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Post-stroke cognitive impairment (PSCI) is a common neuropsychiatric complication
of stroke. Mounting evidence has demonstrated a connection between gut microbiota
(GM) and neuropsychiatric disease. Our previous study revealed the changes in the
GM in a mouse model of vascular dementia. However, the characteristic GM of PSCI
remains unclear. This study aimed to characterize the GM of PSCI and explored the
potential of GM as PSCI biomarkers. A total of 93 patients with ischemic stroke
were enrolled in this study. The patients were divided into two groups according to
their MoCA scores 3 months after stroke onset. Clinical data and biological variables
were recorded. GM composition was analyzed using 16S ribosomal RNA sequencing,
and the characteristic GM was identified by linear discriminant analysis Effect Size
(Lefse). Our results showed that Proteobacteria was highly increased in the PSCI
group compared with the post-stroke non-cognitive impairment (PSNCI) group, the
similar alterations were also observed at the class, order, family, and genus levels of
Proteobacteria. After age adjustments, the abundance of Firmicutes, and its members,
including Clostridia, Clostridiales, Lachnospiraceae, and Lachnospiraceae_other, were
significantly decreased in the age-matched PSCI group compared with the PSNCI
group. Besides, the GM was closely associated with MoCA scores and the risk
factors for PSCI, including higher baseline National Institute of Health Stroke Scale
score, higher homocysteine (Hcy) level, higher prevalence of stroke recurrence,
leukoaraiosis, and brain atrophy. The KEGG results showed the enriched module
for folding, sorting and degradation (chaperones and folding catalysts) and the
decreased modules related to metabolisms of cofactors and vitamins, amino acid,
and lipid in PSCI patients. A significant correlation was observed between PSCI and
the abundance of Enterobacteriaceae after adjustments (P = 0.035). Moreover, the
receiver operating characteristic (ROC) models based on the characteristic GM and
Enterobacteriaceae could distinguish PSCI patients from PSNCI patients [area under
the curve (AUC) = 0.840, 0.629, respectively]. Our findings demonstrated that the
characteristic GM, especially Enterobacteriaceae, might have the ability to predict PSCI
in post-stroke patients, which are expected to be used as clinical biomarkers of PSCI.
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INTRODUCTION

Ischemic stroke is a major risk factor for cognitive impairment
(Vijayan and Reddy, 2016b). The occurrence of cognitive
impairment after stroke may be the result of vascular cognitive
impairment or Alzheimer’s disease (AD) promoted by stroke,
or both (Sun et al., 2014). Zekry et al. (2003) revealed that the
infarcts in strategic regions are critical for the pathogenesis of
cognitive impairment after stroke. Besides, stroke and cognitive
impairment also share similar risk factors such as hypertension
and diabetes mellitus, which contribute to cognitive impairment
after stroke (Sun et al., 2014). Therefore, ischemic stroke is closely
correlated with cognitive impairment. Post-stroke cognitive
impairment (PSCI) is a common complication of stroke. In
China, the prevalence of cognitive impairment 3 months after
stroke ranges from 18 to 41.8% (Tang et al., 2006; Tu et al.,
2014). PSCI is associated with poor clinical outcomes such as
increased hospitalization, disability, and burden of care (Crichton
et al., 2016), and functional impairment is more significant in
stroke survivors with cognitive impairment. Previous studies
have focused on the demographic, psychological, and biological
variables influencing PSCI (Arba et al., 2017; Levine et al.,
2018). However, the pathogenesis of PSCI remains unclear.
Given that there is a prodromal period after stroke onset of
3 months or more before the development of PSCI (Ballard
et al., 2003), it is of considerable significance to identify useful
PSCI biomarkers.

Gut microbiota (GM) dysbiosis in neuropsychiatric disorders
has been observed in human and animal studies. Recent studies
showed that fecal microbial diversity and composition were
significantly different between AD patients and healthy controls
(Zhuang et al., 2018). The GM of AD patients was characterized
by a higher abundance of bacteria inducing proinflammatory
states, and a lower abundance of bacteria able to synthesize short-
chain fatty acids (SCFAs) (Haran et al., 2019). The animal study
confirmed the altered GM in a mouse model of AD, which
was characterized by increased abundances of Verrucomicrobia
and Proteobacteria, and decreased levels of Ruminococcus and
Butyricicoccus (Zhang et al., 2017). Moreover, our previous
study demonstrated that fecal microbiota transplantation could
reduce AD symptoms in the APP/PS1 mouse model (Sun
et al., 2019). Besides, patients with schizophrenia exhibited
decreased GM diversity and microbial dysbiosis (Xu et al.,
2019b), and transplantation of gut bacteria from schizophrenic
patients into antibiotic-treated mice caused schizophrenia-like
abnormal behaviors (Zhu et al., 2019). Increased abundances
of opportunistic pathogens and decreased levels of butyrate-
producing bacteria were identified as hallmarks of post-stroke
GM dysbiosis (Yin et al., 2015). Animal studies indicated that
the GM dysbiosis exacerbated the outcome of stroke, while
transplantation of fecal microbiota or normalization of GM
dysbiosis by antibiotics improved the outcome (Singh et al., 2016;
Chen et al., 2019). Moreover, increasing evidence indicated the
close correlation between the GM and cognitive impairment in
different diseases (Bajaj et al., 2012; Carlson et al., 2018; Gao et al.,
2019; Liu et al., 2019). However, the gut microbial characteristics
in PSCI patients remain unclear.

Many studies used animal models to investigate the role
of GM in the brain function, such as germ-free mice, and
animal models treated with probiotics. For example, the germ-
free mice showed impaired social behaviors (Diaz Heijtz et al.,
2011; Neufeld et al., 2011), and structural alterations in the
amygdala and prefrontal cortical (Stilling et al., 2015; Hoban
et al., 2016). The previous study of germ-free animals had
indicated that GM regulated neurogenesis, which modulated
learning and memory (Ogbonnaya et al., 2015). Administration
of probiotics to healthy rats and mice showed the alleviation
of anxiety-like and depression-like behaviors (Dinan et al.,
2013). Moreover, oral treatment with SCFAs could alleviate the
impaired microglial function in germ-free animals, according to
the previous study (Erny et al., 2015). Besides, fecal microbiota
transplantation could transfer behavioral phenotypes (Collins
et al., 2013). However, these studies were based on animal models,
whether these findings of animal studies could be generalized
to humans remained unclear. Therefore, there is a need to
elucidate the relationship between GM and neuropsychiatric
diseases in human studies.

In the present study, we aimed to investigate the GM
composition in PSCI patients and GM’s association with MoCA
scores and risk factors for PSCI. Besides, we further confirmed
the characteristic GM of PSCI and its potential as a biomarker for
the diagnosis of PSCI.

MATERIALS AND METHODS

Study Patients
Ischemic stroke patients diagnosed and treated in the Second
Affiliated Hospital and Yuying Children’s Hospital of Wenzhou
Medical University from January to April 2019 were enrolled.
The inclusion criteria were as follows: patients aged 40–90
years, ischemic stroke, with infarcts in non-strategic brain
regions (including the subcortex, brain stem, and cerebellum).
Exclusion criteria included the following: pre-existing dementia
history, infarct of strategic regions (hippocampus, thalamus,
frontal lobe, cingulate gyrus, angular gyrus, internal capsule,
caudate nucleus), recent (within 3 months) use of antibiotics
or probiotics, restrictive diet, gastrointestinal surgery, recent
infection, psychosis such as schizophrenia or bipolar disease,
severe life-threatening illnesses, communication deficits, and
pregnancy. The Ethics Committee of the Second Affiliated
Hospital of Wenzhou Medical University approved the study
protocol, and all patients gave written informed consent.

Neuropsychological Assessment
Patients were assessed by the Montreal Cognitive Assessment
(MoCA) 3 months after stroke onset. The MoCA, characterized
by excellent specificity and sensitivity (Zietemann et al., 2018), is
currently the most widely used tool to assess cognitive function,
and includes visuospatial/executive function, naming, attention,
abstraction, language, delayed recall, and orientation. We used
the score of the Informant Questionnaire on Cognitive Decline
in the Elderly (cut-off value > 4.0) to exclude pre-existing
dementia. Patients were identified as PSCI as follows: MoCA
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score < 26 points for patients with junior school education level
or above, MoCA score < 21 points for patients with primary
school education level, and MoCA score < 15 points for illiterate
patients. The remaining patients were identified as post-stroke
non-cognitive impairment (PSNCI).

Clinical Data Collection
We collected the demographic information, including sex, age,
divorce rate, and educational level, physical activity, sleep
deprivation, smoking and alcohol status, previous history of
stroke, and dietary habit of each patient from an interview,
and the height and weight of each patient were obtained to
calculate the body mass index (BMI). We determined whether
the patients had hypertension, diabetes mellitus, dyslipidemia,
and atrial fibrillation by inquiring about the history of previous
diseases and measuring patients’ blood pressure, blood glucose,
blood lipid, and electrocardiogram, respectively. In addition,
patients were examined by brain magnetic resonance imaging
(MRI) scans to determine whether there was leukoaraiosis (LA)
and brain atrophy, which was performed on a 1.5-T scanner
(GE Discovery750, Milwaukee, United States) using standard
protocols. We measured serum Hcy level (µmol/L) in each
patient using standard enzymatic methods (A15 Random Access
Analyzer, Biosystems, Spain). The professional neurologist
assessed the National Institute of Health Stroke Scale (NIHSS)
score and MoCA score of each patient.

Sample Collection and Processing
All patients provided fresh stool within 1 week of admission. Stool
samples were collected using the MiSeq Reagent kit (PE300 v3)
and immediately transferred to the laboratory for repackaging
within 15 min. The 200 mg feces samples were placed into a
2 ml sterile centrifuge tube and divided into three parts and
labeled, respectively. All specimens were processed within 30
min after collection, and the samples were stored at −80◦C.
Fecal genomic DNA was extracted from stool samples using a
DNA extraction kit (TIANGEN, TIANamp, China), according to
the manufacturer’s methods, as described in previous studies (Li
et al., 2008; Shkoporov et al., 2018). The fecal samples were lysed
in lysis buffer, and we put VAHTS DNA Clean Beads in it, then
homogenizing for 3–5 min in a vortex mixer (Qilinbeier Vortex-
5), purified with 200 µl 80% ethanol, and eluted with 24 µl
of elution buffer. The quantity of extracted genomic DNA was
evaluated by 2% agarose gel, and DNA purity and concentration
were determined by NanoDrop spectrophotometer (Thermo
Fisher Scientific, United States). A260/A280 ratios were also
measured to confirm the high-purity of the DNA yield. Then we
stored the extracted DNA at−20◦C.

The DNA extraction was followed by the amplification of
the V3–V4 16S ribosomal RNA gene region, with the forward
primer (5′-CCTACGGGNGGCWGCAG-3′) and the reverse
primer (5′-GACTACHVGGGTATCTAATCC-3′), as described in
the previous study (Bu et al., 2018). The PCR process was as
follows: denaturation at 95◦C for 30 s, annealing at 55◦C for 30 s,
extension at 72◦C for 45 s, 25 cycles, and a final extension at 72◦C
for 5 min. Reaction system: 2 × Phanta Max Master Mix 25 µl,
DNA template 5 µl, Nextera XT Index Primer 1 2 µl, Nextera XT

Index Primer 2 2 µl, ddH2O 16 µl. PCR products were validated
in a 2% agarose gel for single bands and expected sizes.

Sequence Processing and Analysis
The DNA libraries were pooled and sequenced on a MiSeq
Benchtop Sequencer (Illumina, Singapore, United States). For
quality control, the reads without primers were discarded using
cutadapt, version 1.11, and the chimeric reads removed. The
processed pair-end reads were merged using PandaSeq, version
2.9, with default parameters, to generate representative complete
nucleotide sequences. The overlapping areas of the paired-end
reads were processed first, and low-quality reads (average Q < 20)
and those containing ambiguous bases denoted by Ns were
deleted. Vsearch was used to cluster high-quality sequences with
a similarity cut-off of 0.97. We selected the sequences with
the highest abundance in each class as the representative. The
representative sequences were annotated (down to the genus)
using the RDP classifier, version 2.12 (Whelan and Surette,
2017), and sequences which could not be assigned to any specific
classification level were labeled as “unclassified.” QIIME was used
to remove the Operational Taxonomy Units (OTUs) with only
one sequence in all samples.

Bioinformatics and Data Analysis
Bacterial diversity was determined by α-diversity (Shannon’s
index and Simpson index) and β-diversity (Principal coordinates
analysis, PCoA). The α-diversity indices were analyzed using
the R software. A Mann-Whitney U-test or Kruskal Wallis
H was performed to compare the α-diversity of groups.
The β-diversity comparison was performed by analysis of
similarities using the Bray-Curtis dissimilarity index. Significant
P-values associated with microbial clades and functions were
identified by linear discriminant analysis Effect Size (Lefse)
(Qian et al., 2018). The Lefse analysis used the Kruskal-Wallis
test (alpha value of 0.05) and a linear discriminant analysis
score > 2 as thresholds. We used Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States
(PICRUSt) to predict gene contents and metagenomic functional
information according to the OTU table (Langille et al., 2013).
We used the receiver operating characteristic (ROC) curves and
the area under the curve (AUC) to verify the specificity and
sensitivity of the characteristic GM in diagnosing PSCI, and
investigate whether the characteristic GM could be regarded a
biomarker for PSCI.

Statistical Analysis
Statistical analysis was carried out using GraphPad Prism V.5.0.1
(La Jolla, CA, United States), the R software (V.3.5), Adobe
Illustrator CC 2015 (Adobe Systems Incorporated, California,
America), and SPSS, V.22 (SPSS, Chicago, United States).
Categorical variables were presented as numbers and percentages
and compared by chi-squared test. Continuous variables were
described as mean and standard deviation or median and
interquartile range, depending on the outcome of a Kolmogorov-
Smirnov normality test, and compared by Student’s t-test
or Mann-Whitney test, respectively. Mann-Whitney test was
used to determine the significance of the difference between
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PSCI and PSNCI groups (i.e., PSCI vs. PSNCI; age-matched
PSCI vs. PSNCI). We used multivariable logistic regression
to determine the risk factors for PSCI and the representative
microbiota associated with PSCI after adjustments for age
and the risk factors. The probability cut-offs to enter or
remove a variable were 0.05 and 0.1, respectively. Spearman
rank correlation was used to analyze GM’s correlation with
MoCA scores and the risk factors for PSCI. We further
selected 29 PSCI patients as a subgroup of younger PSCI with
average age similar to the PSNCI group. Randomization was
stratified by age.

RESULTS

Baseline Characteristics of the Recruited
Patients
At first, a total of 135 stroke patients were enrolled, 14
patients were excluded due to unwillingness to participate in
all the study procedures, eight patients were excluded due
to missing data, and 20 patients were excluded according
to the exclusion criteria, leaving 93 patients that could be
analyzed (Figure 1). The patients’ demographic information
and MoCA scores in the two groups (53 and 40 patients in
the PSCI and PSNCI group, respectively) are summarized in
Table 1. There were significant differences in terms of age,
NIHSS and MoCA scores, stroke recurrence (not the first
stroke), Hcy, LA, and brain atrophy between the two groups
(P = 0.006, 0.001, < 0.001, < 0.001, < 0.001, < 0.001, < 0.001,
respectively). After age-matched, the NIHSS and MoCA scores,
stroke recurrence, Hcy, LA, and brain atrophy still exhibited the
significant differences between the two groups (Supplementary
Table S1). However, no significant difference was found in sex,
divorce rate, education level, physical activity, sleep deprivation,
diabetes mellitus, hypertension, dyslipidemia, atrial fibrillation,
BMI, current smoking and alcohol status, and dietary risks
between the two groups.

The comparisons of the sub-items of the MoCA score between
the two groups were shown in Table 1. PSCI patients had
lower scores in all sub-items, including visuospatial/executive
function, naming, attention, language, abstraction, delayed recall,
and orientation (all P < 0.005).

Multivariable Logistic Regression
Analysis of the Risk Factors for PSCI
Multivariable logistic regression was used to evaluate which
variables could represent risk factors for PSCI. PSCI was
independently associated with higher baseline NIHSS score [OR
1.553, 95% confidence interval (CI) 1.014–2.379, P = 0.043],
higher Hcy level (OR 1.219, 95% CI 1.013–1.466, P = 0.036),
higher prevalence of stroke recurrence (OR 4.042, 95% CI
1.293–12.634, P = 0.016), brain atrophy (OR 3.663, 95% CI
1.181–11.359, P = 0.025), and higher proportion of LA (OR
8.780, 95% CI 1.210–63.729, P = 0.032) after adjustment for
age (Table 2).

Alterations of GM Composition in PSCI
Patients
Analysis of the 16S ribosomal RNA sequencing gave a total of
197,660 OTUs, classified into 14 phyla, 28 classes, 50 orders,
97 families, and 243 genera. As shown in Supplementary
Figure S1C, although no significant difference in gut bacterial
communities between the PSCI and PSNCI groups was evident
from the PCoA scatterplot, the relative abundances of some
gut microbial taxa were significantly different between the
two groups. At the phylum level, patients with PSCI had a
significantly higher content of Proteobacteria (8.7 vs. 5.7%,
P = 0.016, Figure 2A). At the class level, patients with PSCI
had higher contents of Gammaproteobacteria (6.9 vs. 3.8%,
P = 0.017, Figure 2B) and Bacilli (5.3 vs. 3.0%, P = 0.012,
Figure 2B). At the order level, PSCI was associated with
significantly higher abundances of Enterobacteriales (6.8 vs.
3.7%, P = 0.013, Figure 2C) and Lactobacillales (5.3 vs.
3.0%, P = 0.011, Figure 2C). At the family level, patients
with PSCI had higher contents of Enterobacteriaceae (6.8
vs. 3.7%, P = 0.013, Figure 2D), Streptococcaceae (3.6 vs.
1.6%, P = 0.005, Figure 2D), and Lactobacillaceae (1.5 vs.
1.3%, P = 0.02, Figure 2D). At the genus level, PSCI
patients had significantly higher levels of Streptococcus (3.6
vs. 1.6%, P = 0.005, Figure 2E), Klebsiella (2.3 vs. 0.6%,
P = 0.002, Figure 2E), Lactobacillus (1.5 vs. 1.3%, P = 0.02,
Figure 2E), Prevotella (14.0 vs. 10.2%, P = 0.01, Figure 2E),
and Veillonella (1.05 vs. 0.23%, P = 0.022, Figure 2E);
and lower contents of Roseburia (2.7 vs. 3.7%, P = 0.033,
Figure 2E), f_Lachnospiraceae_other (1.9 vs. 2.8%, P = 0.008,
Figure 2E) and Fusicatenibacter (0.17 vs. 0.40%, P = 0.0018,
Figure 2E). However, no significant difference was found
between the PSCI and PSNCI groups in fecal microbiota
α-diversity (Supplementary Figures S1A,B). Furthermore, as
shown in Figure 2H, the relative content of cystathionine-beta-
lyase was significantly higher in the PSCI group compared with
the PSNCI group (P = 0.011).

After the groups were age-matched, although no significant
difference in gut bacterial communities among the PSCI, PSNCI,
and age-matched PSCI groups was evident from the PCoA
scatterplot, the relative abundances of some gut microbial
taxa were significantly different between age-matched PSCI
and PSNCI groups (Supplementary Figure S3C). As shown
in Supplementary Figures S4A–E, at the phylum level, age-
matched PSCI patients had a significantly higher content of
Proteobacteria (age-matched PSCI vs. PSNCI: 10.8 vs. 5.7%,
P = 0.017), and lower abundance of Firmicutes (age-matched
PSCI vs. PSNCI: 33.2 vs. 40.7%, P = 0.027). The similar alterations
were also observed at the class, order, family, and genus levels of
Proteobacteria and Firmicutes, including Gammaproteobacteria
(age-matched PSCI vs. PSNCI: 9.1 vs. 3.8%, P = 0.040), Clostridia
(age-matched PSCI vs. PSNCI: 21.8 vs. 29.8%, P = 0.056),
Enterobacteriales (age-matched PSCI vs. PSNCI: 9.1 vs. 3.7%,
P = 0.020), Clostridiales (age-matched PSCI vs. PSNCI: 21.8 vs.
29.8%, P = 0.056), Enterobacteriaceae (age-matched PSCI vs.
PSNCI: 9.1 vs. 3.7%, P = 0.020), Klebsiella (age-matched PSCI
vs. PSNCI: 3.2 vs. 0.7%, P = 0.031), and Lachnospiraceae_other
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FIGURE 1 | Flowchart of patients included in this study.

(age-matched PSCI vs. PSNCI: 1.6 vs. 3.0%, P = 0.009). Besides,
PSCI patients were also associated with a significantly higher
abundance of Prevotella (age-matched PSCI vs. PSNCI: 19.6
vs. 10.2%, P = 0.021). However, no significant difference was
found among the three groups in fecal microbiota α-diversity
(Supplementary Figures S3A,B).

We further confirmed the characteristic GM using Lefse
analysis. Of note, PSCI was associated with increased abundances
of Enterobacteriaceae, Klebsiella of Enterobacteriales, and
Lactobacillaceae, Streptococcaceae, Streptococcus, Lactobacillus
of Lactobacillales and Prevotella, and decreased abundances of
Fusicatenibacter and f_Lachnospiraceae_other (Figures 2F,G).
After being adjusted for age, the age-matched PSCI and PSNCI
groups showed significant differences in phylum Proteobacteria
and Firmicutes. The abundances of Gammaproteobacteria,
Enterobacteriales, Enterobacteriaceae, Klebsiella, and Prevotella
were significantly higher, the proportions of Clostridia,
Clostridiales, Lachnospiraceae, and Lachnospiraceae_other
were lower in the age-matched PSCI group compared with
PSNCI group (Supplementary Figures S4F,G).

The results showed that there was no significant difference
in sex between the two groups (PSCI-male, n = 35, 66%;
PSNCI-male, n = 27, 67.5%, P = 0.882). According to sex,
stroke patients were divided into female and male subjects.
The PCoA showed no significant difference in sex between
the two groups (Supplementary Figure S5). Moreover, there
was no significant difference in the relative abundance of
the characteristic gut microbiome between the two groups
(Supplementary Figure S6). Therefore, sex may have little effect
on gut microbiota composition in this study.

Predicted Function Analysis of
Microbiome
We evaluated the functional differences in the microbiome
of PSCI vs. PSNCI. As shown in Supplementary Table S2,
the enriched orthologs in PSCI patients were folding, sorting
and degradation (chaperones and folding catalysts), genetic
information processing (protein folding and associated
processing, transcription related proteins), energy metabolism
(nitrogen metabolism, sulfur metabolism), metabolism (glycan
biosynthesis and metabolism, nucleotide metabolism), enzyme
families (protein kinases), carbohydrate metabolism (propanoate
metabolism). In contrast, the increased pathways in PSNCI
patients were metabolism of cofactors and vitamins (porphyrin
and chlorophyll metabolism, pantothenate and CoA biosynthesis,
nicotinate and nicotinamide metabolism, thiamine metabolism),
amino acid metabolism (phenylalanine, tyrosine and tryptophan
biosynthesis, arginine and proline metabolism, histidine
metabolism, alanine, aspartate and glutamate metabolism,
valine, leucine and isoleucine biosynthesis, valine, leucine,
and isoleucine degradation), carbohydrate metabolism, lipid
metabolism (primary bile acid biosynthesis, secondary bile acid
biosynthesis, linoleic acid metabolism).

Correlation Between GM Composition
and MoCA Score and Its Sub-variables
The Spearman rank correlation was used to confirm the
correlation between MoCA scores and the GM at the genus
level. As shown in Figure 3A, f_Lachnospiraceae_other
(P < 0.001), Fusicatenibacter (P < 0.01), Parasutterella,
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TABLE 1 | The significant differences of demographic and clinical parameters
between PSCI and PSNCI groups.

Characteristic PSCI group
(n = 53)

PSNCI group
(n = 40)

P-value

Male 66.0 67.5 0.882

Age, years 72.2 ± 10.3 66.0 ± 10.8 0.006

Divorce rate 15.1 10.0 0.468

Low education (<high school) 71.7 57.5 0.154

Physical activity (≥90 min/week) 43.4 62.5 0.068

Sleep deprivation (<6 h) 52.8 45.0 0.455

NIHSS score 3 (1–5) 1 (1–2) 0.001

MOCA score 13.7 ± 6.7 22.3 ± 4.2 <0.001

Visuospatial/executive function 2 (1–3) 3 (2–3) <0.001

Naming 1 (0–2) 2 (1–3) 0.002

Attention 4 (2–5) 6 (5–6) <0.001

Language 2 (1–2) 3 (2–3) <0.001

Abstraction 0 (0–1) 1 (0–1) 0.003

Delayed recall 1 (0–3) 4 (3–4) <0.001

Orientation 3 (2–5) 6 (5–6) <0.001

Diabetes mellitus 24.5 32.5 0.396

Hypertension 77.4 65.0 0.189

Dyslipidemia 51.9 42.5 0.370

Atrial fibrillation 17.0 7.5 0.177

Stroke recurrence 58.5 20.0 <0.001

BMI (kg/m2) 24.7 ± 3.7 25.5 ± 3.3 0.263

Current smokers 17.0 15.0 0.797

Alcohol drinker 41.5 43.6 0.842

Hcy (µmol/L) 13.3 ± 4.7 10.2 ± 2.4 <0.001

Dietary risks

High fat 67.9 72.5 0.634

Low in fruits 52.8 45.0 0.455

Low in vegetables 41.5 45.0 0.736

LA 96.2 67.5 <0.001

Brain atrophy 67.9 22.5 <0.001

TABLE 2 | Multivariate logistic regression analysis of risk factor for PSCI after
adjustment for age.

Variable Multivariate

B (SE) OR 95% CI P-value

NIHSS score 0.440 (0.218) 1.553 1.014–2.379 0.043

Stroke recurrence 1.397 (0.581) 4.042 1.293–12.634 0.016

Hcy 0.198 (0.094) 1.219 1.013–1.466 0.036

LA −2.173 (1.011) 8.780 1.210–63.729 0.032

Brain atrophy 1.298 (0.577) 3.663 1.181–11.359 0.025

Phascolarctobacterium, Clostridium_XVIII, and Butyricicoccus
(P < 0.05) were positively associated with the MoCA
score, while Klebsiella, Enterobacteriaceae_other (P < 0.01),
Clostridium_sensu_stricto, Olsenella, Prevotella, Dialister,
Enterococcus, and Alloprevotella (P < 0.05) showed negative
correlation. Moreover, we further investigated the correlation
between gut bacteria and the MoCA sub-items. As shown
in Figure 3A, Fusicatenibacter was found to be positively
associated with delayed recall, orientation, attention, abstraction

(P < 0.05), and language (P < 0.01). f_Lachnospiraceae_other
was positively correlated with naming, language, abstraction
(P < 0.001), attention, visuospatial/executive function,
delayed recall, and orientation (P < 0.01). In addition,
Klebsiella was negatively associated with delayed recall
(P < 0.01), attention, visuospatial/executive function, and
naming (P < 0.05). Prevotella was negatively correlated
with delayed recall, orientation (P < 0.05), and abstraction
(P < 0.01). Escherichia/Shigella was negatively associated with
naming (P < 0.05).

Association of GM With Risk Factors for
PSCI and PSCI
As shown in Figure 3B, the stroke recurrence was negatively
associated with Roseburia (P < 0.1) and Dorea (P < 0.05).
LA was positively associated with Klebsiella (P < 0.05), while
negatively associated with Paraprevotella (P < 0.01). Brain
atrophy was positively correlated with Alistipes, Streptococcus,
Clostridium_sensu_stricto (P < 0.01), Lactobacillus, Klebsiella,
Odoribacter, Acidaminococcus, and Haemophilus (P < 0.05), but
negatively correlated with Phascolarctobacterium (P < 0.05). The
NIHSS score was positively associated with Klebsiella (P < 0.01),
Veillonella, Clostridium_sensu_stricto, Enterobacteriaceae_other,
and Prevotella (P < 0.05), while negatively associated with
Fusicatenibacter (P < 0.1). Moreover, the Hcy level was positively
correlated with Alloprevotella and Streptococcus (P < 0.05) but
negatively correlated with Fusicatenibacter (P < 0.05).

In the multivariable logistic regression models
(Supplementary Table S3), there was no significant association
between the representative microbiota and PSCI in conditions of
unadjusted and adjusted for age in models 1 and 2, respectively.
However, we observed a significant correlation between PSCI
and the abundance of Enterobacteriaceae after adjustment for
age and risk factors for PSCI, including NIHSS score, stroke
recurrence, Hcy, LA, and brain atrophy (P = 0.035). Moreover,
the higher abundance of Enterobacteriaceae represented a closer
association with PSCI (P = 0.010, OR = 59.721).

Gut Biomarkers for PSCI
As shown in Supplementary Figure S2, the model based on
the Lefse results after being age-matched, which represented
the characteristic GM of PSCI, could effectively distinguish
PSCI from PSNCI (AUCPSCI-PSNCI = 0.840, 95% CI: 0.760–
0.920, P < 0.001; AUC age-matched PSCI-PSNCI = 0.858, 95% CI:
0.773–0.944, P < 0.001). The model based on the relative
abundance of Enterobacteriaceae also showed the differentiating
effect for PSCI (AUCPSCI-PSNCI = 0.629, 95% CI: 0.510–0.747,
P = 0.038; AUCage-matched PSCI-PSNCI = 0.658, 95% CI: 0.524–
0.792, P = 0.029). These results indicated that GM might contain
valuable PSCI biomarkers.

DISCUSSION

In this study, we characterized the GM composition of PSCI
patients. Although GM’s bacterial diversity in PSCI patients was
similar to that of PSNCI patients, the microbial composition
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FIGURE 2 | Comparison of the representative taxonomic abundance between post-stroke cognitive impairment (PSCI) and post-stroke non-cognitive impairment
(PSNCI) groups. (A) Mann-Whitney U-test indicated the significant differences in phylum between the two groups and also in their corresponding class (B), order (C),
family (D), and genus (E). (F) A cladogram of different taxonomic composition between PSCI patients and PSNCI patients. (G) linear discriminant analysis scores
showed significant bacterial differences between PSCI patients and PSNCI patients. (H) Compare the functional Kyoto Encyclopedia of Genes and Genomes
orthology of gut microbiota in PSCI and PSNCI groups. Mann-Whitney U-test indicated the significant differences between the two groups. o, order; f, family; g,
genus. *P < 0.05, **P < 0.01.
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FIGURE 3 | The associations of gut microbiota (GM) with MoCA scores and the risk factors for PSCI. (A) Heatmap of spearman rank correlation analysis between
GM and MoCA scores and its sub-variables. (B) Heatmap of spearman rank correlation analysis between GM and the risk factors for PSCI. Red means positive
correlation and blue means negative correlation. *P < 0.05, **P < 0.01, ***P < 0.001, +P < 0.1, ++P < 0.05, +++P < 0.01.

was distinct between the two groups. The abundance of
Proteobacteria was highly increased in the PSCI group compared
with the PSNCI group. Similar alterations were also observed
at the class, order, family, and genus levels of Proteobacteria.
After age adjustments, the abundance of Firmicutes, and its
members, including Clostridia, Clostridiales, Lachnospiraceae,
and Lachnospiraceae_other, were significantly decreased in the
age-matched PSCI group compared with the PSNCI group.
Moreover, we found GM’s close associations with MoCA
scores and risk factors for PSCI, including NIHSS score, Hcy,
stroke recurrence, LA, and brain atrophy. The abundance of
Enterobacteriaceae showed a significant correlation with PSCI
after adjustments for age and risk factors. Besides, the ROC
model, which was based on the characteristic GM, could
effectively distinguish PSCI patients from PSNCI patients. In
particular, Enterobacteriaceae also showed the differentiating
ability for PSCI. These results indicated that the GM might
provide novel microbiome-related biomarkers for PSCI.

In this study, there were significant differences in terms of
NIHSS score, stroke recurrence, Hcy, LA, and brain atrophy
between the PSCI and PSNCI groups, and we also observed
the associations of these risk factors with GM. Previous studies
have revealed that the incidence of post-event dementia was
positively correlated with stroke severity (Pendlebury et al., 2019),
and GM dysbiosis was positively correlated with NIHSS scores
in stroke patients (Xia et al., 2019). Besides, stroke recurrence

was a significant contributor to cognitive impairment through
its association with white matter hyperintensities (WMH)
(Georgakis et al., 2019). In this study, PSCI patients contained
a higher abundance of cystathionine beta-lyase, which was
involved in the anabolism process of Hcy (Reveal and Paietta,
2013). Many bacteria, yeast, and plants contain the enzyme.
Therefore, the changes in serum homocysteine in the PSCI
group may be caused by many factors. Hcy levels were positively
associated with the risk of cognitive impairment via upregulated
pro-inflammatory cytokines, causing endothelial damage and
having direct neurotoxic properties (Fang et al., 2014; Di Meco
et al., 2018). Previous studies also reported that Hcy levels were
associated with increased risk of severe deep and periventricular
white matter lesions, contributing to poor cognitive performance
(Vermeer et al., 2002), and the strong associations between
increased Hcy levels and cognitive decline in patients with AD
and Parkinson’s disease had been confirmed (Di Meco et al., 2018;
Murray and Jadavji, 2019). Some researchers hypothesized that
the Hcy/lipopolysaccharide (LPS) might mediate pyroptosis in
the obese adipocytes due to the GM imbalance (Laha et al., 2018),
and the altered microbiome in OSAHS patients was associated
with Hcy (Ko et al., 2019). Besides, LA also contributed to
cognitive deterioration by triggering the release of inflammatory
factors (Kaffashian et al., 2016; Hainsworth et al., 2017). An
earlier study had shown that generalized brain and hippocampal
atrophy contributed to cognitive decline and specifically to
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memory deficits, through substantial neuronal loss (Fein et al.,
2000). Many studies had indicated the alterations of GM in
diseases associated with brain tissue atrophy, including AD (Liu
et al., 2019) and multiple system atrophy (Wan et al., 2019). Our
results supported the evidence from epidemiological studies that
identified multiple risk factors for PSCI, including NIHSS score,
Hcy, stroke recurrence, LA, and brain atrophy.

Decreased bacterial diversity is observed in various
diseases, such as metabolic syndrome (Dabke et al., 2019)
and neurodegenerative diseases (Zhang et al., 2017; Zhuang
et al., 2018). Gut bacterial diversity is affected by factors such
as lifestyle, age, metabolic diseases, and antibiotics (Gulden,
2018; Tengeler et al., 2018). A growing body of evidence has
demonstrated that psychotropic drugs could affect the GM
profile. Atypical antipsychotics induced a decrease in GM’s
diversity and a significant increase in Lachnospiraceae abundance
and a decrease in Akkermansia level in patients with bipolar
disease (Flowers et al., 2017). In this study, we had already
excluded the patients who had psychosis, such as schizophrenia
or bipolar disease. Moreover, we also did not use psychotropic
drugs to treat stroke patients during hospitalization. Therefore,
we could eliminate the effects of psychotropic drugs on GM.
Diet is one of the critical factors in regulating the GM profile.
Different diets have different effects on the composition of GM.
For example, the administration of a high-fat diet resulted in
a decrease in Bacteroidetes and a significant increase in the
abundance of Proteobacteria and Firmicute (Hildebrandt et al.,
2009). In this study, we classified the diet as high fat, low in
fruits, and low in vegetables. The results showed that there were
no significant differences in diet between the two groups. Thus,
the dietary effects on GM could be avoided. In this study, no
significant difference in bacterial diversity was found between
the two groups. The similarity in lifestyle between the two groups
and the fact that both groups were composed of stroke patients
might explain this result.

According to a previous study, age is the confounding
factor that may influence the GM composition. The age-
related alterations in the GM composition include an
increase of Proteobacteria, a decrease of the Firmicutes to
Bacteroides, and a reduction of microbiota diversity (Vaiserman
et al., 2017). The changes of GM may be associated with
inflammation and endotoxin tolerance during the acute phase
of stroke and myocardial infarction (Hernandez-Jimenez
et al., 2017; Kowalska et al., 2018; Krishnan and Lawrence,
2019). In this study, the increased abundances of Klebsiella,
Enterobacteriaceae, Enterobacteriales, Gammaproteobacteria
of phylum Proteobacteria, and Prevotella were still found in
age-matched PSCI patients compared with PSNCI patients.
The previous study had indicated that the enrichment of
Proteobacteria in the gut reflected dysbiosis of gut microbial
community structure and risk of diseases (Shin et al., 2015).
Moreover, the increased abundances of Proteobacteria,
Gammaproteobacteria, Enterobacteriales, and Enterobacteriaceae
could lead to the release of proinflammatory cytokine (Dinh et al.,
2015; Shin et al., 2015; Sovran et al., 2018), and the proportions
of these GM were negatively associated with cognitive function
(Liu et al., 2019). The enriched network of taxa containing

Gammaproteobacteria and Enterobacteriales was also observed in
colorectal cancer (Peters et al., 2016) and AD patients (Liu et al.,
2019), which was consistent with our study. A previous study
on liver transplantation reported that the increased abundance
of Klebsiella was associated with poor cognitive performance
(Bajaj et al., 2017), which was in agreement with our results.
Administration of Lactobacillus improved cognitive functions
impaired by chronic restraint stress (Liang et al., 2015) and major
depression (Rudzki et al., 2019). However, our results showed
that patients with PSCI had more abundance of Lactobacillus.
Thus, evidence from reports indicated that these gut bacteria
might be closely related to PSCI.

We also found a significantly lower abundance of
Firmicutes, and its members, including Clostridia, Clostridiales,
Lachnospiraceae, and Lachnospiraceae_other, in age-matched
PSCI patients compared with PSNCI patients. According to
the previous study, the levels of Firmicutes and Clostridia were
significantly reduced in humans with type 2 diabetes (Larsen
et al., 2010). Besides, the decreased abundances of Firmicutes,
Clostridia, Clostridiales, and Lachnospiraceae had been reported
in AD patients (Liu et al., 2019). Lachnospiraceae was one of the
most abundant known butyrate-producing bacteria in human
GM (Hold et al., 2003; Zhang et al., 2019). SCFAs could improve
learning and memory function (During et al., 2003), provide
neuroprotection and neuroplasticity, and reduce β-amyloid
plaques and microglia activation in animal models of AD
(Dalile et al., 2019). Chen et al. demonstrated that transplanting
fecal bacteria reduced infarct volume and cerebral edemas,
and improved cognitive function in rat models of ischemic
stroke (Chen et al., 2019). Our previous study also revealed that
increasing the content of SCFAs could be a potential treatment
for AD via fecal microbiota transplantation (Sun et al., 2019).
However, whether inadequate SCFAs-producing bacteria were
involved in PSCI still needs to be confirmed by future studies.

Besides, PSCI was associated with several modulations of
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways. The module for folding, sorting and degradation
(chaperones and folding catalysts) progressively enriched in PSCI
patients. According to early studies, molecular chaperones and
protein-folding catalysts functioned as proinflammatory signals
(Henderson and Pockley, 2010), and molecular chaperones
were acting as receptors for the major pathogen-associated
molecular patterns and LPS (Triantafilou and Triantafilou,
2005), which further induced inflammatory response. However,
some evidence indicated that these proteins might have anti-
inflammatory actions (Henderson and Pockley, 2010). Besides,
the modules related to metabolisms of cofactors and vitamins,
amino acid, and lipids were significantly lower in the PSCI
patients, which were consistent with the findings in patients
with AD (Li et al., 2019). According to the previous study,
amino acid reduced inflammation, oxidative stress, and cell
death in the gut (Liu et al., 2017). Moreover, the module
for secondary bile acids of lipid metabolism could reduce
macrophage inflammation and lipoprotein uptake to protect
the blood vessels (Pols et al., 2011). These results suggested
that multiple and complex communication pathways existed
between GM and PSCI.
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We also demonstrated the close correlation of GM with MoCA
scores and risk factors for PSCI. Notably, we found that Klebsiella
and Enterobacteriaceae_other of family Enterobacteriaceae were
negatively correlated with the MoCA score, and positively
associated with NIHSS score, LA, and brain atrophy. We
further confirmed that the abundance of Enterobacteriaceae
was closely associated with PSCI after adjusting age and risk
factors. Furthermore, the ROC model, which was based on the
characteristic GM, could effectively distinguish PSCI from PSNCI
patients, and Enterobacteriaceae also exhibited the differentiating
ability for PSCI. According to the previous studies, the
abundances of Enterobacteriaceae and Escherichia/Shigella were
increased in patients with AD, these gut bacteria were considered
as pro-inflammatory bacteria and induced LPS accumulation,
and mediated amyloid aggregation and inflammatory response
(Li et al., 2019; Liu et al., 2019). Besides, the increased
abundance of Enterobacteriaceae was associated with poor
prognosis (Xu et al., 2019a). Thus, the increased abundance
of Enterobacteriaceae might be significantly associated with
PSCI.Due to the severity of PSCI, it is urgent to find biomarkers
for PSCI diagnosis. Previous studies demonstrated that some
microRNAs could achieve expected results in the diagnosis
of PSCI (Huang et al., 2016; Wang et al., 2020). Besides,
recent studies indicated that the imaging and multiple cellular
changes had made significant progress in the diagnosis of
neurological disease (Vijayan and Reddy, 2016a; Eyileten et al.,
2018; Guo et al., 2018; Vijayan et al., 2018; Saba et al., 2019).
However, few studies had tested their usefulness in the clinical
trials, and the complexity of experimental operations with
lower microRNAs detection sensitivity and specificity limited its
clinical application. The alteration of GM composition involves
many diseases, including neuropsychiatric diseases. However,
the GM composition of PSCI is still largely unknown. This
study showed that the characteristic GM could be used as
a diagnostic biomarker for PSCI. further, combining other
valuable biomarkers is also needed to improve the accuracy
of PSCI diagnosis.

Several limitations of this study should be mentioned.
Multiple variables influence GM composition, and it is difficult
to achieve complete standardization for all patients. Meanwhile,
patients enrolled in our study tended to have lower NIHSS
scores, and we did not distinguish post-stroke dementia
patients from PSCI non-dementia patients, which limited the
representativeness of the study. The application on the outcome
of the MoCA was somewhat overemphasized. In future studies,
we will use more clinical scales such as Hastgawa Dementia Scale
and Wechsler Memory Scale to verify our results. Moreover, we
did not investigate the GM of these patients before cognitive
decline and a healthy control group without stroke, as well as
the long-term follow-up, which resulted in lacking the dynamic
observation of the disease. Besides, our study was a single-center
study in which the number of patients was still not enough.
Thus, the conclusion that GM is closely associated with PSCI may
not be made quickly. Age is a vital factor contributing to GM
composition, and additional experiments with larger samples in
age-matched groups for the PSCI and PSNCI are needed to verify
the present results.

Despite these limitations, the study has some important
strengths. First, this is one of the first studies characterizing
the GM in patients with PSCI, filling the GM information gap
in PSCI. Second, we also investigated the risk factors for PSCI
and their associations with GM. The broader connections were
established between GM and the risk factors, which contributed
to a better understanding of GM’s role in PSCI. Third, this study
gave new clues to explore the novel diagnostic biomarkers and
interventions for PSCI.

In summary, our study assessed the GM composition of
PSCI patients and further indicated that the characteristic
GM, especially Enterobacteriaceae, might facilitate the
diagnosis of PSCI.
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