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Speed of processing is a cognitive domain that encompasses the speed at which an
individual can perceive a given stimulus, interpret the information, and produce a correct
response. Speed of processing has been shown to decline more rapidly than other
cognitive domains in an aging population, suggesting that this domain is particularly
vulnerable to cognitive aging (Chee et al., 2009). However, given the heterogeneity of
neuropsychological measures used to assess the domains underpinning speed of
processing, a diffuse pattern of brain regions has been implicated. The current study
aims to investigate the structural neural correlates of speed of processing by assessing
cortical volume and speed of processing scores on the POSIT Double Decision task
within a healthy older adult population (N = 186; mean age = 71.70 ± 5.32 years).
T1-weighted structural images were collected via a 3T Siemens scanner. The current
study shows that less cortical thickness in right temporal, posterior frontal, parietal
and occipital lobe structures were significantly associated with poorer Double Decision
scores. Notably, these include the lateral orbitofrontal gyrus, precentral gyrus, superior,
transverse, and inferior temporal gyrus, temporal pole, insula, parahippocampal gyrus,
fusiform gyrus, lingual gyrus, superior and inferior parietal gyrus and lateral occipital
gyrus. Such findings suggest that speed of processing performance is associated with
a wide array of cortical regions that provide unique contributions to performance on the
Double Decision task.

Keywords: speed of processing, UFOV, useful field of view, double decision, cognitive aging, structural MRI

INTRODUCTION

Older adults over the age of 65 are one of the largest and fastest growing populations in the
United States (Goode et al., 1998). Numerous studies have shown that, even within healthy
older adults, declines in cognition occur in numerous domains, including memory, executive
functioning, and speed of processing (Goode et al., 1998). Speed of processing is the rate at which
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an individual can perceive a given stimulus (through visual
perceptual components), interpret the information (through
cognitive components), and produce a correct response (through
psychomotor speed) (Salthouse, 2000). Importantly, speed of
processing has been shown to decline more rapidly than other
cognitive domains in the context of aging, suggesting that this
domain may be particularly vulnerable to the deleterious effects
of aging (Park et al., 2002; Finkel et al., 2007; Chee et al., 2009).
In addition, speed of processing is a significant contributor to
multiple domains of cognitive function (Salthouse, 1996). Prior
research suggests that speed of processing may underlie age-
related declines in memory, attention, reasoning and spatial
abilities (Salthouse and Ferrer-Caja, 2003). Numerous studies
to date suggest that age-related declines in speed of processing
are significantly associated with a loss of functional instrumental
activities of daily living (IADL) as demonstrated by poorer timed
IADL scores, higher self-reported difficulties in IADL, poorer
everyday problem solving, greater medical expenditures and
greater motor vehicular crash risk (Goode et al., 1998; Edwards
et al., 2005, 2014; Wolinsky et al., 2009; Bezdicek et al., 2016; Aust
and Edwards, 2017). Given the substantial literature regarding
the impact of speed of processing declines on functional abilities,
there is a profound need for effective interventions for this
cognitive domain.

Interventions for Speed of Processing
Attempts have been made to ameliorate declines through the
use of standardized cognitive training. Several randomized
controlled trials have shown the efficacy of domain-specific
cognitive training on improving speed of processing scores with
moderate to large effect sizes (Ball et al., 2002; Vance et al., 2007;
Simpson et al., 2012; Wolinsky et al., 2013). Notably, this is
not the case with other domains, such as executive functioning,
attention, and language, which show little to no improvements
within domain-specific cognitive training (Lampit et al., 2014).
Collectively, this suggests that speed of processing is a cognitive
domain susceptible to decline in aging, but such declines may be
reversed through cognitive training paradigms.

Some of the most successful randomized controlled trials
aimed at improving speed of processing have utilized Useful Field
of View (UFOV) cognitive training (Ball et al., 2002). In this
paradigm, the participant is asked to identify a central target
with subsequent subtasks including the addition of a peripheral
target and increasing number of distractors in the periphery.
Difficulty is adjusted by altering presentation time of the stimuli
and through the addition of distractors, thus targeting cognitive
components related to speed of processing. The Advanced
Cognitive Training for Independent and Vital Elderly (ACTIVE)
study, a large (n = 2802) randomized controlled trial using
the UFOV task in a 6-week intervention, found improvements
in speed of processing lasting up to ten years (Ball et al.,
2002; Edwards et al., 2017). Notably, UFOV-based interventions
demonstrated ‘near transfer’ effects to other speed of processing
assessments (Wolinsky et al., 2013). However, studies have failed
to find ‘far transfer’ effects to other cognitive domains such as
attention (Wolinsky et al., 2013), memory (Edwards et al., 2002,
2005) and executive function (Edwards et al., 2005, 2018).

Age-related cognitive decline has been associated with
numerous deleterious functional outcomes, including loss of
physical function, poorer subjective quality of life, and greater
difficulties in activities of daily living in older adults (Anton
et al., 2015; Ryu et al., 2016). In-light of these findings,
several studies have shown that UFOV training interventions
are efficacious in improving real-world outcomes following
UFOV training interventions. Specifically, UFOV training
interventions have shown improvements in timed IADL tasks
and self-reported improvements in IADLs (Edwards et al., 2002,
2005). Longitudinal follow-up of the large ACTIVE cohort
demonstrated that each UFOV training session was associated
with a 10% reduction in dementia prevalence even 10 years
following the intervention (Edwards et al., 2017). Additionally,
recent research has shown that performance on UFOV-based
interventions is a significant predictor for motor vehicle accidents
in an older adult population, a key factor in functional
independence in older adults (Ball et al., 2006; Edwards et al.,
2006, 2009). Given the long-lasting intervention effects, including
improvements in speed of processing, functional outcomes, and
reductions in dementia prevalence, the UFOV task remains an
essential target of cognitive interventions.

Useful Field of View training was recently adapted and made
commercially available by POSIT Science Brain HQ1 and retitled
the Double Decision task. This task is administered through an
online portal with updated visual aesthetics and inclusion of a
within-task adaptive change in difficulty based on participant
performance. Like UFOV, Double Decision asks participants
to identify a target in the center of the screen while also
attending to a target in the periphery among distractor stimuli.
Adaptive change in difficulty is implemented by manipulating
both the visual perceptual components of speed of processing
(by adjusting the speed of stimulus display) and the cognitive
components of speed of processing (by adjusting the similarity
of the targets and distractors). At present, the Double Decision
training paradigm serves as the prevalent implementation for
UFOV training in recent and ongoing clinical trials. This
paradigm has been used in a number of recent speed of processing
interventions and has been efficacious in improving speed of
processing performance in older adults (Edwards et al., 2013;
Kaur et al., 2014; Lin et al., 2016; Ross et al., 2018).

Neural Correlates of UFOV/Double
Decision Performance and Speed of
Processing
Studies looking at a broad range of speed of processing paradigms
have found significant associations with a variety of markers of
neuronal integrity. Specifically, decreased cortical volume has
been associated with poorer speed of processing performance
within the bilateral precentral gyrus, bilateral inferior frontal
gyrus, left superior frontal gyrus, bilateral superior parietal
regions, and bilateral middle frontal gyrus (Chee et al., 2009;
Hong et al., 2015). Additionally, greater hippocampal volume
has been associated with better speed of processing, suggesting

1www.brainhq.com
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hippocampal volume may be especially related to speed of
processing performance (Papp et al., 2014; O’Shea et al., 2016;
Tsapanou et al., 2019). Notably, O’Shea et al. (2016) found that
hippocampal volume accounts for 11% of the variance in speed
of processing scores.

Although speed of processing training using UFOV/Double
Decision is one of the more effective forms of cognitive training
to date, very few studies have investigated the neural correlates
of the UFOV/Double Decision task itself. Two functional
magnetic resonance imaging (fMRI) studies utilizing the UFOV
task in-scanner have shown significant blood-oxygen level
dependent (BOLD) activation of numerous areas, including the
anterior cingulate cortex, supplementary motor area, dorsolateral
prefrontal cortex (DLPFC), insula, precuneus, temporoparietal
junction, and visual cortices (Scalf et al., 2007; Ross et al., 2018).

Only one small study to date (n = 41) has investigated
the role of cortical thickness in UFOV performance (Schmidt
et al., 2016). This elegantly designed study found that greater
cortical thickness in the bilateral intraparietal sulcus, frontal
cortex, precuneus, midcingulate, inferior parietal lobule, and
dorsolateral prefrontal cortex were all associated with greater
UFOV performance (Schmidt et al., 2016). These aforementioned
regions of interest comprise the fronto-parietal control network,
an adaptive control functional connectivity neural network
(Dosenbach et al., 2007; Schmidt et al., 2016). Understanding
the neural underpinnings of the UFOV cognitive training
intervention could provide unique insight into potential avenues
for intervention optimization (e.g., adjunctive non-invasive
brain stimulation targeting involved regions). The present study
sought to further determine the gray matter structural neural
correlates of Double Decision task performance in older adults,
by using a vertex-wise analysis approach. To achieve this goal,
186 participants performed the Double Decision task prior to
undergoing T1-weighted magnetic resonance imaging. Based on
prior findings regarding the structural (Schmidt et al., 2016) and
functional (Ross et al., 2018) neural underpinnings of UFOV
performance, we hypothesized that poorer Double Decision
performance is related to cortical degradation in the dorsolateral
prefrontal cortex, insula, inferior parietal lobule, supplementary
motor area, anterior cingulate cortex, and precuneus.

MATERIALS AND METHODS

Participants
A sample of healthy older adults (N = 186) were recruited at the
University of Florida, Gainesville FL, and University of Arizona,
Tucson, AZ, United States as part of two ongoing randomized
clinical trials with identical inclusion/exclusion criteria
(R01AG054077; K01AG050707). Participants were between the
ages of 65–88 years [113 females, mean education = 16.13 years
(SD ± 2.39), mean age = 71.70 years (SD ± 5.32)]. The full
details of inclusion/exclusion criteria are described in a previous
publication (Woods et al., 2018). Briefly, participants were
excluded if they: (a) were outside the age range of 65–89,
(b) had a history of neurological or psychiatric disorders, (c)
had MRI contraindications, (d) were left-handed, or (e) had

any current substance abuse or dependence problem. General
cognitive ability was assessed using the Uniform Data Set (UDS
3.0) of the National Alzheimer’s Coordinating Center (NACC)
(Weintraub et al., 2009). The UDS serves as a comprehensive
neuropsychological battery for screening individuals for possible
dementia and mild cognitive impairment (MCI), and is normed
based on age, education, and sex (Shirk et al., 2011). Possible
MCI was defined as 1.5 standard deviations (SD) below the mean
for age, sex, and education normed scores in any of the following
five domains: general cognition, memory, visuospatial, executive
functioning/working memory, or language. Participants meeting
criteria for possible MCI were subsequently excluded from
the study. Participants were excluded following an in-person
screening visit if they were color-blind, had impaired vision
(defined as uncorrected vision worse than 20/80) or notable
hearing loss (defined as an inability to hear a target at 20dB or
louder with background noise). Additionally, any participants
with abnormal findings in their MRI brain scans were excluded
from the study (i.e., cyst, tumors, etc.). The University of Florida
and University of Arizona Institutional Review Boards approved
all study protocols. Participants provided written informed
consent prior to any study procedures.

Brain HQ- Double Decision Task
The POSIT Brain HQ Double Decision task has been widely
used in adaptive cognitive training paradigms and was therefore
selected as a measure of speed of processing (Edwards et al., 2013;
Lin et al., 2016; Ross et al., 2018). The task requires participants
to identify which central target was presented on the screen
(either a car or a truck) and the location of the peripheral target
(a Route 66 sign) (Figure 1). Possible presentation times in
milliseconds (ms) ranged from 32 ms to 2600 ms and there were
25 presentations total. The number of possible distractors ranged
from 0 to 47. Performance was set at a moderate level of difficulty
with a starting presentation time of 501ms and 7 distractors. As
this is an adaptive training paradigm, the targets were presented
for variable lengths of time depending on participant accuracy,
with longer presentation times following incorrect trials and
shorter presentation times following correct trials. Participants’
scores were calculated as the average presentation time of correct
responses in log milliseconds, as reaction time is positively
skewed. Lower scores on the task equated to faster speed of
processing scores.

MRI Acquisition
T1-weighted magnetization prepared rapid gradient echo
(MPRAGE) structural scans were collected via a Siemens 3T
Prisma scanner using a 64-channel head coil (University of
Florida site, n = 129) or via a Siemens 3T Skyra scanner using
a 32-channel head coil (University of Arizona site, n = 57)
(Siemens, Erlangen, Germany). T1- weighted MPRAGE scans
were collected with the following parameters at both sites:
repetition time (TR) = 1800 ms; echo time (TE) = 2.26ms; flip
angle = 8◦; field of view = 256mm × 256mm × 176mm; voxel
size = 1mm3.
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FIGURE 1 | Example of the POSIT Double Decision paradigm. Reproduced/adapted from POSIT Brain HQ, used with permission.

Structural Neuroimaging Processing
Cortical surface area and cortical thickness from T1-weighted
images were analyzed via the FreeSurfer pipeline (version 6.0),
the details of which are described elsewhere (Dale et al.,
1999; Fischl et al., 1999, 2002; Fischl and Dale, 2000). This
FreeSurfer processing pipeline involves removal of non-brain
tissue, volumetric labeling of white matter and subcortical gray
matter structures, surface tessellation, intensity normalization of
the T1-weighted image, segmentation of white matter, surface
atlas registration, surface extraction, and gyral labeling (Desikan
et al., 2006). Following FreeSurfer processing, output was visually
assessed and manual corrections for any segmentation errors
were performed as needed. Specific manual edits included
addition of control points to extend the white matter surface
and reconstruction edits to remove non-cortical matter that was
erroneously included in the gray matter surface. The corrections
were then re-ran through the same FreeSurfer recon-all pipeline
prior to data analyses. Cortical thickness was defined within
the FreeSurfer pipeline at each vertex as the distance (in mm)
from the gray/white matter boundary to the pial surface, whereas
cortical surface area was designated as an area (in mm2) equal
to the average of surrounding triangles around each individual
vertex on the gray/white boundary surface tessellation.

Neuroimaging Statistical Analyses
This study examined both cortical surface area and cortical
thickness via a vertex-wise analysis using the QDEC FreeSurfer

tool. Vertex-wise cortical surface area and thickness values were
mapped onto the normalized, tessellated cortical surface, which
was smoothed with a 20-mm full width at half maximum kernel
(Lampit et al., 2015; Suárez-González et al., 2016). QDEC creates
general linear models (GLM) to assess cortical morphological
differences between subjects using a mass univariate approach.
Education, sex, and scanner location were included in our
original model as covariates, with Double Decision scores as our
independent variable and cortical thickness and surface area as
the dependent variables.

As we are primarily focused on the effects of speed of
processing performance in the context of aging, we chose not
to include age as a covariate. By including age as a covariate
in our original model, this would assess speed of processing
performance irrespective of age, or holding age constant.
However, to assess the impact of age on the association between
Double Decision scores and cortical thickness and surface area,
we conducted a secondary analysis adding age as a covariate
in our original model. Additionally, we assessed an age by
Double Decision score interaction term to assess how age may
moderate the relationship between Double Decision scores and
cortical thickness.

To account for multiple comparisons associated with a mass
univariate approach, we set a false discovery rate (FDR) threshold
at p < 0.05 (Benjamini and Hochberg, 1995). Percent overlap in a
specific region of interest (ROI) was calculated by comparing the
number and location of individual significant vertices indicated
in QDEC, to MNI coordinates. ROIs were defined via the
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Desikan-Killiany atlas, a well-validated, well-defined cortical atlas
(Desikan et al., 2006). Percent overlap was defined as the number
of significant vertices within an ROI divided by the total number
of vertices in that ROI. This method allows us to quantify
and pinpoint decreased cortical thickness associated with poorer
Double Decision performance within otherwise exceedingly
large ROIs. In addition, we performed an additional validation
analysis to compare and contrast results using an alternative
multiple comparison approach: Monte Carlo simulation. This
serves as an additional validation of the consistency of findings
from the current study. We also performed a cross-validation
analyses using a split-half reliability analysis where participants
and randomly assigned to two groups and analyses re-run
to evaluate reliability and consistency of findings within the
sample. These analyses were performed at p < 0.01, as the
sample size/power were effectively halved to perform the cross-
validation analysis.

RESULTS

Poorer Double Decision scores were significantly associated
with less cortical thickness in several brain regions within
the right posterior frontal, temporal, parietal, and occipital
lobes (FDR < 0.05) (Figure 2). Cluster size, p-values
(uncorrected), and peak vertex coordinates in MNI space
for all significant regions that survived FDR corrections
can be found in Table 1. Notably, significant regions of
interest (ROI) clusters span and encompass large portions
of numerous Desikan-Killiany atlas-based regions. Scatter
plots of Double Decision scores and cortical thickness at the
MNI coordinates listed in Table 1, can be found in Figure 3.
These scatter plots, and corresponding semi partial r-squared
statistics, controlling for covariates (sex, education, scanner)
represent the relationship between cortical thickness and
Double Decision score at the most significant vertex within
the ROI clusters.

Additionally, Table 1 describes smaller Desikan-Killiany ROIs
encompassed by the large significant clusters. We observed
lateralized right hemisphere decreased cortical thickness in
the superior, transverse, and inferior temporal gyrus, insula,
fusiform gyrus, lateral orbitofrontal gyrus, precentral gyrus,
parahippocampal gyrus, lingual gyrus, temporal pole, superior
and inferior parietal gyrus and lateral occipital gyrus. In the
left hemisphere, there were no significant relationships between
cortical thickness and Double Decision scores that survived FDR
correction. Within both hemispheres, there was not a significant
relationship between cortical surface area and Double Decision
scores that survived FDR correction.

Impact of Covariates on the Model
To assess the impact of covariates on cortical thickness findings,
we reanalyzed the relationship between Double Decision scores
and cortical thickness with our initial covariates excluded.
Figure 4 demonstrates the relationship between Double Decision
scores and cortical thickness hierarchically including covariates
into the model. We see a decrease in the size and number

FIGURE 2 | Decreased cortical thickness related to POSIT Double Decision
scores. (a) left and right hemisphere lateral views, respectively. (b) left and
right hemisphere medial views, respectively. (c) anterior and posterior views,
respectively. (d) superior and inferior views, respectively. Model covariates:
sex, education, scanner. P- posterior, A- anterior, L- left, R- right.

of significant ROIs in all permutations compared to the
original model. Additionally, we see a larger range in each
of the scales compared to the original model needed to
achieve statistical significance following FDR corrections. This
suggests that the covariates in the final model are accounting
for a significant portion of the variance associated with
Double Decision scores, compared to the models with the
covariates excluded.

Impact of Age on the Model
Within our secondary analyses, covarying out age, sex, education
and scanner, we see that only one large cluster, spanning
the right fusiform gyrus, parahippocampal gyrus and lingual
gyrus survive FDR correction (Figure 5). These regions are
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TABLE 1 | Significant cortical thickness ROIs.

Brain Region (ROIs encompassed) Size (mm2) Percent of ROI encompassed X Y Z P-uncorrected

Right Hemisphere Thickness

Fusiform gyrus 1104.94 37.2 −41.9 −13.0 < 0.0001

Fusiform gyrus 21.50%

Lingual gyrus 11.12%

Parahippocampal gyrus 37.66%

Insula 786.81 38.1 −4.0 −12.3 < 0.0001

Insula 25.76%

Superior temporal gyrus 6.99%

Lateral orbitofrontal gyrus 2.82%

Temporal pole 6.12%

Lateral occipital gyrus 1576.05 25.8 −85.2 15.0 0.0001

Lateral occipital gyrus 31.96%

Inferior parietal lobule 3.46%

Superior parietal lobule 0.60%

Precentral gyrus 544.47 48.9 −5.5 28.2 0.0007

Precentral gyrus 13.00%

Inferior temporal gyrus 116.87 46.1 −14.3 −34.3 0.0009

Inferior temporal gyrus 4.48%

Transverse temporal gyrus 24.88 49.7 −14.6 1.3 0.0022

Transverse temporal gyrus 5.63%

Superior temporal gyrus 0.13%

Underlined ROIs are significant decreased cortical thickness and are labeled based on the location of the most significant vertex. Italicized ROIs are the Desikan-Killiany
ROIs encompassed within the significant decreased cortical thickness clusters. All listed values survived FDR corrections.

among the largest ROIs implicated in our original model,
suggesting that these regions may serve as core features of Double
Decision performance outside the context of aging. Similar to
the covariates above, we see a decrease in the size and number
of significant ROIs and a larger range in the scale needed to
achieve statistical significance following FDR corrections. Again,
this suggests that including age into the model adds explains
additional significant variance in the relationship between
Double Decision scores and cortical thickness. Additionally, we
found no significant age by Double Decision score interaction

Validation of FDR vs. Monte Carlo
Simulations as Methods for Multiple
Comparison Correction
To further validate the FDR corrected findings, we used Monte
Carlo simulations, set at 10,000 iterations and a cluster-wise
p-threshold = 0.05. Comparison of the Monte Carlo simulations
(Figure 6) to the traditional FDR findings in Figure 1 shows little
difference between the two multiple comparison corrections.
Specifically, we see that the Monte Carlo simulations found
decreased cortical thickness in the lingual gyrus, which was
not observed in the original model with FDR corrections.
Additionally, we find slightly larger areas of decreased cortical
thickness in the fusiform gyrus and superior temporal gyrus
in relation to Double Decision scored, compared to the FDR-
corrected model. No regions became insignificant following
Monte Carlo corrections. Thus, findings using Monte Carlo
appear to be slightly more liberal than FDR correction, but were
consistent overall.

Replicability and Reliability of Results
With the Sample
To test the internal consistency and reliability of our findings,
we performed a split-half reliability analysis. This consists of
randomly dividing our sample of participants into two equal
groups and rerunning the same QDEC vertex-wise analyses on
both groups. Assessing demographic information, there was no
significant differences between the groups on age [t(184) = 1.576,
p = 0.117], years of education [t(184) = −0.615, p = 0.539] or
UFOV performance [t(184) = −0.750, p = 0.454]. There was
no significant difference in the proportion of male to female
between the two groups χ2(df = 1, n = 186) = 0.203, p = 0.764.
Similarly, there was no significant difference in the proportion
of participants located at each study site between the two groups
χ2(df = 1, n = 186) = 0.228, p = 0.751. Table 2 shows the
breakdown of the demographic information by group.

We then reran the QDEC analyses with identical input
parameters to assess right lateralized cortical thickness differences
between the two groups. Education, sex, and scanner location
were again included as covariates within each group, and
threshold for significant findings was set at p < 0.01. We see
the cortical thickness pattern of findings from the overall model
is similar to both groups 1 and 2 (Figure 7). Based on the
random grouping assignment, we see decreased whole brain
cortical thickness in group 2 compared to group 1. However,
in both groups, we see that less cortical thickness in the
fusiform gyrus, parahippocampal gyrus, lingual gyrus, insula and
superior temporal gyrus are significantly related to poorer Double
Decision performance, controlling for covariates. These regions
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FIGURE 3 | Significant relationships between Double Decision scores and cortical thickness. Scatterplots represent the relationship at the most significant vertex
within the (A) fusiform gyrus, (B) insula, (C) lateral occipital gyrus, (D) precentral gyrus, (E) inferior temporal gyrus and (F) transverse temporal gyrus, controlling for
education, sex and scanner covariates.

are not only identical to the original model, but are also the
regions with the highest percent of ROI encompassed in the
original model (Table 1). This suggests that, although group 2
has less cortical thickness overall, decreased cortical thickness in
the fusiform gyrus, parahippocampal gyrus, lingual gyrus, insula
and superior temporal gyrus within each group are core regions
associated with poorer Double Decision performance. This
random group assignment cross validation analysis demonstrates
that our findings in the overall model were replicable and reliable
within the sample.

DISCUSSION

This study aimed to investigate the structural neural correlates of
the Double Decision task. We found extensive cortical thinning
associated with poorer performance on the Double Decision

task throughout the right hemisphere. Notably, such findings
are consistent with previous research investigating cortical
thickness and UFOV performance in an ROI based analysis
(Schmidt et al., 2016), and consistent with a broader speed of
processing paradigms (Chee et al., 2009; MacPherson et al., 2017).
Speed of processing is a complex and, perhaps, foundational
ability that contributes to a variety of cognitive domains that
decline with advanced age. Speed of processing performance
commonly requires integration of sensory, motor, response
inhibition, and attentional processing for execution, among other
domains (Salthouse, 2000). For example, Double Decision task
performance encompasses numerous aspects of cognition such
as attention, brief visual memory, encoding and recognition of
visual targets, rule maintenance, pattern comparison, and error
recognition. As such, it is perhaps not surprising that Double
Decision performance is associated with a broad array of cortical
regions in the current study. These unique findings elucidate
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FIGURE 4 | Decreased cortical thickness related to POSIT Double Decision scores for: I. education and scanner covariates only, II. sex and scanner covariates only
and III. scanner covariate only. (row a) left and right hemisphere lateral views, respectively. (row b) left and right hemisphere medial views, respectively. (row c) anterior
and posterior views, respectively. (row d) superior and inferior views, respectively. P- posterior, A- anterior, L- left, R- right.

the structural neural correlates of Double Decision performance
within a voxel-wise analysis. Hereafter, we describe the potential
roles and implications of major structural findings from the
current study.

Right Lateralization of Findings
While prior functional studies of the UFOV/Double Decision
paradigm found bilateral activation associated with performance,
our findings demonstrate right lateralization of structures
associated with performance (Ross et al., 2018). This pattern of
findings is consistent with other cognitive domains within the
context of aging. For example, prior work on age-related working
memory decline demonstrates a pattern of right lateralized
frontal structural contributions to performance (Nissim et al.,
2019), whereas working memory performance in younger
adults typically demonstrates bilateral patterns of activation in
functional paradigms (e.g., Cabeza, 2002). Similar patterns have
also been demonstrated in sustained attention (Mitko et al.,
2019). These collective data may suggest that right hemisphere
brain structures in the context of their role in these cognitive
domains are particularly vulnerable to change with age. However,
longitudinal studies of right hemisphere atrophy and change
in performance on Double Decision, working memory and
other domains (e.g., sustained attention) evidencing differential
patterns of structural vs. functional involvement are needed
to elucidate the validity of this hypothesis. Regardless, our
data suggest that right lateralized structures are associated with
differences in Double Decision performance in older adults.
The subsequent discussion addresses our predominately right
hemisphere findings.

Right Frontal Lobe
Decreased cortical thickness in the lateral orbitofrontal gyrus
was associated with poorer Double Decision scores. Studies have
suggested that the lateral orbitofrontal gyrus, also known as
the ventromedial prefrontal cortex is particularly important for
error processing within cognitive tasks, and perturbations in this
area are related to reduced inhibitory control (Krämer et al.,
2013). Recent fMRI paradigms have shown activation in the
lateral orbitofrontal cortex during tasks of spatial recognition
and presentation of novel visual stimuli, suggesting that this
area is especially sensitive to visual recognition and learning
tasks (Rolls et al., 2005; Nee and D’Esposito, 2016). Numerous
studies have also found that substantial connections exist between
the lateral orbitofrontal gyrus and the inferior temporal gyrus,
which are commonly implicated in visual and object recognition
(Rolls et al., 2005; Rolls and Grabenhorst, 2008). Visual and
object recognition is critical in Double Decision performance, as
successful performance is mediated by recognition of both the
central target and the location of the peripheral target. As such,
the role of the orbitofrontal cortex is likely essential in Double
Decision performance.

The precentral gyrus is responsible for motor execution and
coordination and contains the supplementary motor area (SMA).
Numerous fMRI paradigms have shown that this area is activated
during motor tasks, and this region is engaged in anticipation
of completing motor tasks (Sharma and Baron, 2014; Bazán
et al., 2015). Studies have shown that not only was the precentral
gyrus activated during a motor task and motor imagery tasks,
significant BOLD activation was demonstrated in preparation
for a motor tasks and in reaction time maintenance of a task
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FIGURE 5 | Decreased cortical thickness related to POSIT Double Decision
scores, covarying age, sex, education and scanner. (a) left and right
hemisphere lateral views, respectively. (b) left and right hemisphere medial
views, respectively. (c) anterior and posterior views, respectively. (d) superior
and inferior views, respectively. P- posterior, A- anterior, L- left, R- right.

(Berman et al., 2012). Additionally, within the most anterior
portions of the precentral gyri lie the frontal eye fields, an area
essential for visual attention and target tracking (Yeo et al., 2011).
This region is highly interconnected with the inferior parietal
lobule (IPL), a region that was also implicated in the current study
(Dosenbach et al., 2007). Notably, decreased cortical thickness
findings in the present study in relation to Double Decision scores
encompassed 13% of the total precentral gyrus. Given the rapid
presentation of stimuli within the Double Decision task, reduced
precentral cortical thickness may suggest a slowing of response
and decreased visual attention associated with poorer Double
Decision performance.

FIGURE 6 | Decreased cortical thickness related to POSIT Double Decision
scores using Monte Carlo simulations, set at 10,000 iterations and a
cluster-wise threshold p = 0.05. (a) left and right hemisphere lateral views,
respectively. (b) left and right hemisphere medial views, respectively. (c)
anterior and posterior views, respectively. (d) superior and inferior views,
respectively. P- posterior, A- anterior, L- left, R- right.

TABLE 2 | Group specific demographics.

Group 1
(n = 93)

Group 2
(n = 93)

Combined
(n = 186)

Age mean (SD), 72.28 (5.27) 71.05 (5.34) 71.70 (5.32)

Education mean (SD) 16.02 (2.48) 16.24 (2.29) 16.13 (2.39)

Sex, female 55 58 113

Scanner location, UF 66 63 129

UFOV performance 2.92 (0.32) 2.96 (0.29) 2.94 (0.30)

Right Temporal Lobe
Significant portions of the right temporal lobe were also
associated with Double Decision performance. Specifically,
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FIGURE 7 | Random group assignment cortical thickness findings (n = 93 for each group; total n = 186). Significant clusters set at p > 0.01. (a) left and right
hemisphere lateral views, respectively. (b) left and right hemisphere medial views, respectively. (c) anterior and posterior views, respectively. (d) superior and inferior
views, respectively. P- posterior, A- anterior, L- left, R- right.

cortical thinning of the right superior, inferior, and transverse
temporal gyri was significantly associated with poorer Double
Decision performance. The superior temporal gyrus is a large
region containing the transverse temporal gyrus (also known as
the primary auditory cortex) and Wernicke’s area (BA 22), the
latter of which is responsible for sound perception and language
comprehension (Woods et al., 2009). Significant findings in this
region may be explained by the presentation of unique sounds
for correct and incorrect trials within the Double Decision task.
Additionally, recent fMRI research has found that the superior
temporal gyrus is also activated during novel problem solving and
insight, which are important for Double Decision performance
(Tian et al., 2017; Lin et al., 2018). Indeed, prior research
has suggested that decreased cortical thickness in the superior
temporal gyrus is related to poorer performance in a number of
cognitive domains, including attention and speed of processing
(Achiron et al., 2012).

Cortical thinning was also observed in the right transverse
temporal gyrus in relation to poorer Double Decision scores. This
small region contains the primary auditory cortex (BA 41 and 42)
and is responsible for auditory information processing. fMRI data
has demonstrated that this area is activated during tasks of error
recognition, specifically when participants are presented with
unique sounds during correct and incorrect responses, which
occurs in the Double Decision task (van Atteveldt et al., 2009;
Weis et al., 2013; Linke and Cusack, 2015). This feature may
account for cortical thinning associations specifically within the
transverse temporal gyrus to Double Decision performance.

Cortical thinning within the inferior temporal gyrus was
associated with poorer Double Decision performance in the
present study. This region is within the ventral stream of
visual processing, allowing for recognition of objects in our
field of view, pattern recognition and spatial awareness (Ishai
et al., 1999; Herath et al., 2001). These visual processes appear
to contribute to better performance on the Double Decision
task. Performance on the Double Decision task is dependent
on differentiating the Route 66 sign from distractors and
differentiating the central targets (a truck or a car) through slight
differences in pattern and shape. Performance is also mediated
by quick visual attention to areas in the periphery. Studies
using intracerebral recordings demonstrated that neurons within
inferior temporal gyrus were selectively activated during visual
tasks and during recall of stimuli (Hamamé et al., 2012).
The decreased cortical thickness findings in the present study
establish the contribution of the inferior temporal gyrus in
Double Decision tasks.

The right insula, including 25.76% of this region,
demonstrated cortical thinning in relation to poorer Double
Decision task performance. The insula is involved with numerous
cognitive functions. Specifically, fMRI studies have shown that
insula activation is involved in error processing (Menon et al.,
2001; Cracco et al., 2016). The Double Decision task provides
feedback on each trial for accuracy of both the central target
and location of the peripheral target. Such feedback directs
participants’ attention and may enhance participants’ strategies
for successfully completing the task. Indeed, several studies
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have shown that the anterior insula is a hub for the cingulo-
opercular network (CON), also known as the ventral attention
network, which has been implicated in target detection, rule
maintenance and error processing (Corbetta et al., 2000; Fox
et al., 2006). In fact, the area of right insula implicated in the
current study demonstrates 67.21% overlap with the defined
anterior insula hub of the CON network, further supporting
a potential involvement of CON in the Double Decision task
(Yeo et al., 2011). The relationship between CON and Double
Decision performance deserves future research to elucidate
their relationship.

Significant cortical thinning in the right fusiform gyrus
was associated with poorer Double Decision performance,
representing 21.50% of the fusiform gyrus. Studies have shown
that the fusiform gyrus plays a large role in processing color
and resolution information within visual integration tasks
(Dosenbach et al., 2007; Wang et al., 2013; Sokolov et al., 2018).
Multimodal imaging research by Dosenbach et al. (2007) has
demonstrated that the fusiform gyrus, along with a number
of different regions, including the inferior parietal lobule,
precuneus, frontal cortex were highly functionally connected,
comprising the fronto-parietal control network (FPCN). Indeed,
a considerable number of regions commonly associated with the
FPCN network also demonstrated significant decreased cortical
thickness associated with poorer Double Decision performance
in the current study.

Our findings also include significant right hemisphere
cortical thinning in the parahippocampal gyrus in relation to
Double Decision scores. Notably, decreased cortical thickness
encompassed 37.66% of the entire parahippocampal gyrus, more
than any other ROI. The parahippocampal gyrus has been widely
shown to be involved with memory encoding and retrieval
(Takahashi et al., 2002; Xu et al., 2019). The parahippocampal
place area (PPA) region of the parahippocampal gyrus is
responsible for memory and encoding of visual features during
presentation of a spatial task, which are heavily utilized
in the Double Decision tasks. Emerging literature suggests
that impairments within the parahippocampal place area
are associated with markedly poorer spatial recognition and
performance (Dundon et al., 2018; Murias et al., 2019).

The temporal pole is the most anterior cortical area in the
temporal lobe and although less is known about this area,
research has shown that this area communicates extensively
with the amygdala (Li et al., 2016). Studies to date have shown
that the temporal pole is implicated in encoding and retrieving
unique auditory and visual stimuli (Waldron et al., 2015). Our
significant findings within the right temporal pole is most likely
associated with its role in brief memory retrieval of unique
auditory and visual stimuli.

Right Parietal Lobe
The superior parietal lobule is a cortical region that is strongly
implicated in spatial orientation, visual search efficiency, and
mental rotation tasks (Gogos et al., 2010; Bueichekú et al.,
2015). Specifically, the right superior lobule has been shown to
be involved in visual contextual processing and topographical
representation of visual scenes (Lester and Dassonville, 2014).

Successful performance on the Double Decision task depends
on rapid processing of both a central and peripheral target.
Visual contextual processing and topographical representation
of visual scenes are thus strongly and directly related to Double
Decision performance.

The inferior parietal lobule (IPL), containing the
temporoparietal junction is likewise associated with spatial
orientation and visual target search. The IPL has been implicated
in the fronto-parietal control network (FPCN), responsible
for attention and control related to cue-related feedback and
stimuli (Dosenbach et al., 2007). Successful Double Decision
performance is dependent on the ability to attend to brief
presentation of complex visual stimuli and to adapt search
strategies based on feedback. As such, the nodes of the FPCN
network in particular appear to be heavily implicated in
the current study, as significant degradations in the inferior
parietal lobule were associated with poorer Double Decision
performance. Decreased cortical thickness within the IPL in
the present study corroborate previous research on UFOV
performance and cortical thickness declines in an ROI-based
analysis (Schmidt et al., 2016).

Right Occipital Lobe
The lateral occipital gyrus, or lateral occipital complex,
is centrally linked to vision, and is particularly activated
during fMRI tasks of object recognition (Grill-Spector et al.,
2001). Interestingly, it is strongly activated during viewing
of objects, rather than textures or faces, and appears to
be preferentially activated in viewing familiar objects, rather
than novel objects (Grill-Spector et al., 2001). This area was
strongly implicated in the current study, with cortical thickness
declines comprising 31.96% of the entire lateral occipital
gyrus. Given the short duration of stimuli (on the order of
milliseconds), this preferential activation in the lateral occipital
gyrus for viewing familiar objects may aid in processing speed
performance. Notably, this cortical area has numerous feed-
forward projections spanning to higher cortical areas, such as
the orbitofrontal cortex, and is associated with object recognition
tasks (Grill-Spector et al., 2001; Kravitz et al., 2014). Both the
lateral occipital gyrus and lateral orbitofrontal cortex are both
implicated in the present study and are likely due to the object
recognition aspect of the Double Decision task.

The lingual gyrus is heavily involved in vision, particularly in
perception, encoding and recognition of visual targets and their
orientation in space (Gayet et al., 2017). Recent fMRI research
has also suggested this area is associated with complex cognitive
tasks, such as tasks measuring working memory involving visual
stimuli and inhibition of motor response of visual distractors
(Gayet et al., 2017; Zhang et al., 2016). As such, the association
between cortical thinning in this area and poorer Double
Decision performance may be attributed to the visual nature of
the task.

Potential Implications of Results
Comparison to Other Speed of Processing Studies
Looking at a broader range of speed of processing tasks,
decreased cortical volume (comprised of both cortical surface
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area and thickness) within the bilateral precentral gyrus, bilateral
inferior frontal gyrus, left superior frontal gyrus, superior
parietal regions and middle frontal gyrus was associated with
poorer speed of processing performance in prior studies (Chee
et al., 2009; Hong et al., 2015). The present study found
several related findings including the right precentral gyrus
and right superior parietal lobule but failed to replicate this
finding in the left precentral gyrus, bilateral inferior frontal
gyrus, left superior frontal gyrus and middle frontal gyrus.
Additionally, several studies to date have suggested that cortical
volume within hippocampal regions are especially influential in
speed of processing performance, accounting for a significant
variance in speed of processing scores (Papp et al., 2014;
O’Shea et al., 2016; Tsapanou et al., 2019). The current
study supports these findings. We observed significant cortical
thinning in over a third of the parahippocampal gyrus in
relation to Double Decision scores, suggesting the hippocampus
and parahippocampal gyrus may be important in speed of
processing performance. Future research should continue to
assess patterns of cortical volumetric decline in a variety of speed
of processing paradigms.

Comparison to Prior Findings in the UFOV/Double
Decision Task
In a prior study, eight ROIs were implicated in a task-based
UFOV fMRI task: anterior cingulate cortex, anterior insula,
DLPFC, inferior parietal lobule, supplementary motor area
(SMA), and thalamus. Specifically, these regions were activated
when performing the UFOV task, and activation in these ROIs
were reduced following a UFOV intervention (Ross et al.,
2018). Notably, we found significant cortical thickness declines
in a number of these regions associated with poorer Double
Decision performance, including the anterior insula (AI), inferior
parietal lobule, temporoparietal junction (within the IPL) and
visual cortex.

Only one study to date has looked at the structural neural
correlates of the UFOV task. Schmidt and colleagues found
that poorer UFOV performance was associated with decreased
cortical thickness in nodes associated with the frontoparietal
control network (FPCN), specifically the intraparietal sulcus,
frontal cortex, portions of the precentral gyrus, precuneus,
midcingulate, inferior parietal lobule and dorsolateral prefrontal
cortex. In the present study, we found significant cortical
thickness in the right inferior parietal lobule and right
precentral gyrus.

Although the Double Decision task employs additional
components of visual search and distractors not found in the
UFOV task used by Ross, Schmidt and colleagues, this overlap
may suggest that cortical thickness declines in these ROIs
may be mediating Double Decision performance. Furthermore,
these cortical thickness declines may influence BOLD activation
patterns in an in-scanner UFOV task. Further examining
associations between structural neural correlates, BOLD fMRI,
and functional connectivity networks may elucidate neural
underpinning of this task and modifying cognitive interventions
utilizing the Double Decision task.

Potential Involvement of the
Cingulo-Opercular Network (CON) and
Fronto-Parietal Control Network (FPCN)
The present study found that cortical thickness was associated
with Double Decision scores in a wide array of right
hemisphere ROIs, including the fusiform gyrus, lingual gyrus,
parahippocampal gyrus, insula, superior, transverse, and inferior
temporal gyrus, temporal pole, precentral gyrus, inferior parietal
lobule, lateral orbitofrontal gyrus and lateral occipital gyrus.
Perhaps not surprisingly, the significant ROIs in the current study
correspond to attention networks in the brain, specifically the
cingulo-opercular network (CON) and fronto-parietal control
network (FPCN) (Yeo et al., 2011).

The cingulo-opercular network (CON) is a predominately
right lateralized network, comprised of the right orbitofrontal
cortex, anterior insula (AI) and right temporoparietal junction
(contained within the right inferior parietal lobule) (Fox et al.,
2006). This network is heavily implicated in target detection
and task maintenance, and regions within this network are
activated when salient targets unexpectedly appear (Corbetta
et al., 2000; Fox et al., 2006). Persistent CON activation
is also associated with attention, error processing, and rule
maintenance, all of which are implicated in the Double
Decision task (Dosenbach et al., 2007). Indeed, the role of
regions within the CON network in the present study is
supported by work from Ross et al., who assessed functional
connectivity between numerous ROIs following a UFOV
cognitive training intervention (Ross et al., 2018). Of these
ROIs, the orbitofrontal cortex and AI demonstrated strengthened
functional connectivity and demonstrated increased BOLD
activation with better UFOV performance (Ross et al., 2018).
Additionally, cortical thickness declines in these regions
were significantly associated with poorer Double Decision
performance in the present study.

The fronto-parietal control network (FPCN) is a functional
connectivity network, comprised of the inferior parietal
lobule, inferior parietal sulcus, precuneus and frontal cortex
(Dosenbach et al., 2007). This network is responsible for
active attention processes, such as information integration
and flexibility in cognitive processes (Dosenbach et al., 2007).
Furthermore, the decreased cortical thickness findings within
the current study are consistent with previous research
investigating cortical thickness and UFOV performance in
an ROI based analysis (Schmidt et al., 2016). Specifically,
Schmidt and colleagues found significant cortical thickness
declines in ROIs within the FPCN, such as the inferior
parietal lobule, frontal cortex, and intraparietal sulci (Schmidt
et al., 2016). This converging evidence may highlight the
potential contribution of the FPCN in UFOV and Double
Decision performance.

Limitations and Future Directions
The present study assessed cortical thickness within older
adults aged 65–88 years. However, this age range is relatively
restricted, and may not generalize to a larger age range of
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adults. The present study also investigated associations between
the Double Decision task and cortical thickness in healthy
older adults. Thus, the current study is unable to assess
how these cortical regions are affected in neurodegenerative
disorders in relation to speed of processing tasks. Future
work should expand into a broader population to assess
how disparities in cortical thickness may be influenced
by age or neurodegenerative disease state and Double
Decision performance.

This study found significant, widespread cortical thickness
declines in relation to poorer Double Decision scores, but
not cortical surface area. Although cortical thickness and
cortical surface area together comprise overall cortical volume,
these two components have distinct cellular organizations and
implications in aging (Hartberg et al., 2011; Storsve et al.,
2014). Cortical surface area is thought to be a proxy of
structural integrity and complexity of gray matter and declines
gradually throughout the lifespan (Lemaitre et al., 2012). Cortical
thickness, on the other hand, is a measure of neuronal density
within a particular region of the brain, and significant cortical
thickness declines occur primarily within neurodegenerative
diseases states (Dickstein et al., 2007). In contrast, gradual
cortical thickness declines seen within healthy aging are likely
due to decreased dendritic arborization, shortened dendritic
spines and shrinkage of neurons, rather than widescale neuronal
death (Fjell et al., 2009; Fjell and Walhovd, 2010). However,
alterations in both cortical thickness and cortical surface area
have been separately shown to correlate with cognitive declines
(Hartberg et al., 2011; Lemaitre et al., 2012; Nissim et al.,
2017). Indeed, another studies assessing UFOV performance
have demonstrated decreased cortical thickness in many of the
same regions as the current study (Schmidt et al., 2016). It
may be possible that the characteristics of decreased cortical
thickness, such as decreased dendritic arborization or shortened
dendritic spines, mediate performance on speed of processing
tasks, including the Double Decision task. Additionally, the
cross-sectional nature of this study does not allow us to evaluate
how longitudinal alteration in cortical thickness are associated
with changes in Double Decision performance throughout the
aging process. As this is one of the first studies assessing
structural neural correlates of UFOV or Double Decision
performance, longitudinal studies are needed to further elucidate
the impact of cortical thickness changes on Double Decision
performance.

The present study focused on cortical alterations in thickness
and surface area related to Double Decision performance.
Although we were able to establish the relative percent of
individual ROIs encompassed within the significant clusters,
this does not necessarily correlate to its relative contributions
to task performance. For instance, although the percent of
decreased cortical thickness in relation to Double Decision was
greater in the right insula (25.75% of total ROI) than in the
right inferior temporal gyrus (4.48% of total ROI), we cannot
say that cortical thickness declines in the insula contribute
more to Double Decision scores than the inferior temporal
gyrus. It may be that the small portion of the right inferior
temporal gyrus provides more significant contributions to

Double Decision scores, however, this cannot be elucidated from
the current study. Nevertheless, assessment of ROI overlap within
significant clusters allows us to focally determine areas within
large cortical regions that are associated with Double Decision
performance. Additionally, although these areas are related to
Double Decision performance, we cannot assess which of these
significant findings are functionally activated during Double
Decision performance in the present study. Future studies should
include the use of multi-modal imaging techniques, such as
task-based fMRI and resting-state functional connectivity, to
assess both the structural and functional neural correlates of the
Double Decision task.

CONCLUSION

This study provides unique insights into the structural neural
correlates of the Double Decision task. Notably, we found
that decreased cortical thickness in the right hemisphere
is associated with poorer Double Decision performance
within several areas across the cortex, including the lateral
orbitofrontal gyrus, precentral gyrus, superior, transverse
and inferior temporal gyrus, superior and inferior parietal
lobule, the lateral occipital gyrus and the lingual gyrus.
Given this task’s wide success in an extensive array of
cognitive training programs, this study emphasizes unique
cortical regions of the Double Decision task using a focal
vertex-wise approach, potentially allowing for more targeted
cognitive interventions (e.g., transcranial direct current
stimulation) to improve speed of processing performance
through enhanced neuroplasticity.
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