7673

FDG-PET 86.36 86.88 86.48 86.67 88.89 87.68 0.6851

AV45-PET 93.75 94.02 90.90 97.05 96.74 93.74 0.8481

rs-fMRI-ALFF 90 90.36 91.42 87.5 88.89 90.14 0.7437

rs-fMRI-fALFF 88.31 89.55 87.5 91.42 90.32 88.89 0.7099

rs-fMRI-REHO 92.31 92.53 90.62 94.28 93.54 92.06 0.8043

DTI-FA 93.18 92.87 88.23 96.96 96.74 92.30 0.8217

Combined-VOI 95.56 95.52 96.67 94.59 93.54 95.08 0.8977

HC vs. MCIs APOE EasyMKL 87.88 87.87 86.84 89.28 91.66 89.18 0.6855

sMRI 91.11 91.42 92.10 90.62 92.10 92.10 0.8136

FDG-PET 85.23 85.33 86.45 82.85 85.36 86.41 0.6905

AV45-PET 90 90.90 91.67 90 91.66 91.67 0.7847

rs-fMRI-ALFF 92.86 92.30 94.28 91.14 91.67 92.95 0.8386

rs-fMRI-fALFF 93.33 92.75 94.59 90.62 92.10 93.34 0.8248

rs-fMRI-REHO 89.77 89.39 91.42 87.09 88.89 90.14 0.7788

DTI-FA 91.68 90.14 89.74 91.25 91.32 90.90 0.8034

Combined-VOI 94.67 94.43 94.59 96.67 97.22 95.89 0.8864
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FIGURE 6 | Cohen’s kappa plot for AD vs. HC, MCIs vs. MCIc, AD vs. MCIs, AD vs. MCIc, HC vs. MCIs, and HC vs. MCIc are grouped using voxel-wise analysis.
The above graph clearly shows the benefit of the combined-VOI modality over any single modality.

FIGURE 7 | Affected region for (A) AD vs. HC, and (B) MCIs vs. MCIc is shown using AV45-PET image.

ROC curve for all six classification groups; the red solid line in
every classification task indicates the combined-VOI features
for that particular group. Consequently, from Table 3 and
Figures 6, 9, we can state that for all classification combinations,
our proposed method attained a high level of performance
compared with the individual modality biomarkers, varying
from 1 to 3%, and our proposed scheme also attained a high level
of agreement between each of the six classification combinations
compared with the individual modality-based methods. The
obtained result using the RBF-SVM classifier can be found in
Supplementary Table S32. From Supplementary Table S32,
we can say that the combined-VOI features performed very

well as compared with the individual modality outcomes for
all six binary classification groups. Table 3 and Supplementary
Table S32 clearly show the advantage of using combined features
over individual ones (see Supplementary Table S32).

While searching for the most significant region where AD
vs. HC subjects differed from each other, we found that the
(left/right) temporal-mid, (left/right) frontal-sup, (left/right)
occipital-mid, (left/right) occipital-inf, (left/right) temporal-
sup, (left/right) fusiform, (left/right) hippocampus, (left/right)
temporal-inf, (left/right) precentral, and the (left/right) sagittal
stratum were the regions where these subjects differed from
each other most (Supplementary Tables S1–S5). Likewise,
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FIGURE 8 | Selected WM voxels for the (A) AD vs. HC, and (B) MCIs vs. MCIc classification using DTI image.

FIGURE 9 | ROC curves for (A) AD vs. HC, (B) MCIs vs. MCIc, (C) AD vs, MCIs, (D) AD vs, MCIc, (E) HC vs. MCIs, and (F) HC vs. MCIc using voxel-wise (VOI)
analysis. The red solid line shows the result of the combined-VOI curve, including all single-modality features.

Frontiers in Aging Neuroscience | www.frontiersin.org 19 July 2020 | Volume 12 | Article 238

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-00238 July 28, 2020 Time: 18:0 # 20

Gupta et al. Classification of AD Using Six-Multi-Modalities

for the MCIs vs. MCIc group, we found that the (left/right)
precentral, (left/right) precuneus, (left/right) frontal-mid,
(left/right) cingulum-mid, (left/right) temporal-inf, (left/right)
temporal-sup, (left/right) frontal-dup-medial, (left/right)
cerebellum-9, (left/right) thalamus, and (left/right) fusiform
were the regions where these subjects differed from each other
most significantly (Supplementary Tables S6–S10). For the AD
vs. MCIc group, we found that the (left/right) frontal-inf-tri,
(left/right) frontal-inf-oper, (left/right) frontal-inf-orb, (right)
hippocampus, (left/right) precentral, (left/right) thalamus, (left)
pallidum, (left/right) lingual, and (left/right) inferior longitudinal
fasciculus were the regions where these group subjects differed
from each other most (Supplementary Tables S11–S15). As for
the AD vs. MCIs group, we found that the (left/right) precentral,
(left/right) frontal-mid, (left/right) hippocampus, (left/right)
temporal-inf, (left/right) frontal-inf-orb, (left/right) occipital-
mid, (right) posterior corona radiate, and (left/right) precuneus
were the most significant regions where these group subjects
differed from each other (Supplementary Tables S16–S20).
For the HC vs. MCIc and HC vs. MCIs groups, we found that
the (left/right) precentral, (left/right) cerebellum-6, (left/right)
precuneus, (left/right) frontal-mid, (left/right) corticospinal
tract, (left/right) lingual, (right) amygdala, and the (left/right)
occipital-sup were the most significant regions where these two
groups differed from each other (Supplementary Tables S21–
S30). It is interesting to note that the (left/right) precentral region
was found in every classification problem when computing voxel
clusters (see Supplementary Tables S1–S30).

Table 4 shows the combined (VOI + ROI) classification
results for all six classification groups after concatenating the
extracted features from the whole-brain and voxel-wise methods

with the APOE genotype. Before passing these features to the
EasyMKL classifier, we applied a polynomial kernel matrix to
map these low-dimensional features onto a high-dimensional
feature space, so that every feature revealed its importance to
the classifier. These high-dimensional features were fused into
one form. We then passed these features to the MKL algorithm
for classification.

For the AD vs. HC classification group, the combined-
(VOI + ROI) feature performed very well compared with
the combined-VOI and combined-ROI features. The AUC and
Cohen’s kappa scores were increased by 2–2.5% (97.78%, 0.9456)
compared with those of combined-ROI and combined-VOI
(Figure 10 and Table 4). Moreover, for the MCIs vs. MCIc
classification group, Table 4 and Figure 10 show that the
combined-(VOI + ROI) features achieved an AUC of 96.94%
(2% increment), which was very high compared with the other
two combined features. The obtained Cohen’s kappa value
(0.9247) was also high compared with that of the combined-
VOI and combined-ROI. Furthermore, for the AD vs. MCIs,
HC vs. MCIs, and HC vs. MCIc classification groups, our
proposed system performed very well compared with the results
obtained by the combined-VOI and the combined-ROI for
these groups. From Table 4, we can see that for these three
(AD vs. MCIs, HC vs. MCIs, and HC vs. MCIc) groups,
there is a 2–3% increment in every measured performance.
The obtained AUC scores for these three groups are 96.25,
96.59, and 96.67%. Likewise, in the case of the AD vs.
MCIc group, the Combined-ROI method performed very well
compared with the combined-(VOI + ROI) and combined-
VOI methods. The measured performance difference was not
exceedingly high between the combined-ROI and the combined

TABLE 4 | Classification result of AD vs. HC, MCIs vs. MCIc, AD vs. MCIs, AD vs. MCIc, HC vs. MCIc, and HC vs. MCIs groups using combined-(VOI + ROI) features,
with both whole-brain and voxel-wise features (EasyMKL).

Groups Features Classifier Performance measure

AUC ACC SEN SPEC PRE F1-score Cohen’s kappa

AD vs. HC Combined-ROI EasyMKL 95.45 96.05 94.11 100 100 96.96 0.9066

Combined-VOI 95.55 95.24 93.33 100 100 96.55 0.9014

Combined (VOI + ROI) 97.78 98.52 96.97 100 100 98.46 0.9456

MCIs vs. MCIc Combined-ROI EasyMKL 94.33 94.74 100 90.91 90 94.74 0.8950

Combined-VOI 94.9 93.57 92.86 100 100 96.3 0.8825

Combined (VOI + ROI) 96.94 95.08 100 93.93 93.54 96.66 0.9247

AD vs. MCIs Combined-ROI EasyMKL 93.86 93.59 93.75 93.33 93.75 93.75 0.8562

Combined-VOI 94.96 95.16 93.54 96.77 96.66 95.08 0.8869

Combined (VOI + ROI) 96.25 96.68 94.12 100 100 96.97 0.9011

AD vs. MCIc Combined-ROI EasyMKL 94.05 94.89 100 94.77 91.67 95.65 0.8502

Combined-VOI 96.67 96.20 96.77 96.87 96.77 96.77 0.9145

Combined (VOI + ROI) 95.56 95.23 93.94 96.68 96.88 95.39 0.9044

HC vs. MCIc Combined-ROI EasyMKL 94.93 94.24 100 88.89 92.31 96 0.8814

Combined-VOI 95.56 95.52 96.67 94.59 93.54 95.08 0.8977

Combined (VOI + ROI) 96.67 96.65 97.29 93.75 94.74 95.99 0.9237

HC vs. MCIs Combined-ROI EasyMKL 95.6 95.55 100 90.90 91.66 95.65 0.8697

Combined-VOI 94.67 94.43 94.59 96.67 97.22 95.89 0.8864

Combined (VOI + ROI) 96.59 96.97 93.75 100 100 96.78 0.9187
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FIGURE 10 | ROC curve for (A) AD vs. HC, (B) MCIs vs. MCIc, (C) AD vs, MCIs, (D) AD vs, MCIc, (E) HC vs. MCIs, and (F) HC vs. MCIc using
combined-(VOI + ROI). The red solid line shows the result of the combined-(VOI + ROI) curve, with combined-ROI and combined-VOI features.

(VOI + ROI) method (just 1%) for the AD vs. MCIc group.
The obtained result using the RBF-SVM classifier can be found
in Supplementary Table S33. From Supplementary Table S33,
we can say that the combined-(VOI+ ROI) features performed
very well as compared with the combined-ROI and combined-
VOI features for all six binary classification groups. Table 4 and
Supplementary Table S33 clearly show the advantage of using
combined-(VOI + ROI) features over those of combined-ROI
and combined-VOI (see Supplementary Table S33).

Graph Network Construction and
Analysis for All Six Classification Groups
For graph analysis or construction of a graph network, we
used the BRAPH toolbox integrated into MATLAB 2019a.
Additionally, we performed structural and functional graph
theory for all six binary classification groups (AD vs. HC,
MCIs vs. MCIc, AD vs. MCIc, AD vs. MCIs, HC vs. MCIc,
and HC MCIs). Nodal measures were taken and comparisons
were performed using the binary undirected graphs, and their
measures were assessed over a set of network densities, which
refers to the ratio between the number of connections in
the network and the number of possible connections, ranging
from 5–25% with a step size of 0.5%. Several graph metrics
were calculated to quantify the nodal or global topological
organization of the structural and functional networks, including
local efficiency, characteristic path length, transitivity, and
modularity. For all six binary classification groups, non-
parametric permutation test samples with 1000 permutations
each were conducted to assess the differences between the

groups, which were significant for a two-tailed test of the null
hypothesis at p < 0.05. The structural correlation matrices graph
of AD, HC, MCIs, and MCIc of the sMRI subjects is shown
in Figure 11. All groups showed strong correlations between
bilaterally homologous regions. The plots in Figures 12, 13 and
Supplementary Figures S2–S5 show the lower and upper bounds
(dark red spheres) of the 95% confidence intervals (CI) (dark
gray shade) as a function of density. The blue, green, pink and
purple spheres show the differences between sets and, when
falling beyond the CI, indicate that the change was statistically
significant at p < 0.05.

The small dark red dot in the middle with a value around
zero specifies the mean value of the change in the global
network measures between the randomized sets after the
permutation tests.

We also compared the nodal degree for all six binary
classification groups using all modalities. The FDR correction
value was kept constant at 0.05 for all six binary classification
groups. Regarding the global network topology shown for AD vs.
HC in Figure 12, we found a longer characteristic path length
using only FDG (which started at 0.15) than that with other
neuroimaging modalities, and the path length was above the
mean value of the difference. In the case of local efficiency, we
found that the AV45 modality was the only one that started
(at 0.05) above the mean value. Moreover, by comparing the
modularity graph in the AD vs. HC group, we found that sMRI
showed the greatest difference (modularity started at 0.14) of
all modalities, and its network densities were almost constant
until 25% (showing that the network topology is widely spread).
The rs-fMRI modality performed very well for the transitivity
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FIGURE 11 | Weighted correlation matrices graph (of 384 regions) for AD, HC, MCIs, and MCIc for sMRI biomarkers.

graph compared with the other modalities, starting from 0.06
and increasing to 25%, although it decreased in some network
densities. Moreover, we also computed the regional or nodal
network topology for the AD vs. HC group, which is shown
in Figures 14A,B. Figures 14A,B show that the AV45 and
FDG-PET modalities are the only one neuroimage that shows
the numbers of significant region changes in a nodal network
topology for the AD vs. HC group. The nodal degree showed
significant increases in the right g-frontal-sup-1, left g-cuneus-2,
left g-frontal-sup-3, left g-frontal-sup-1, left g-frontal-med-orb-
1, and right s-precentral-3 regions. Likewise, for the MCIs vs.
MCIc group, we found increases in the characteristic path length
and local efficiency using FDG (in both cases, it started at 0.01,
as shown in Figure 13). For the modularity, sMRI attained 5%

network density, but after that, it decreased to 25%. At the same
time, the modularity in DTI neuroimages increased in network
density from 10 to 25%. Likewise, for transitivity, compared with
other modalities that started below the mean value, the AV45
modality was the only modality that started from 0 (difference),
and its network increased in every single network density.

This transitivity plot shows the most widespread topological
changes for the MCIs vs. MCIc group. Figures 14C,D show
that the AV45-FDG is the most important modality to show the
numbers of significant region changes in the nodal topology
of the MCIs vs. MCIc group. Left s-postcentral-2, right
g-parietal-inf-1, left g-frontal-inf-tri, right g-lingual-2, right
g-parahippocampus-5, left n-thalamus-6, left s-parietooccipital-
4, left-lingual-3, and left g-cingulum-post-2 are the most
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FIGURE 12 | Differences between the AD vs. HC group in global structural topology. The blue sphere represents characteristic path length, green sphere represents
local efficiency, pink sphere represents modularity, purple sphere represents transitivity, and the dark red sphere represents 95% confidence intervals for these
measures.

significant regions shown by the nodal degree for the
MCIs vs. MCIc classification group. For the AD vs. MCIc
classification group, the global network topology is shown in
Supplementary Figure S2. The rs-fMRI is the only modality that
shows an increment in the characteristic path length measure.
It starts at 0.38 (difference), and lies inside the CI and above
the mean value, but at 15–17% network density, some of its
networks lie outside of the CI upper bound, and again from

18% density, its network lies inside the CI until 25% density is
reached. We can also see that at around 13% network density,
some of its networks are close to the mean value (which is
shown by small dark red dots). It shows the most widespread
topological changes for the AD vs. MCIc group. The FDG-PET
modality shows an increase only for the local efficiency measure.
Modularity and transitivity increase across almost all network
densities for the sMRI and AV45-PET modality compared with

Frontiers in Aging Neuroscience | www.frontiersin.org 23 July 2020 | Volume 12 | Article 238

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-00238 July 28, 2020 Time: 18:0 # 24

Gupta et al. Classification of AD Using Six-Multi-Modalities

FIGURE 13 | Differences between the MCIs vs. MCIc group and global structural topology. The blue sphere represents characteristic path length, green sphere
represents local efficiency, pink sphere represents modularity, purple sphere represents transitivity, and the dark red sphere represents 95% confidence intervals for
these measures.

the other individual modalities. Supplementary Figures S6a,b
show that AV45 and rs-fMRI modalities are the only one that
shows the numbers of significant region changes in a nodal
network topology for the AD vs. MCIc group. The nodal degree
shows significant increases in the left g-lingual, (left/right)
g-lingual-3, (left/right) occipital pole, right cerebellum, left
n-caudate-5, right n-caudate-2, left n-thalamus-2, and left frontal
pole regions (see Supplementary Figures S2, S6). Likewise, for

the AD vs. MCIs group, the global network topology is shown
in Supplementary Figure S3. The FDG-PET modality is the
only one showing a characteristic path length that lies inside
the CI and above the mean value. In comparing local efficiency
measures in every modality, we found that the rs-fMRI modality
was the only one neuroimage that lies above the mean value
(which is plotted by small dark red), although every modality lies
inside the CI. The modularity increased, and at the same time,
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FIGURE 14 | Brain maps representing the most predictive regions for distinguishing between the AD vs. HC and MCIs vs. MCIs groups. Differences between groups
in nodal measures. Nodes showing significant differences among groups in the nodal degree after FDR corrections. For both classification groups, AV45 and FDG
show the most significantly affected regions. Dark blue shows the most significant region, whereas light red indicates the least significant region.
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the transitivity decreased for the AD vs. MCIs group, as shown by
the sMRI modality, but both plots lie inside the 95% CI. The right
n-caudate-2, left g-insula-anterior-2, left g-frontal-mid-orb-1,
left g-cuneus-2, right g-angular-3, right g-occipital-pole-1, right
n-thalamus-6 were the most significant regions as shown by the
nodal degree for the AD vs. MCIs classification group using
FDG and sMRI images (Supplementary Figures S3, S6c,d).
The global network topology is plotted in Supplementary
Figure S4 for the HC vs. MCIc classification group. From this
plot we can see that the characteristic path length begins at 0.8
(difference) at a 5% density in the rs-fMRI modality (which
is very high compared with other modalities). However, it
suddenly begins to decrease at 8–13% density, and crosses lower
bound (represented by a dark red sphere), and again later, it
increases at 14% network density. The rs-fMRI modality is the
only one neuroimage where the local efficiency, modularity, and
transitivity lie above the mean values (small dark red sphere).
Moreover, this plot lies in the middle of the 95% confidence
interval. Supplementary Figures S7a,b show that the DTI-FA
and rs-fMRI modalities are the only one neuroimage that show
the numbers of significant region changes in the nodal network
topology for the HC vs. MCIc group. The nodal degree shows
significant increases in the right inferior-parietal-g, left superior
occipital-g, right brainstem, right midbrain, left postcentral-g,
left parahippocampal-g, left corticospinal tract, (left/right)
posterior limb of the internal capsule, and the left uncinate
fasciculus regions (see Supplementary Figures S4, S7). For the
HC vs. MCIs classification group, the global network topology is
shown in Supplementary Figure S5. In this case, characteristic
path length using the sMRI modality is the only one that lies
above the mean value. The local efficiency increases with both
(sMRI and rs-fMRI) modalities, and their network lies above the
mean value (which is represented by the small dark red sphere).
The modularity plot shows that the rs-fMRI image is the only one
in which there is an increment in the network density from 6 to
25%, whereas in the same image, the transitivity decreases from
6 to 25% density. However, both of these networks lie inside the
CI. Supplementary Figures S7c,d show that the sMRI and FDG
modalities are the only one neuroimage that shows the numbers
of significant region changes in a nodal network topology for
the HC vs. MCIs group. The nodal degree shows significant
increases in the right g-cuneus-2, left g-occipital-sup-1, left
g-Supp-motor-area-1, left n-Caudata-6, left n-thalamus-2, right
n-thalamus-1, and the right temporal-pole-mid-3 regions (see
Supplementary Figures S5, S7).

DISCUSSION

The present study outcomes provided insights into multimodal
behavior for classifying all six binary classification groups, and it
also showed which regions or single modality are most significant
for future analysis for the discrimination of AD at a clinical level.
Here, our proposed idea was to combine multiple neuroimaging
modalities (sMRI, AV45, FDG, rs-fMRI, and DTI) with a genetic
biomarker (APOE) for the classification of AD patients and other
groups using whole-brain, voxel-wise, and graphical analysis

methods. In this study, we utilized three different types of
atlas (AICHA, pyClusterROI, and JHU-WM) to parcellate the
sMRI/PET, rs-fMRI, and DTI neuroimages. Furthermore, to
parcellate the sMRI and PET images, we employed the AICHA
atlas, which is already segmented into 384 ROIs. Likewise, for rs-
fMRI neuroimages, we applied pyClusterROI Python script with
the Craddock atlas to parcellate the rs-fMRI images into 200 brain
regions (because this is a well-known technique for parcellating
fMRI images using a spatially constrained normalized-cut
spectral clustering process). Moreover, we also knew that fMRI
images are made up of a time series (ADNI rs-fMRI data is made
up of 140 time series or time points), so to parcellate the brain
using fMRI data, voxels with similar time points needed to be
grouped to form a region. This is typically done using data-driven
clustering methods, where each cluster constitutes one region.
For this reason, we chose the pyClusterROI script for the rs-fMRI
images. Moreover, for DTI images, we applied the JHU-WM
(ICBM-DTI-81) label atlas, which was already segmented into
50 brain regions (these 50 WM tract labels were created by the
hand segmentation of a standard-space average of the diffusion
MRI tensor maps from 81 subjects). In this study, we selected
different atlases for the different modalities of neuroimages
because of their advantages, and also for the extraction of higher
brain ROIs for that particular modality of neuroimage. After
the completion of feature extraction from each method, we sent
these low-dimensional extracted features through a polynomial
kernel function to map them onto a high-dimensional feature.
Afterward, we fused all six high-dimensional features into one
form before further analysis. Later, we passed these unimodal
and multimodal features through the EasyMKL classifier for
classification and reported the average accuracy for each method.
This procedure is widely used for comparing the performance
of machine learning approaches. Although previous studies have
already applied the multimodal method for the classification of
AD (Zhang et al., 2011; Young et al., 2013; Liu et al., 2014; Ritter
et al., 2015; Schouten et al., 2016; Hojjati et al., 2018; Gupta et al.,
2019a) with other groups, this study was the first to combine
five different types of neuroimage modalities with two APOE
genotype scores for the classification of all six binary classification
groups (AD vs. HC, MCIs vs. MCIc, AD vs. MCIc, AD vs. MCIs,
HC vs. MCIc, and HC vs. MCIs). Our proposed method clearly
showed an improvement using multimodal features in terms
of performance over the unimodal features for classifying these
six binary groups compared with the latest published results.
Furthermore, in this study, we also adopted graph-theoretical
strategies (in a global and nodal network topology) to study the
plots of the six binary groups (characteristic path length, local
efficiency, modularity, and transitivity), and to find the most
significant regions where these groups differed from each other.

Influence of the Different Types of
Neuroimage Modality
We compared the Cohen’s kappa score obtained for each
modality using both ROI and VOI features. The score was
calculated for each of the six classification groups. The Cohen’s
kappa outcomes, displayed in Figure 5, were computed using
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FIGURE 15 | Comparison of EasyMKL classifier results with RBF-SVM classifier results based on obtained accuracy score. In the above figure, we can see that the
combined-ROI, combined-VOI, and combined-(VOI + ROI) result obtained by EasyMKL classifier outperformed the results [combined-ROI, combined-VOI, and
combined-(VOI + ROI)] obtained by the RBF-SVM classifier for all six classification groups.

ROI-based features. Likewise, the Cohen’s kappa outcomes
displayed in Figure 6 were computed using VOI-based features.
The results displayed in Figures 5, 6 clearly show that the
DTI-FA modality biomarker achieved a high level of agreement
between groups while classifying the six binary classification
groups compared with the other five biomarkers. Furthermore,
we can say that VOI-based DTI-FA (lies above 0.8–0.87) feature
performed slightly better than the ROI-based DTI-FA (lies above
0.75–0.84) feature.

Influence of the Type of Features (ROI
and VOI)
We compared the Cohen’s kappa score obtained for the regional
(ROI) features with the reference atlases (AICHA, Craddock,
and JHU-WM) to the ones obtained for the voxel (VOI)
features (SPM12, DPARSF, TBSS) for five different types of
neuroimages using the EasyMKL classifier. The score was
evaluated for the same six binary classification groups. The
Cohen’s kappa outcomes displayed in Figure 5 are for an
ROI-based analysis, and likewise, the Cohen’s kappa outcomes
displayed in Figure 6 are for a VOI-based analysis. The results,
displayed in Figures 5, 6, do not show notable differences
in the Cohen’s kappa scores obtained using regional or voxel
features; both features performed very well and achieved a
high level of agreement between each other for all six binary
classification groups.

Influence of the Classification Method
We compared the result obtained by the EasyMKL classifier with
that of the RBF-SVM classifier. Tables 2–4 and Supplementary
Tables S31–S33 show the obtained classification result for all
six binary groups using the EasyMKL and RBF-SVM classifiers.
Likewise, Figure 15 shows the plot where we compared the

accuracy obtained for all six binary classification tasks using
the EasyMKL and RBF-SVM classifiers. The result displayed
in Figure 15 shows that the EasyMKL classifier achieved high
classification accuracy for all six binary groups compared with
RBF-SVM. It also suggests that EasyMKL optimized a simple
quadratic problem addressed by SVM in a more efficient way (see
Supplementary Tables S31–S33).

Most Significant Brain Regions Where
Each Group Differs From the Others
Table 5 shows the obtained most important brain regions for
each binary classification group, using voxel-wise and graphical
methods. For the AD vs. HC group, using VOI analysis, we
found that (L) Thalamus, (L) Occipital Inferior, (R) Fusiform, (R)
Temporal Inferior, (R) Temporal Mid, (R) Temporal Inferior, and
(L) Sagittal stratum were the brain regions where the AD group
differs from the HC group. Likewise, using graphical analysis, we
found that (L) G-Cuneus-2, and (R) G-Frontal-Superior-1 were
the brain regions where the AD group differs from the HC group.
Furthermore, for the MCIs vs. MCIc group, using VOI analysis,
we found that (L) Precuneus Vermis_9, (L) Frontal Superior
Medial, (L) Pallidum, (R) Lingual, (L) Frontal Mid, (R) External
capsule were the brain regions where the MCIs group differs from
the MCIc group. Likewise, after applying graphical analysis, we
found that the (R) G-Parietal Inferior-1, and (R) G-Lingual-2
were the brain regions where the MCIs group differs from the
MCIc group. For the AD vs. MCIs group, using the VOI method,
our study found that the (L/R) Frontal Inferior Triangular, (R)
Temporal Superior, (R) Frontal Inferior Orbital, (R) Thalamus,
(R) Hippocampus, and (R) Anterior thalamic radiation were the
brain regions where the AD group differs from the MCIs group.
Moreover, after applying the graphical method, we found that
the (R) N-Caudate-2 and (L) G-Cuneus-2 were the brain regions
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TABLE 5 | Most significant brain regions found for all six binary classification groups using voxel-wise and graphical analysis.

Groups Modality Found to be the most significant brain
region by applying VOI analysis

Modality Found to be the most significant brain
region by applying graphical analysis

AD vs. HC sMRI (L) Thalamus

FDG-PET (L) Occipital Inferior

AV45-PET (R) Fusiform

rs-fMRI-ALFF (R) Temporal Inferior FDG-PET (L) G-Cuneus-2

rs-fMRI-fALFF (R) Temporal Mid AV45-PET (R) G-Frontal-Superior-1

rs-fMRI-REHO (R) Temporal Inferior

DTI-FA (L) Sagittal stratum

MCIs vs. MCIc sMRI (L) Precuneus

FDG-PET Vermis_9 FDG-PET (R) G-Parietal Inferior-1

AV45-PET (L) Frontal superior Medial AV45-PET (R) G-Lingual-2

rs-fMRI-ALFF (L) Pallidum

rs-fMRI-fALFF (R) Lingual

rs-fMRI-REHO (L) Frontal Mid

DTI-FA (R) External capsule

AD vs. MCIs sMRI (R) Frontal Inferior Triangular sMRI (R) N-Caudate-2

FDG-PET (L) Frontal Inferior Triangular FDG-PET (L) G-Cuneus-2

AV45-PET (R) Temporal Superior

rs-fMRI-ALFF (R) Frontal Inferior Orbital

rs-fMRI-fALFF (R) Thalamus

rs-fMRI-REHO (R) Hippocampus

DTI-FA (R) Anterior thalamic radiation

AD vs. MCIc sMRI (R) Frontal Middle Orbital

FDG-PET (R) Occipital Middle

AV45-PET (R) Precentral AV45-PET (L) N-Caudate-5

rs-fMRI-ALFF (L) Fusiform rs-fMRI (L) G-Lingual

rs-fMRI-fALFF (L) Occipital Middle

rs-fMRI-REHO (L) Cingulum Posterior

DTI-FA (R) Posterior corona radiata

HC vs. MCIs sMRI (R) Precentral sMRI (L) N-Caudate-6

FDG-PET (L) Precentral FDG-PET (L) G-Occipital Superior-1

AV45-PET (L) Cerebellum_9

rs-fMRI-ALFF (L) Precentral

rs-fMRI-fALFF (L) Parietal Inferior

rs-fMRI-REHO (L) Putamen

DTI-FA (L) Superior longitudinal fasciculus

HC vs. MCIc sMRI (L) Lingual

FDG-PET (L) Occipital Superior

AV45-PET (R) Frontal Inferior Opercular

rs-fMRI-ALFF (L) Frontal Inferior Orbital rs-fMRI (R) G-Parietal Inferior

rs-fMRI-fALFF (R) Frontal Superior Orbital DTI-FA (L) Corticospinal tract

rs-fMRI-REHO (L) Lingual

DTI-FA (L) Superior corona radiata

where the AD differs from the MCIs the most. Furthermore, for
the AD vs. MCIc group, we found using VOI analysis that the
(R) Frontal Middle orbital, (R) Occipital Middle, (R) Precentral,
(L) Fusiform, (L) Occipital Middle, (L) Cingulum Posterior, and
(R) Posterior corona radiata were the brain regions where the
AD group differs from the MCIc group. Likewise, after applying
graphical analysis, we found that the (L) N-Caudate-5 and (L)
G-Lingual were the brain regions where the AD group differs
from the MCIc group. For the HC vs. MCIs group, using the

VOI method, our study found that the (R/L) Precentral, (L)
Cerebelum_9, (L) Parietal Inferior, (L) Putamen, and (L) Superior
longitudinal fasciculus were the brain regions where the HC
group differs from the MCIs group. Moreover, after applying
the graphical method, we found that the (L) N-Caudate-6 and
(L) G-Occipital Superior-1 were the brain regions where the HC
differs from the MCIs the most. Likewise, for the HC vs. MCIc
group, using the VOI method, we found that the (L) Lingual,
(L) Occipital Superior, (R) Frontal Inferior Opercular, (L) Frontal
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Inferior Orbital, (R) Frontal Superior Orbital, (L) Lingual, and
(L) Superior corona radiata were the brain regions where the HC
group differs from the MCIc group the most. Moreover, using
graph-based analysis, we found that the (R) G-Parietal Inferior
and (L) Corticospinal tract were the brain regions where the HC
group differs from the MCIc group the most. It is interesting
to note that most of the affected brain regions lies in the left
hemisphere rather than the right hemisphere.

Exploring the Improvement in
Performance Using Multimodal Features
Compared With Unimodal Features
In this study, we applied two different types of methods for the
classification of AD with another group. In the first method,
we used the whole-brain parcelation approach to segment the
brain images according to the atlas using some toolbox (see
section “Three Feature Extraction Processes”) and later, after the
completion of the data pre-processing step, we sent these features
through the MKL algorithm to classify AD and the other groups.
To verify the efficiency of this proposed method, we calculated
the performance of each classification group using both unimodal
and combined-ROI (or multimodal) features. Table 2 shows
the obtained classification results for all six binary classification
groups using whole-brain analysis features. From Table 2, we
can say that the combined features (combined-ROI) performed
very well compared with the single-modality features in every
classification problem. Their obtained Cohen’s kappa values were
close to 1, which indicates that our proposed method achieved a
good level of agreement between groups while classifying each
set. Table 2 further shows that the DTI-FA unimodal features
attained high classification performance for every classification
group except for the HC vs. MCIc group (where rs-fMRI
features achieved better performance than DTI-FA features) in
comparison with the performance of other individual modalities.
This result demonstrates that the DTI-FA image can be used as a
notable biomarker when investigating AD, and therefore should
be included in clinical research.

Likewise, in the second step, we utilized the voxel-wise
approach for the extraction of features from sMRI, FDG,
AV45-PET, rs-fMRI, and DTI images using some toolbox (see
section “Three Feature Extraction Processes”) and later, after the
completion of data pre-processing step, we sent these features
through the MKL classifier to classify AD with the other groups.
To check the efficiency of this proposed method, we calculated
the performance of each classification group using both unimodal
and combined-VOI (or multimodal) features. Table 3 shows
the obtained classification results for all six binary classification
groups using voxel-wise analysis features. From Table 3, we
can say that our proposed approach (to combine all unimodal
features into one before passing them through the MKL classifier)
gained a high level of performance and agreement compared
with the unimodal results for every classification group. Table 3
further suggests that AV45-PET, rs-fMRI (ALFF, REHO), and
DTI-FA individual features performed very well compared
with sMRI, APOE, and FDG-PET individual modalities. It is
interesting to note that the DTI-FA modality performed well for
both whole-brain and voxel-wise analysis methods.

Tables 2, 3 satisfied our hypothesis by showing that
classification performance increased by 2–4% in every
classification group after we passed concatenated features
(combined-ROI and combined-VOI) through the MKL classifier.
Moreover, the obtained result demonstrates that the multimodal
method is more powerful than the unimodal system, and the
obtained outcomes also indicate that every single biomarker
has some important information, so it is better to combine
the complementary information together for the classification
of AD. Furthermore, we also examined the performance of
every six classification groups by concatenating both ROI and
VOI features into a single form. Table 4 shows the obtained
results for all six binary classification groups using combined
(VOI + ROI) features. From Table 4, we can say that after
applying combined (VOI + ROI) features, the classification
performance increased slightly for every classification group
except the AD vs. MCIc group (where combined-VOI dominated
the combined-ROI and combined (VOI + ROI) methods in
terms of performance). Their obtained Cohen’s kappa values
were close to 1, which indicates that our proposed scheme
achieved a good level of agreement between groups while
classifying each set. Supplementary Tables S1–S30 show the
most significantly affected regions for all six binary classification
groups measured by the sMRI, FDG-PET, AV45-PET, rs-fMRI,
and DTI-FA modalities of neuroimage.

It is interesting to note that the (left/right) precentral region
was found in every classification group when extracting the most
significant voxel region. This finding suggests that, in the coming
days, the precentral region can also be used as an important
biomarker for the classification of AD and other groups.

Global and Nodal Network Topology
Result Analysis
We studied the global and nodal network topology for all six
binary classification groups using graph theory. We calculated
characteristic path length, local efficiency, modularity, and
transitivity for every classification group, which can be seen in
Figures 12, 13 and Supplementary Figures S2–S5. In the global
network topology analysis, our study found that in general, FDG,
sMRI, and rs-fMRI were the modalities where characteristic path
length increased efficiently compared with the other modalities.
Likewise, for local efficiency, AV45, FDG-PET, rs-fMRI, and
sMRI were the modalities where it increased compared with the
remaining modalities. It is interesting to note that modularity
increased in every classification group using sMRI neuroimages,
except for the HC vs. MCIs group (where modularity increased
efficiently by utilizing rs-fMRI images instead of sMRI images).
Furthermore, in general, rs-fMRI, AV45-PET, and sMRI were the
modalities where transitivity increased and decreased frequently.
These changes symbolize that the regions of their networks
communicated (more or less) efficiently within other brain
regions. The increments in modularity (suggesting that their
modules should have higher within-module connectivity and
poor inter-module connectivity, or vice-versa) and increment or
decrement of transitivity graph (suggesting that the regions of
their network were connected very well to neighboring areas, or
vice-versa). In the nodal network topology analysis, our study
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found that every neuroimage was important to finding the most
significant region where the six binary classification groups differ
from each other; the found regions can be seen in Figure 14
and Supplementary Figures S6, S7. The most significant regions
were right g-frontal-sup-1, right s-precentral-3, left g-frontal-
inf-tri, (left/right) n-thalamus-6, left s-parietooccipital-4, left
g-cingulum-post-2, (left/right) occipital pole, left n-thalamus-2,
left g-insula-anterior-2, (left/right) g-cuneus-2, left corticospinal
tract, left n-Caudata-6, right temporal-pole-mid-3, left lingual-
g, right fusiform, left g-precuneus-8, right n-Caudata-2, and
(left/right) g-parahippocampal-4.

Recently, several studies have investigated neuroimaging
techniques for the discrimination of AD, with the main focus
on MCI subjects, who may or may not convert to AD, and
separating patients with AD from healthy controls. However, it
is difficult to make direct comparisons with these state-of-the-
art methods because most of the studies used different validation
methods and datasets, which both influence the classification
performance. The first study by Cui et al. (2011) obtained an
AUC of 79.6% for the classification of MCIs vs. MCIc groups.
The authors used multimodal features (NM: neuropsychological
and functional measures, CSF, and sMRI) for the classification.
Young et al. (2013) used a Gaussian process method with SVM
for the classification of MCIs vs. MCIc with three modalities
(MRI, PET, and APOE). They reported an accuracy of 69.9%
for classifying MCIs vs. MCIc groups. In another study, domain
transfer learning was introduced using multimodal data (i.e.,
MRI, CSF, and FDG) with an accuracy of 79.4% for MCIs vs.
MCIc with an AUC of 84.8% (Cheng et al., 2015). In another
study by Xu et al. (2016), the authors used three different imaging
modalities (sMRI, FDG, and AV45) for the discrimination
of the conversion of MCIs subjects to MCIc patients. The
authors used a weighted multi-modality sparse representation-
based classification (wmSRC) classifier for classification. Their
method achieved an ACC of 82.5% for classifying MCIs vs.
MCIc with a sensitive biomarker selected using different numbers
(from 1 to 90) of ranked features from each modality. Liu
et al. (2017) proposed an algorithm that combines two imaging
modalities of independent component study and the Cox model
for discrimination of MCI progression. Their method achieved
80.8% of AUC with 73.5% of accuracy when classifying MCIs

TABLE 6 | Performance comparison for MCIs vs. MCIc classification group.

Method Modality Total
sample size

AUC ACC

Cui et al., 2011 NM + CSF + sMRI 143 79.6 67.13

Young et al., 2013 sMRI + FDG + APOE 143 79.5 69.9

Cheng et al., 2015 MRI + FDG + CSF 99 84.8 79.4

Xu et al., 2016 sMRI + AV45 + FDG 110 - 82.5

Liu et al., 2017 sMRI + FDG 234 80.8 73.5

Hojjati et al., 2017 rs-fMRI 80 94.9 91.4

Pan et al., 2019b FDG 248 80.70 75.38

Gupta et al., 2019a APOE+ sMRI+ FDG+CSF 82 93.59 94.86

Combined-
(ROI + VOI)

sMRI + FDG + AV45 + rs-
fMRI + DTI + APOE

61 96.94 95.08

vs. MCIc. Hojjati et al. (2017) used a subset of optimal features
in an SVM classifier for the discrimination of the conversion
of MCIs to MCIc subjects. Their proposed method with
multivariate minimal redundancy maximal relevance feature
selection achieved 94.9% AUC and 91.4% ACC. In another study,
Pan et al. (2019b) used an ensemble classification with a feature
ranking method for the classification of MCIs vs. MCIc. Their
proposed method achieved 75.38% AUC and 80.70% ACC for
classifying this group. Gupta et al. (2019a) used a multimodal
feature (sMRI, FDG, CSF, and APOE) for the discrimination of
the conversion from MCIs to MCIc. They used the NiftyReg
toolbox for the extraction of 246 ROIs from each imaging
modality and applied a kernel-based SVM for the classification
of MCIs vs. MCIc. Their method achieved an AUC of 93.59% for
classifying these groups. Table 6 shows the comparison result for
MCIs vs. MCIc classification. Our proposed multimodal method
[combined-(ROI+VOI)] outperforms the latest published state-
of-the-art methods in terms of AUC and ACC for MCIs vs. MCIc.
The proposed method achieved 96.94% AUC and 95.08% ACC
for classifying the MCIs vs. MCIc group.

CONCLUSION

The novelty of the present study is that we combined five
neuroimaging modalities (sMRI, FDG-PET, AV45-PET, rs-
fMRI, and DTI) with the APOE genotype score for the
discrimination between AD and other groups. Furthermore,
we employed three different approaches [whole-brain (ROI),
voxel-wise (VOI), and graph-based] on six binary classification
groups to analyze each method performance independently. The
combined-(ROI + VOI) feature performance outperformed the
combined-ROI and combined-VOI features for all classification
groups except the AD vs. MCIc group (where combined-
VOI performed well). When the performance of each imaging
modality in brain graph analysis was compared for all six
binary classification sets, we found that FDG-PET, AV45-PET,
and rs-fMRI were the only three modalities that revealed the
most affected brain regions for all six classification groups.
These highlighted central brain regions are an early indicator of
developing dementia in healthy subjects.
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