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Background: Age-related cognitive decline begins in middle age and persists with age.
Leukocyte telomere length (LTL) decreases with age and is enhanced by inflammation
and oxidative stress. However, whether shorter LTL correlates with cognitive decline
remains controversial.

Aims: We aimed to investigate the relationship between LTL and cognitive decline in the
American elderly.

Methods: We used data from the 1999 to 2002 U.S. National Health and Nutrition
Examination Survey (NHANES). We included participants aged 65–80 with available
data on LTL and cognitive assessments. The cognitive function assessment used the
digit symbol substitution test (DSST). We applied multivariate modeling to estimate
the association between LTL and cognitive performance. Additionally, to ensure robust
data analysis, we converted LTL into categorical variables through quartile and then
calculated the P for trend.

Results: After adjusting for age, cardiovascular disease (CAD) score, gender, race, body
mass index (BMI), and educational level, LTL showed a positive correlation with DSST
score (odds ratio [OR] 3.47 [0.14, 6.79], P = 0.04). Additionally, to further quantify the
LTL–DSST interaction, we found a similar trend when LTL was regarded as a categorical
variable (quartile) (P for trend = 0.03).

Conclusion: LTL was associated with cognitive capabilities among the elderly, implying
that LTL might be a biomarker of cognitive aging.
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INTRODUCTION

The aging global population presents a threat of increased disease
and disability (Vos et al., 2012). Age-related cognitive decline
begins in middle age and continues over time (Li et al., 2001),
but studies have found individual differences in the severity of
age-related cognitive decline under the influence of genetic and
environmental factors (Foster, 2006; Connors et al., 2015; van
der Wardt et al., 2015; Heywood et al., 2017). Studies have also
suggested that oxidative stress and inflammation might influence
aging and age-related memory disorders, which may explain why
cognitive decline is highly associated with the elderly (Anstey
et al., 2005; Peila and Launer, 2006; Lau et al., 2007; Rafnsson
et al., 2007). However, the exact mechanism of cognitive decline
remains unknown. Thus, to help reduce the risk of dementia and
promote overall health among the elderly, it is essential to identify
the potential predictive biomarkers of cognitive dysfunction.

Telomeres, which are repetitive nucleoprotein regions located
at the ends of eukaryotic chromosomes, maintain genomic
integrity and stability by protecting the end of the chromosome
from illegitimate degradation and recombination (Jiang et al.,
2018). Successive somatic cell divisions gradually abrase telomere
length (TL) during aging (Miu et al., 2019). This cumulative
age-interrelated TL shortening conduces to cellular senescence,
an attribute of aging (López et al., 2013; Xu et al., 2018).
Cellular lifespan is influenced by the length and stability of
telomeres to some degree. Therefore, TL has been proposed as a
candidate biomarker of aging (Xu et al., 2018). The TL shortening
process was reported to accelerate under oxidative stress and
inflammatory response and could serve as a record of the
cumulative burden of oxidative stress along with inflammation
(von Zglinicki et al., 2000; Aviv et al., 2006). Judging from longer
telomeres protect cells from cellular senescence and death, it
is reasonable to expect that they would also protect neuronal
cells against oxidative stress and neurodegeneration that are
related with cognitive decline (Collado et al., 2007). Research
has reported the implication of shortened leukocyte TL (LTL) in
multiple age-related diseases including neurodegenerative ones
(Serrano and Andrés, 2004; Valdes et al., 2007; Shammas, 2011;
Willeit et al., 2014).

Previous research on LTL and cognitive ability, predominantly
in the elderly, has yielded inconsistent results. Studies have
noticed a correlation between shortened LTL and age-related
cognitive decline among the elderly (Valdes et al., 2010; Yaffe
et al., 2011), but other studies have found such an association
to be relatively small or absent (Mather et al., 2010; Harris et al.,
2012). Therefore, we used the U.S. National Health and Nutrition
Examination Survey (NHANES) database to investigate the
relationship between LTL and cognitive function in a cohort of
elderly individuals.

MATERIALS AND METHODS

Data Source and Participant Selection
The NHANES is an ongoing cross-sectional survey of a nationally
representative, non-institutionalized U.S. population conducted

by the U.S. National Center for Health Statistics (NCHS). To
promote overall representativeness, the NHANES uses a complex
multi-stage probability sampling design. Its dataset combines
five major factors: socio-demographic characteristics, physical
examinations, dietary information, laboratory investigations, and
interview or questionnaire data—with raw data that are processed
in 2-year cycles and made publicly available online (Cawthon,
2002; Mazidi et al., 2017). The NHANES protocol was approved
by the NCHS Research Ethics Review Board, and all participants
provided written informed consent. More NHANES data and
detailed information on survey methods are available on the
center’s official website1.

In this study, we restricted our analysis to participants from
1999 to 2000 and from 2001 to 2002 cycles of the NHANES survey
because only these cycles contained TL and cognitive testing
information. Eligibility inclusion criteria required participants to
be between ages 60 and 85 at the time of the survey, with high
school education or above, and to have available data on both LTL
and cognitive function examination.

Telomere Measurements
With standardized procedures, purified DNA was acquired from
whole blood and stored at −80◦C before the LTL assay. Using
quantitative polymerase chain reaction, we measured LTL relative
to standard–reference DNA (T/S ratio) (Cawthon, 2002; Lin et al.,
2010; Needham et al., 2013). The LTL was calculated as the mean
T/S ratio, which is an approximation of average TL across all the
chromosome ends. More details regarding the LTL quantification
procedure and analytical methods are on the NHANES website
(see footnote 1).

Cognitive Function Assessment
We evaluated cognitive function using the digit symbol
substitution test (DSST), an executive function subtest of the
Wechsler Adult Intelligence Scale, Third Edition (WAIS III)
(Oberlin et al., 2013). In this test, participants were given
a key that paired symbols and numbers. Then, they were
given a train of numbers and had to draw symbols under the
corresponding numbers using the substitution key in 120s. The
DSST score represents the correct number of symbols drawn,
with a maximum score of 133. It is considered a sensitive test
for cognitive disorder because it could record the participants’
response speed, associative learning, continuous attention, visual
spatial skills, and memory abilities (Oberlin et al., 2013).

Covariates
Multivariate models contain variables that might confound the
link between LTL and cognitive ability. Educational level was
coded as a level 2 categorical variable (high school and above).
Cardiovascular disease (CAD) was also a potential confounder
as it could affect both LTL and cognitive impairment. To avoid
multicollinearity, we generated a comprehensive CAD variable
that aggregated multiple risk factors. One score was assigned to
each of the three current risk factors: history of hypertension,

1http://www.cdc.gov/nchs/nhanes.htm

Frontiers in Aging Neuroscience | www.frontiersin.org 2 October 2020 | Volume 12 | Article 527658

http://www.cdc.gov/nchs/nhanes.htm
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-527658 October 25, 2020 Time: 16:19 # 3

Linghui et al. Telomere Length and Cognitive Performance

coronary heart disease, or stroke. Additionally, two points were
added for diabetes. Scores ranged from 0 to 5 (Golub et al., 2019).

Statistical Analysis
Statistical analysis was performed following CDC analytical
reporting guidelines for complex NHANES data analysis2.
We considered masked variance and used the recommended
weighting scheme. Demographic characteristics among different
TL groups (quartile) were compared using chi-square test or
weighted linear regression model. To assess whether LTL is
correlated with cognitive decline, our statistical analysis included
three main steps. First, we employed weighted univariate
and multivariate linear regression models. Multivariate models
included model I (only gender, race, and educational level
were adjusted) and model II [gender, race, educational level,
age, CAD score, and body mass index (BMI) were adjusted].
Second, to account for non-linearity of cognitive decline and LTL,
we conducted smooth curve fitting (penalized spline method)
and weighted generalized additive model (GAM). Third, we
performed subgroup analyses using weighted stratified linear
regression models. For the continuous variable, we first converted
it to a categorical variable according to the clinical cut point and
then performed an interaction test.

To ensure that the data analysis is robust, we converted the
TL into a categorical variable by quartile and calculated the P for
trend. We did this to verify the TL results as a continuous variable
and to observe the possibility of non-linearity.

All analyses were performed using the statistical software
packages R3 (The R Foundation) and EmpowerStats4 (X&Y
Solutions, Inc., Boston, MA, United States). P-values less than
0.05 (two-sided) were considered statistically significant.

RESULTS

Participants’ Baseline Characteristics
Table 1 shows the weighted distribution of socio-demographic
characteristics and other covariates of the selected participants in
the NHANES 1999–2002 population.

The participants in this sample averaged 70.99 ± 7.54 years
old, with women representing 51.1%. Among different TL groups
(quartile, Q1–Q4), the following distributions were similar:
educational level, BMI, CAD score, history of hypertension,
diabetes, hyperlipidemia, and stroke. Compared with groups Q1
and Q2, groups Q3 and Q4 were younger and had a higher
percentage of females. Regarding cognitive performance, DSST
scores ranged from 0 to 117, with a mean of 44.56 (SD = 17.68).
In addition, the maximum and minimum T/S ratio values were
3.00 and 0.39, respectively, with a mean of 0.91 (SD = 0.22).

Univariate Linear Regression Analysis
We first assessed a univariate linear regression model to evaluate
the relationship between LTL and DSST. The results found that

2https://wwwn.cdc.gov/nchs/nhanes/tutorials/default.aspx
3http://www.R-project.org
4http://www.empowerstats.com

female gender, educational level, and LTL are positively correlated
with DSST score, whereas male gender, age, and CAD score
are negatively associated with DSST score (see Supplementary
Table S1 in the Appendix).

Multivariate Linear Regression Analysis
of the LTL–DSST Relationship
Table 2 shows the coefficients of the association between LTL
as continuous variable and DSST score. Our multivariate linear
regression analysis showed a negative correlation between LTL
and DSST score in the crude model (odds ratio [OR] 9.51 [5.82–
13.19], P < 0.01) (see Table 2). In the adjusted model I (adjusted
by gender, race, and educational level) and model II (adjusted by
gender, race, educational level, age, CAD score, and BMI), the
results remained stable (OR 10.27 [6.83, 13.72], P < 0.01; OR 3.47
[0.14, 6.79], P = 0.04).

Additionally, to further detect the correlation of LTL–DSST
interaction, we stratified the participants into four groups by
the 25th, 50th, and 75th LTLx percentiles (0.39–0.76, 0.76–0.88,
0.88–1.03, and 1.03–3.00, respectively). LTL was regarded as a
categorical variable (quartile), and a similar trend was observed
(P for trend = 0.03; see Table 2). On multivariable analysis,
participants in quartile 4 had 139% higher odds of getting higher
DSST score than those in quartile 1.

Analyses of LTL–DSST Non-linear
Relationship
It is essential to analyze non-linear relationships for continuous
variables. A weighted GAM and smooth curve fitting (penalized
spline method) were used to investigate the non-linear
relationship between LTL and DSST scores. After adjusting
for gender, age, educational level, race, CAD score, and BMI, we
did not observe a non-linear relationship between LTL and DSST
(see Supplementary Figure S1 in the Appendix).

Subgroup Analyses
Table 3 shows our subgroup analysis results. We found that,
after adjusting for potential confounders, the interaction test
was not statistically significant for age, educational level, gender,
race, CAD score, and BMI (P for interaction > 0.05). Thus, we
do not detect any substantial evidence to prove that there are
systematic differences in associations in different subgroups of
the population, which means our main results are stable.

DISCUSSION

This study’s central finding suggests that cognitive decline
correlated significantly with shorter LTL among elderly
individuals, and the findings were found to be robust after
adjusting for various potential confounders.

Previous studies have noted the role of LTL in a series of age-
related chronic diseases including neurodegenerative and CAD
(Panossiana et al., 2003; Benetos et al., 2004; Martin et al., 2006;
Brouilette et al., 2007; van der Harst et al., 2007; Fitzpatrick
et al., 2011). Consistent with our results, some previous studies
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TABLE 1 | Baseline characteristics of participants.

Telomere length (T/S ratio) Total sample Q1 (0.389–0.759) Q2 (0.759–0.880) Q3 (0.880–1.026) Q4 (1.026–3.001) P-value

N 2,006 866 558 370 212

Age [mean (SD)] 70.99 (7.54) 73.17 (7.96) 71.09 (7.71) 69.76 (7.53) 68.81 (7.30) <0.001

BMI 28.78 (6.09) 28.11 (5.15) 28.12 (5.69) 28.29 (5.50) 28.67 (5.70) 0.585

Gender <0.001

Male 6, 614 (48.88%) 470 (54.27%) 289 (51.79%) 156 (42.16%) 84 (39.62%)

Female 6, 916 (51.12%) 396 (45.73%) 269 (48.21%) 214 (57.84%) 128 (60.38%)

Educational level 0.447

High school 6, 540 (48.34%) 471 (54.39%) 280 (50.18%) 200 (54.05%) 114 (53.77%)

Above high school 6, 990 (51.66%) 395 (45.61%) 278 (49.82%) 170 (45.95%) 98 (46.23%)

CAD score [mean (SD)] 1.20 (1.18) 1.01 (1.10) 0.98 (1.09) 0.91 (0.99) 1.03 (1.12) 0.476

Diabetes 0.238

No 10, 281 (78.53%) 693 (82.60%) 455 (84.10%) 314 (87.22%) 172 (82.69%)

Yes 2, 810 (21.47%) 146 (17.40%) 86 (15.90%) 46 (12.78%) 36 (17.31%)

Hypertension 0.509

No 5, 495 (40.72%) 426 (49.31%) 276 (49.64%) 178 (48.37%) 93 (43.87%)

Yes 7, 998 (59.28%) 438 (50.69%) 280 (50.36%) 190 (51.63%) 119 (56.13%)

Hyperlipidemia 0.955

No 12, 012 (89.68%) 762 (89.96%) 496 (89.69%) 327 (89.59%) 191 (90.95%)

Yes 1, 383 (10.32%) 85 (10.04%) 57 (10.31%) 38 (10.41%) 19 (9.05%)

Stroke 0.556

No 12, 349 (91.49%) 801 (92.60%) 518 (93.33%) 349 (94.32%) 201 (94.81%)

Yes 1, 148 (8.51%) 64 (7.40%) 37 (6.67%) 21 (5.68%) 11 (5.19%)

Race 0.002

Mexican American 1, 248 (9.22%) 101 (11.66%) 64 (11.47%) 48 (12.97%) 14 (6.60%)

Other Hispanic 858 (6.34%) 28 (3.23%) 13 (2.33%) 8 (2.16%) 12 (5.66%)

Non-Hispanic White 7, 918 (58.52%) 603 (69.63%) 373 (66.85%) 255 (68.92%) 131 (61.79%)

Non-Hispanic Black 2, 717 (20.08%) 117 (13.51%) 90 (16.13%) 53 (14.32%) 52 (24.53%)

Other Race 789 (5.83%) 17 (1.96%) 18 (3.23%) 6 (1.62%) 3 (1.42%)

CAD score: 1 score was appointed for each of the three current risk factors, including history of hypertension, coronary heart disease, or stroke. Additionally, two points
were added for diabetes. Scores range from 0 to 5.

TABLE 2 | Multivariable linear regressions analysis of the LTL–DSST relationship.

Exposure Non-adjusted model Model I Model II

Telomere length (T/S ratio) 9.51 (5.82, 13.19), <0.01 10.27 (6.83, 13.72), <0.01 3.47 (0.14, 6.79), 0.04

Telomere length (T/S ratio)

Q1 (0.39–0.76) Reference Reference Reference

Q2 (0.76–0.88) 2.93 (1.01, 4.85), <0.01 2.87 (1.08, 4.66), 0.01 0.88 (−0.81, 2.58), 0.31

Q3 (0.88–1.02) 4.52 (2.30, 6.73), <0.01 4.43 (2.37, 6.50), <0.01 1.01 (−0.96, 2.97), 0.32

Q4 (1.02–3.00) 4.75 (2.02, 7.49), <0.01 5.87 (3.32, 8.43), <0.01 2.39 (−0.04, 4.82), 0.05

P for trend <0.001 <0.001 0.03

Model I adjusted for gender, race, and educational level; model II adjusted for gender, race, educational level, age, CAD score, and BMI.

found that compared with healthy individuals, patients with
cognitive disorder [including mild cognitive impairment (MCI)
and Alzheimer’s disease (AD)] have truncated TLs in peripheral
blood leukocytes (Honig et al., 2006; Grodstein et al., 2008;
Mather et al., 2010; Valdes et al., 2010), mononuclear cell
(Panossiana et al., 2003), and even in brain tissue (Thomas et al.,
2008), while other studies did not observe a correlation between
cognitive performance and LTL (Zekry et al., 2010; Hochstrasser
et al., 2012; Movérare-Skrtic et al., 2012).

Furthermore, genetics might be a potential confounder in
such a correlation in view of the heritable characteristics of LTL
(Jeanclos et al., 2000; Nawrot et al., 2004). However, studies have

also found significant differences in cognitive scores between
twins with inconsistent TL, and the results confirmed that the
correlation observed between decreased cognitive ability and
shortened TL is robust to age and possible confounding factors.

The precise mechanism underlying the correlation between
shorter LTL and cognitive decline remains unclear. Regarding
TL, apart from the erosion of telomeres with cell division,
telomeres are highly sensitive to damage by oxidative stress
and inflammation (Saretzki and Von Zglinicki, 2002; Aviv
et al., 2006). Oxidative stress enhances telomere attrition
with each cell division (Saretzki and Von Zglinicki, 2002),
whereas inflammation entails increased leukocyte turnover
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TABLE 3 | Effect size of prespecified and exploratory subgroups.

Characteristic No. of
participants

Effect size (95% CI),
P-value

P for
interaction

Age 0.946

<70 781 5.26 (0.24, 10.28), 0.04

≥70 864 5.02 (0.38, 9.66), 0.03

Gender 0.815

Male 816 3.04 (−1.87, 7.95), 0.23

Female 829 3.04 (−1.87, 7.95), 0.23

Race 0.434

Mexican American 176 −0.13 (−11.76, 11.51), 0.98

Other Hispanic 50 −9.90 (−25.39, 5.59), 0.21

Non-Hispanic White 1,152 4.06 (0.17, 7.95), 0.04

Non-Hispanic Black 229 6.26 (−2.23, 14.75), 0.15

Other race 38 5.85 (−26.79, 38.50), 0.73

CAD score 0.583

<3 1,463 3.73 (0.18, 7.29), 0.04

≥3 182 1.01 (−8.16, 10.18), 0.83

Educational level 0.206

High school 845 5.27 (0.92, 9.63), 0.02

Above high school 800 1.10 (−3.85, 6.06), 0.66

BMI 0.480

Lower 439 1.80 (−4.03, 7.62), 0.55

Higher 1,206 4.30 (0.32, 8.27), 0.03

Gender, race, educational level, age, CAD score, and BMI were adjusted. Bold data
mean p value < 0.5.

and subsequently heightens telomere attrition. An in vitro
study reported that the telomere shortening process could be
modulated by oxidative stress (Kawanishi and Oikawa, 2004), and
many proinflammatory markers, such as interleukin (IL)-6, were
negatively correlated with TL (O’Donovan et al., 2011). Evidence
showed that short/dysfunctional telomeres in peripheral immune
cells as well as in microglia could contribute to cellular
senescence that are linked to higher secretion of proinflammatory
mediators that play an important role in the etiopathogenesis
and progression of cognitive impairment (Collado et al., 2007;
Jurk et al., 2012; Weng, 2012; Boccardi et al., 2015). To
some extent, LTL might hinge on the cumulative burden of
inflammation and oxidative stress across the lifespan (Sultana
et al., 2009). Therefore, oxidative stress and inflammation
might be the potential thread linking TL shortening with
cognitive dysfunction.

Several alternative pathways may underlie the pathogenesis
of cognitive impairment. The hippocampus is closely associated
with cognitive function and is regarded as a key area affected by
aging. It has been reported that TL is independently associated
with cortical epithelial marginal areas (including hippocampus
and orbitofrontal cortex areas), which overlaps with brain regions
related to cognitive impairment psychopathology. Previous
animal research reported that telomerase-deficient mice models
showed neuronal loss in the hippocampus and frontal cortex
linked with short-term memory deficits (Rolyan et al., 2011),
whereas telomerase reactivation could reverse aging-related
cognitive deficits (Jaskelioff et al., 2011).

This study exhibits multiple strengths. The multi-ethnic,
national representative data from NHANES allow our findings
to be extrapolated to a broader population. LTL and cognitive
assessment were measured in a large sample, offering high
statistical power to explore their connection. Additionally, with
the NHANES’s rigorous methodology and comprehensive quality
procedures, we adjusted for several potential confounders by
capitalizing on its abundant data.

However, this study also has several imitations. First, its
primary constraint is its cross-sectional design, precluding
inferences about causation. Second, LTL comes from one
measurement rather than assessed longitudinally, which may
provide key insights into the aging process. The shortening rate
of LTL may be a more relevant indicator of the wear and tear that
results in accelerated biological aging than TL measured at one
point in time. Third, because TL maintenance or loss is related
to many environmental factors, TL is also controlled by genetics
and varies widely between individuals (Graakjaer et al., 2004).
Therefore, ideally, one must consider all these intermediate
parameters before attributing the differences in TL to a particular
phenomenon. Fourth, a potential limitation is the use of only
one specific measure of cognitive ability rather than multiple
ones, and the type of cognitive measurement might lead to
different findings. Accompanying tests, such as the Mini Mental
Status Examination (MMSE), could help to assess cognitive
function more comprehensively. However, DSST performance
seems to be sensitive in reflecting attention/concentration, visual
discrimination, information processing speed, and working
memory and is especially suitable for screening MCI in the
elderly (Salthouse, 1996). Moreover, it was reported to be less
sensitive to educational level (Hoyer et al., 2004). Thus, the DSST
scale may represent a relatively comprehensive cognitive scale
(Launer et al., 2011). Future studies are required to determine
the relationship between LTL and cognitive decline, which may
reveal new knowledge on the effect of oxidative stress and
inflammation on health and longevity.

CONCLUSION

Using the NHANES database, this study found a significant
association between LTL and cognitive performance in the elderly
after adjusting for potential confounding factors. Further high-
quality studies need to be conducted to better understand the
pathophysiology of such a correlation.
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