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Research shows that gamma activity changes in Alzheimer’s disease (AD), revealing
synaptic pathology and potential therapeutic applications. We aim to explore whether
cognitive challenge combined with quantitative EEG (qEEG) can unmask abnormal
gamma frequency power in healthy individuals at high risk of developing AD. We
analyzed low (30–50 Hz) and high gamma (50–80 Hz) power over six brain regions
at EEG sensor level (frontal/central/parietal/left temporal/right temporal/occipital) in
a dataset collected from an aging cohort during N-back working memory (WM)
testing at two different load conditions (N = 0 or 2). Cognitively healthy (CH) study
participants (≥60 years old) of both sexes were divided into two subgroups: normal
amyloid/tau ratios (CH-NAT, n = 10) or pathological amyloid/tau (CH-PAT, n = 14) in
cerebrospinal fluid (CSF). During low load (0-back) challenge, low gamma is higher
in CH-PATs than CH-NATs over frontal and central regions (p = 0.014∼0.032, effect
size (Cohen’s d) = 0.95∼1.11). However, during high load (2-back) challenge, low
gamma is lower in CH-PATs compared to CH-NATs over the left temporal region
(p = 0.045, Cohen’s d = −0.96), and high gamma is lower over the parietal region
(p = 0.035, Cohen’s d = −1.02). Overall, our studies show a medium to large negative
effect size across the scalp (Cohen’s d = −0.51∼−1.02). In addition, low gamma
during 2-back is positively correlated with 0-back accuracy over all regions except the
occipital region only in CH-NATs (r = 0.69∼0.77, p = 0.0098∼0.027); high gamma
during 2-back correlated positively with 0-back accuracy over all regions in CH-NATs
(r = 0.68∼0.78, p = 0.007∼0.030); high gamma during 2-back negatively correlated
with 0-back response time over parietal, right temporal, and occipital regions in CH-
NATs (r = −0.70∼−0.66, p = 0.025∼0.037). We interpret these preliminary results to
show: (1) gamma power is compromised in AD-biomarker positive individuals, who are
otherwise cognitively healthy (CH-PATs); (2) gamma is associated with WM performance
in normal aging (CH-NATs) (most significantly in the frontoparietal region). Our pilot
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findings encourage further investigations in combining cognitive challenges and qEEG in
developing neurophysiology-based markers for identifying individuals in the prodromal
stage, to help improving our understanding of AD pathophysiology and the contributions
of low- and high-frequency gamma oscillations in cognitive functions.

Keywords: EEG, behavioral performance, gamma, working memory, high risk of Alzheimer’s disease, CH-NAT,
CH-PAT

INTRODUCTION

Working Memory (WM) and Alzheimer’s
Disease (AD)
Working memory (WM) refers to a core executive function that
maintains and manipulates short term information for learning
and reasoning (Baddeley, 1998a). Working memory processes
are mediated by the frontal cortex and play a critical role in
cognitive processing in everyday functions (Baddeley, 1998a,b).
Alzheimer’s Disease (AD) is a neurodegenerative condition
characterized by the accumulation of beta-amyloid plaques
and neurofibrillary tangles from hyperphosphorylated-tau that
disrupt synapses and lead to cognitive deficits (Rajmohan and
Reddy, 2017; Sperling et al., 2019). Studies have demonstrated
that AD patients have working memory (WM) dysfunction
(Salthouse and Ferrer-Caja, 2003; Salthouse, 2003; Sperling et al.,
2011). In addition, previous studies have shown that working
memory begins to decline by 18 years of age, and EEG alpha
power during WM processing is dysfunctional beginning in early
AD (Rabinowitz et al., 1982; Craik et al., 1987; Craik and Dirkx,
1992; Salthouse, 2003; Arakaki et al., 2019).

Pre-symptomatic Alzheimer’s Disease (AD) is an active
research area because AD treatment may need to start before
damage becomes symptomatic. In our studies, we focused
on cognitively healthy (CH) participants aged 60 and older
with either a pathological (CH-PAT) or normal (CH-NAT)
β42-amyloid/tau ratio within the cerebrospinal fluid (CSF)
(Harrington et al., 2013). Our longitudinal study showed that
CH-PATs had a significantly higher risk of cognitive decline
to mild cognitive impairment (MCI) or AD compared to
CH-NATs over four years (Wilder et al., 2018; Harrington
et al., 2019). We also found CH-PATs present hyper-excitability
during low load WM challenge shown by alpha event-related
desynchronization (ERD) during quantitative EEG (qEEG)
recordings (Arakaki et al., 2019).

Gamma and AD
Studies have shown that alpha and gamma are associated during
WM processing (Harrington et al., 2013; Arakaki et al., 2019).
However, we do not know the role gamma power plays in WM
processing in CH-PATs. The objective of this exploratory study
was to evaluate changes in gamma activity in CH-PATs compared
to CH-NATs using qEEG during the low load and high load
N-back WM paradigm. We hypothesized that gamma power
during high load N-back working memory testing in CH-PAT
individuals is lower than in healthy aging and that gamma power
correlates with N-back performance.

Gamma oscillations can be detected by qEEG and are
modulated by both sensory input (i.e., stimulus) or internal
regulatory mechanisms, and include two classes: high gamma
frequency (>50 Hz) and low gamma frequency (30–50 Hz) (Jia
and Kohn, 2011). Previous studies demonstrate an increase in
both high and low gamma activity in healthy controls during
verbal and non-verbal memory tasks (Tallon-Baudry et al.,
1998; Sederberg et al., 2007; Palop and Mucke, 2016). Also,
individuals formally diagnosed with AD show a significant
reduction in spontaneous global gamma power activity compared
to cognitively healthy individuals (Herrmann and Demiralp,
2005), suggesting a link between gamma activity and cognitive
decline. Data from a mouse model of AD showed decreased
gamma before the cognitive decline and photo-stimulation of
modified cells with blue light at 40 Hz resulted in a significant
increase in Aβ42 clearance and p-tau reduction in CA1 of the
hippocampus (Iaccarino et al., 2016). Also, human studies have
shown that gamma power is highly positively correlated with
memory retrieval success and modulating accuracy (Stevenson
et al., 2018) and gamma activity in epileptic patients increased
with working memory load (Howard et al., 2003; van Vugt
et al., 2010). These studies show that gamma activity plays a
significant role in synaptic health and core executive functions
such as working memory.

Synaptic dysfunctions reported in early AD have been detected
by qEEG (Nava-Mesa et al., 2014; Babiloni et al., 2016c, 2020).
Several studies have explored qEEG in relation to gamma activity.
For example, when baseline power is set as a response measure
for bars moving in random patterns on a screen, only bands
within the low gamma region (35–45 Hz) show a significant
change in response to the stimulus and an increase in spectral
power (Lutzenberger et al., 1995). Furthermore, Tallon-Baudry
et al. (1998) and Tallon-Baudry and Bertrand (1999) observed
evoked gamma 90 ms after stimulus presentation and induced
gamma 280 ms after stimulus presentation. This presence of
both evoked and induced gamma power suggests a temporal
domain for gamma activity in response to the regular visual
stimulus. These studies demonstrate that qEEG is a powerful
tool that can be used to examine changes in gamma power with
high temporal resolution in high-risk individuals. In addition, it
has been shown that healthy older adults and those with MCI
lack modulation and have reduced gamma power, respectively,
compared to healthy younger adults (Missonnier et al., 2004; Barr
et al., 2014). Therefore, we propose that high-risk individuals may
also show compromised gamma activity within cortical regions.
Since little is known about CH-PAT individuals, qEEG can offer
a non-invasive approach to detect early synaptic dysfunctions in
the AD progression spectrum. This method has the potential to
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be complementary to current AD spectrum diagnosis [AT(N)]
(Jack et al., 2018).

MATERIALS AND METHODS

Participants
The Huntington Medical Research Institutes (HMRI)
Institutional Review Board (IRB) has approved this study
(Quorum IRB, Seattle, Study # 27197). All participants have
signed informed consent forms.

We explored gamma power in our published dataset of 24
cognitively healthy participants whose ages ranged from 60 to
100 years for the pilot study (Arakaki et al., 2019). Briefly,
an equal number of participants from each socioeconomic
class was coded for the investigator to remain unbiased.
Assessments included collection of demographic data, physical
exam, blood work, disease severity and disability scales, and CSF
amyloid/tau measurements (Harrington et al., 2013). Participants
with any cognitive impairment, i.e., global clinical dementia
rating scale (CDR) scores > 0, were excluded. Only participants
who had Uniform Data Set-3 format examination with no
classifiable psychiatric or neurological disorder were diagnosed
as CH and enrolled in this study after a 5 h comprehensive
neuropsychological battery in which testing was performed
independent/blind to the Aβ42 and tau classifications. We test
the cognitive domains of memory, executive function, language,
attention, and visuospatial orientation. All data were normalized
to age, sex, and normative education tables (Harrington et al.,
2013). These formal neuropsychometric data were combined
with clinical dementia rating, Montreal Cognitive Assessment,
Mini-Mental State Examination, as described (Harrington et al.,
2013). Participants were then classified, depending on individual
CSF Aβ/tau ratios, as either normal (CH-NATs) or pathological
(CH-PATs), compared to a cutoff value (2.7132) derived from
a logistic regression model that correctly diagnosed > 85% of
clinically probable AD participants (Harrington et al., 2013).
Three potential participants were excluded either because they
were too young to participate or their clinical classification
(MCI), resulting in 24 study participants: 10 NATs and 14
PATs. Their CSF Abeta/Tau ratios (mean ± SD) are: CH-
NATs (4.95 ± 1.19) and CH-PATs (1.75 ± 0.66). Researchers
collected and analyzed EEG data with no knowledge about the
group classification. As shown in the previous study, this cohort
included two groups of participants that were comparable for
age, gender, education, and handedness, as previously described
(Arakaki et al., 2019).

Procedures
Study participants were seated in a quiet room, and were first
asked, for resting state baseline measures, to “sit still” and “empty
their minds” for 5 min with eyes open (eyes fixed at the letter
“E” on the bottom of the dark screen), and then for 5 min
with eyes closed.

The brain cognitive challenge, or N-back WM test (N = 0,
2 that reflect the load conditions of the task), was administered
using E-prime software (Psychology Software Tools, Inc.,

Sharpsburg PA) on a Dell Precision T5610 with a 20” screen.
Procedures were described previously (Arakaki et al., 2018, 2019).
Participants were comfortably seated before a computer screen
and were instructed, practiced for 2–3 min, and were then
tested for 0-back, then for 2-back. We challenged participants’
working memory by visual N-back (identify target letter in a
sequential letter presentation), with low load (0-back, identify the
target in the presenting letter) and high load (2-back, identify
the letter that is the same as two screens back) trials. Each
load condition included 3 blocks of 30 trials a block. The
N-back task took 12–25 min to complete. As previously reported,
neither accuracy (ACC) nor response time (RT) were significantly
different between the CH-NAT and CH-PAT participants during
the 0-back test; RT during 2-back was not significantly different;
ACC for 2-back was significantly better in CH-NAT compared to
CH-PATs (Table 1).

EEG Recordings
Online EEG data were collected during resting or the WM
challenge as previously described (Arakaki et al., 2018). We
placed a 21-sensor, dry electrode system (Quasar Wearable
Sensing, DSI-24, San Diego, CA) approximately at locations at
the international 10–20 system (Fp1, Fp2, F7, F3, Fz, F4, F8,
T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2, M1, and M2).
EEG signals were sampled at 300 Hz, and bandpass filtered
between 0.003–150 Hz. Three auxiliary sensors were used to
record electrooculographic (EOG), electrocardiographic (ECG),
and electromyography (EMG) (on the right forearm) activity.
A trigger channel encoded the time of presentation of letter
stimuli, participants’ responses, and test type (0- or 2-back) for
further analysis.

Behavioral and EEG Data Processing
A researcher collected all behavioral and EEG data and processed
them without knowledge of CH-NAT/CH-PAT status. Behavioral
performance was described and compared by accuracy (ACC)
and response time (RT): ACC was defined as the percentage of
correctly responded trials out of total trials; RT as the average
duration of time from stimulus onset to participant’s response
for correct trials.

We analyzed all data in EEGLAB version 13.4.3b (Delorme
and Makeig, 2004) running in MATLAB R2016b (The
MathWorks, United States) and custom codes developed
in-house. Continuous EEG recordings were segmented into
epochs of 2,500 ms duration during eyes closed for resting
state or using stimulus onset as a reference during WM,
including 500 ms before and 2,500 ms after stimulus onset.
Only correctly responded trials were used for analysis because
we were interested in activities that are supported by the
WM task. Preprocessing steps included epoching, filtering,
re-referencing, large artifact removal, and time-frequency
analysis. Preprocessing and time-frequency (TF) analyses were
as previously described (Arakaki et al., 2018). Briefly, epochs
were filtered between 30 and 80 Hz. Epochs with considerable
artifact activity greater than three standard deviations (SDs) of
each sensor were rejected. For TF analysis, epoched EEG data
were decomposed with logarithmic scaling between 30 and 80 Hz
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TABLE 1 | Accuracy and reaction time in CH-NATs vs. CH-PATs.

CH-NAT CH-PAT P-value Pooled SD Cohen’s d

Ave (SD) Max K-S value* Ave (SD) Max K-S value*

0-back

ACC 0.90 (0.06) 0.17 0.88 (0.06) 0.17 0.441 0.06 −0.33

RT (ms) 574.45 (96.40) 0.1 559.73 (63.23) 0.12 0.679 81.52 −0.18

2-back

ACC 0.82 (0.07) 0.11 0.75 (0.09) 0.15 0.029 0.08 −0.87

RT (ms) 865.35 (128.02) 0.19 836.85 (132.36) 0.09 0.602 130.21 −0.22

The mean accuracy (ACC) and mean reaction time (RT) were calculated for both CH-NATs and CH-PATs. There is no significant difference in 0-back for both ACC and
RT however, during 2-back CH-NATs performed significantly better than CH-PATs. P-values with < 0.05 are in bold italics to denote significance (Baddeley, 1998b). *K-S
values are based on (α = 0.05 critical value of 0.41. SD standard deviation; K-S, Kolmogorov-Smirnov test.

by fast Fourier transform and Morlet wavelet [ei2πtf e−t
2/2σ2

]
convolution in the frequency domain, followed by the inverse
fast Fourier transform (Cohen and Donner, 2013; Cohen, 2014).
Power values were calculated before averaging over epochs.
Power values were normalized by decibels to the baseline power
from −400 to −100 ms pre-stimulus at each frequency band
[dB power = 10∗log10(

power
baseline )]. We extracted low gamma

(500–1,500 ms, 30–50 Hz) and high gamma (500–1,500 ms,
50–80 Hz) for comparison across sensors, participants, and
groups. This was done separately for each sensor, condition, and
participant. Gamma power was compared between CH-NATs
and CH-PATs. The relationship between gamma power and
behavioral performance (ACC and RT) was studied using
Pearson’s correlation.

Statistical Methods
We performed group comparisons on participant baseline
characteristics using two-sided t-tests or Fisher’s exact test. For
each participant, we averaged the total gamma power from
all sensors and the gamma power from each sensor for each
of the following 6 regions (Lianyang et al., 2016; Arakaki
et al., 2018): frontal or F (Fz, F3, F4), central or C (Cz, C3,
C4), parietal or P (Pz, P3, P4), left temporal or LT (F7, T3,
T5), right temporal or RT (F8, T4, T6), and occipital or O
(O1, O2) (demonstrated in the results section). We compared
gamma power between two groups (PAT, NAT). As this was an
exploratory study, we did not correct for multiple comparisons.
Further, since individuals with early AD have demonstrated
frontal hyperactivity (Qi et al., 2010; Mormino et al., 2011;
Lim et al., 2014; Lopez et al., 2014; Nakamura et al., 2018), we
compared gamma power during resting state (eyes open and
eyes closed, Supplementary Tables S1, S2), and during the task
(0-back, and 2-back) between two groups (CH-NATs and CH-
PATs). We used Cohen’s equation d = µ1−µ2

S for effect size (ES)
to examine the magnitude of difference between two groups (CH-
NATs and CH-PATS), where (d) is the effect size, µ1 is the control
mean, µ2 is the experimental mean, and S is the pooled standard
deviation. Given that the mean of each population is different, the
pooled standard deviation was calculated from pooled variance:

S2
=

(n−1)S2
x+(m−1)S2

y
n+m−2 , where S2 is the pooled variance, n being

the sample size of group 1, Sx is the standard deviation of

group 1, m being the sample size of group 2, and Sy being the
standard deviation of group 2. We compared gamma power for
each region between groups using two-sided t-tests. We used a
Kolmogorov-Smirnov (K-S) test to demonstrate the normality of
our dataset and Kendall’s tau to measure correlation in addition
to Pearson’s r. We performed all analyses using PRISM v6.07
(GraphPad), MATLAB R2020a, or Excel from Microsoft Office
365. We set a significance level of 0.05 for all tests.

RESULTS

Time-Frequency Plots of Mean Gamma
During 2-Back
Time-frequency plots of full gamma frequency range (30–80 Hz)
during 2-back testing are shown with stimulus onset (ms) by
group, in Figure 1. The CH-PAT group tended to have lower
gamma across all regions (Figure 1).

Gamma Power in Brain Regions
Figure 2A is a visual representation of the groupings of EEG
sensors (F, C, P, LT, RT, and O regions) distributed according
to the 10–20 international placement system (Rojas et al.,
2018), with some similarity to regions in an earlier study
(Dauwels et al., 2010).

Topoplots show different gamma distribution by groups
during 0-back (Figure 2B) and 2-back (Figure 2C). During
0-back, compared to CH-NATs, CH-PATs have higher low
gamma over the frontal region (0.18 ± 0.46 vs. −0.26 ± 0.31,
p = 0.014, ES = 1.11) and central region (0.36 ± 0.53 vs.
−0.15 ± 0.55, p = 0.032, ES = 0.95). Therefore, besides p-values,
CH-PATs have large, positive ES for greater frontocentral low
gamma (ES > 0.80) compared to CH-NATs, and almost no
ES for high gamma.

During 2-back compared to CH-NATs, CH-PATs have
decreased low gamma (30–50 Hz) over the left temporal region
(−0.22 ± 0.63 vs. 0.43 ± 0.72, p = 0.045, ES = −0.96), and
decreased high gamma (50–80 Hz) over the parietal region
(−0.06 ± 0.52 vs. 0.90 ± 1.22, p = 0.035, ES = −1.02).
Interestingly, in addition to p-values, CH-PATs have medium
to large negative ES for both low gamma and high gamma
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FIGURE 1 | Time-frequency plots (six regions) of mean gamma power during the 2-back test. This is a 3D plot with time reference to stimulus onset (x-axis in ms),
frequency (y-axis in Hz), and power (color scale in dB units) during 2-back testing. Scale bar: power (decibel or dB).

compared to CH-NATs, which are homogeneous across the scalp
(ES <−0.5).

Details are shown in Tables 2, 3.
No differences were found between the two groups during eyes

open or eyes closed resting state (Supplementary Tables S1, S2).

Gamma Power Correlates With Accuracy
in CH-NATs
Low gamma during 2-back is positively correlated only in CH-
NATs with 0-back accuracy over F, C, P, LT, and RT regions
(r = 0.69∼0.77, p = 0.0098∼0.027); high gamma during 2-back
is positively correlated with 0-back accuracy over all regions
(r = 0.68∼0.78, p = 0.007∼0.030). High gamma during 2-back is
negatively correlated with 0-back response time over P, RT, and O
regions (r = −0.70∼−0.66, p = 0.025∼0.037). Details are shown
in Tables 4, 5.

Because of the small sample size, we also correlated gamma
power with ACC and RT using Kendall’s tau with similar results
(Supplementary Tables S3, S4).

DISCUSSION

In our exploratory study we propose that CH-PATs present more
gamma power during the low load condition and less gamma
during the high load condition compared to CH-NATs, indicating
hyperactivity during low load and insufficient activity during high
load. The load difference is consistent with previous findings
of altered alpha power in the CH-PATs (Arakaki et al., 2019,
2020). We reported higher risk for cognitive decline for CH-
PATs in a longitudinal follow-up study: after 4 years, none of
the CH-NATs had declined cognitively, however, 11/28 CH-
PATs, or nearly 40% of the group, declined cognitively ranging
from significantly impaired to clinically probable AD dementia

(Wilder et al., 2018; Harrington et al., 2019). Our follow-up study
shows relatively high sensitivity and low specificity. Similarly in
a longitudinal study for patients with MCI, Hansson et al. have
demonstrated that CSF amyloid and/or tau concentrations have
predictive value for progression to AD, where CSF measures
show limited specificity (Hansson et al., 2006). Positron emission
tomography (PET) imaging may be appropriate for this cause
because of higher specificity (Muller et al., 2019). We are planning
more extensive follow-up study to address this limitation.

We also show that gamma power correlates with behavioral
performance in CH-NATs, but not CH-PATs. First, we noticed
only in CH-NATs, accuracy on the 0-back condition was
associated with low gamma across F, P, LT, and RT, and high
gamma activity in all regions on the 2-back WM condition.
This result is consistent with the findings by Stevenson et al.
that there is an association between high gamma power and
accuracy on a spatial memory task in epileptic patients with
an implanted electrode in the dorsolateral prefrontal cortex
(DLPFC) (Stevenson et al., 2018). Our results support our
hypothesis that CH-PATs have insufficient brain resources for
gamma power in the frontal lobe, the center for executive
functions, and diminished capability to hold the testing goal
compared to CH-NATs.

Gamma Power Studies in Other Settings
There has been considerable interest in the role that the gamma
band plays in cognitive processes. Human and animal studies
reveal how gamma is propagated and we present hypotheses of
its functionality, summarized in Supplementary Table S5.

N-back Working Memory in Relation to Gamma
Oscillations
Working memory and other higher-order cognitive processes are
optimal when neural oscillations within the gamma frequency
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FIGURE 2 | Topoplots of mean gamma power during 0-back and 2-back, by groups. (A) Topomap shows groups of EEG sensors for frontal (F), central (C), parietal
(P), left temporal (LT), right temporal (RT), and occipital (O) regions. (B) Comparisons of low gamma and high gamma power during 0-back testing by groups are
shown in topoplots. (C) Comparisons of low gamma and high gamma power during 2-back testing by groups. P-values and Cohen’s d (effect size) of the
between-group differences are shown in the bottom two rows, respectively. During 0-back compared to CH-NATs, CH-PATs have higher low gamma over the frontal
region (0.18 ± 0.46 vs. –0.26 ± 0.31, p = 0.014, ES = 1.11) and central region (0.36 ± 0.53 vs. –0.15 ± 0.55, p = 0.032, ES = 0.95). During 2-back compared to
CH-NATs, CH-PATs have decreased low gamma (30–50 Hz) over left temporal region (–0.22 ± 0.63 vs. 0.43 ± 0.72, p = 0.045, ES = –0.96), and decreased high
gamma (50–80 Hz) over parietal region (–0.06 ± 0.52 vs. 0.90 ± 1.22, p = 0.035, ES = –1.02), as shown on Tables 2, 3. Scale bar: power (dB), p-value, or
Cohen’s d.

bands are synchronized (Bartos et al., 2007; van Vugt et al., 2010;
Chen et al., 2014; Cohen, 2014). Since proper modulation of
inhibition via GABAergic networks plays a significant role in the
generation of gamma oscillations, we hypothesized that CH-PAT
individuals may have impaired inhibition mechanisms resulting
in hyperactivity during subsequent low load conditions and failed
activation in high load condition due to overtaxing (Bartos et al.,
2007; Jia and Kohn, 2011; Chen et al., 2014; Palop and Mucke,
2016; Arakaki et al., 2018).

Working memory has been used in various ways as a cognitive
task to evaluate the temporary storage and manipulation of
information (Baddeley, 1998a; Owen et al., 2005). Previous
studies have used working memory paradigms to evaluate
cognitive functions, specifically in the frontal cortex. The n-back
test is widely used as a reliable measure of WM in the DLPFC
(Jonides et al., 1993; Goldman-Rakic, 1994; Courtney et al., 1998;

Owen et al., 2005). Furthermore, studies using fMRI during
n-back WM show robust activation of several cortical regions,
including the lateral premotor cortex, dorsal cingulate and medial
premotor cortex, dorsolateral and ventrolateral prefrontal cortex,
frontal poles, and medial and lateral posterior parietal cortex
(Owen et al., 2005). In a wide variety of cognitive tasks, the
parietal cortex is typically involved in the implementation of
stimulus response mapping (Kimberg et al., 2000; Miller and
Cohen, 2001; Rushworth et al., 2001a,b; Corbetta et al., 2002;
Shulman et al., 2002a,b; Andersen and Buneo, 2003; Buneo
et al., 2003; Dreher and Grafman, 2003). Studies have also
shown a strong association with gamma oscillations and short-
term memory, where individuals required to hold information
within their working memory showed increased gamma power
(Tallon-Baudry et al., 1998; Tallon-Baudry and Bertrand, 1999).
Gamma oscillations measured within the neocortex via EEG
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TABLE 2 | Low and high gamma powers for both CH-NATs and CH-PATs during 0-back WM testing.

0-back NAT PAT P-value Pooled SD Cohen’s d

Regions Ave SD Max K-S* Ave SD Max K-S*

Low gamma (30–50 Hz)

F −0.26 0.31 0.17 0.18 0.46 0.09 0.014 0.41 1.11

C −0.15 0.55 0.23 0.36 0.53 0.10 0.032 0.54 0.95

P 0.01 0.39 0.18 0.24 0.46 0.15 0.221 0.43 0.52

LT −0.16 0.49 0.14 0.25 0.59 0.10 0.081 0.55 0.76

RT 0.12 0.51 0.17 0.24 1.00 0.16 0.713 0.84 0.15

O 0.13 0.44 0.20 0.31 0.62 0.10 0.424 0.55 0.34

High gamma (50–80 Hz)

F −0.17 0.52 0.26 0.04 0.41 0.08 0.276 0.46 0.46

C −0.15 0.66 0.25 0.20 0.42 0.10 0.127 0.53 0.66

P 0.02 0.50 0.21 0.09 0.32 0.09 0.697 0.40 0.16

LT −0.15 0.44 0.21 0.02 0.63 0.15 0.484 0.56 0.29

RT 0.12 0.59 0.13 −0.12 0.57 0.15 0.336 0.58 −0.41

O 0.16 0.42 0.13 0.04 0.48 0.09 0.538 0.46 −0.26

The pooled standard deviation was calculated to increase the precision of the standard deviation between both CH-NATs and CH-PATs. Clinical significance was
established using the Effect Size (ES) under Cohen’s Criteria. *K-S values are based on (α = 0.05 critical value of 0.41. SD, standard deviation; K-S, Kolmogorov-Smirnov
test.

TABLE 3 | Low and high gamma powers for both CH-NATs and CH-PATs during 2-back WM testing.

2-back NAT PAT P-value Pooled SD Cohen’s d

Regions Ave SD Max K-S* Ave SD Max K-S*

Low gamma (30–50 Hz)

F 0.37 1.02 0.11 −0.06 0.60 0.20 0.270 0.84 −0.51

C 0.58 0.99 0.11 0.00 0.55 0.22 0.121 0.80 −0.73

P 0.66 0.96 0.17 0.11 0.49 0.16 0.120 0.76 −0.73

LT 0.43 0.72 0.15 −0.22 0.63 0.25 0.045 0.68 −0.96

RT 0.58 0.76 0.14 0.10 0.91 0.17 0.214 0.84 −0.58

O 0.78 0.83 0.15 0.31 0.39 0.16 0.122 0.65 −0.73

High gamma (50–80 Hz)

F 0.60 1.30 0.16 −0.13 0.57 0.26 0.121 1.00 −0.73

C 0.70 1.24 0.24 −0.22 0.66 0.19 0.053 1.00 −0.93

P 0.90 1.22 0.22 −0.06 0.52 0.14 0.035 0.94 −1.02

LT 0.55 0.89 0.12 −0.16 0.59 0.21 0.051 0.76 −0.94

RT 0.62 1.13 0.20 −0.20 0.72 0.17 0.068 0.95 −0.87

O 0.87 1.09 0.18 0.14 0.56 0.17 0.077 0.86 −0.84

The pooled standard deviation was calculated to increase the precision of the standard deviation between both CH-NATs and CH-PATs. Clinical significance was
established using Effect Size (ES) under Cohen’s Criteria. *K-S values are based on α = 0.05 critical value of 0.41. SD, standard deviation; K-S, Kolmogorov-Smirnov
test.

provide a unique perspective on neuropsychological changes
that occur within aging participants who are at high risk of
developing AD. In our pilot study, we report gamma power
changes occurring within CH-PATs compared to CH-NATs
within both the frontal and parietal regions, where CH-PATs
show increased frontocentral low gamma power and decreased
high gamma in the parietal region during the 2-back condition.
Cohen’s d analysis suggests there is a global negative effect
size in CH-PATs during 2-back. Further validation of these
findings will provide insights into changes occurring within
these WM regions in high risk AD individuals. N-back WM

paradigms have also revealed behavioral changes associated
with aging. Several studies have found a strong association
between aging and reaction time, with increase in reaction
time with age (Gajewski et al., 2018). Furthermore, increased
age has been associated with implicated attention and accuracy
on n-back working memory tests (Gajewski et al., 2018).
Within our cohort we observe that CH-PATs have decreased
accuracy in the 2-back condition compared to CH-NATs. Further
studies on the association among gamma power, RT, and
ACC may provide insights into how gamma oscillations are
involved with ACC and RT. Our EEG findings are consistent
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TABLE 4 | Correlation of gamma and behavior performances during 0-back.

CH-NAT CH-PAT

ACC_N0 RT_N0 ACC_N2 RT_N2 ACC_N0 RT_N0 ACC_N2 RT_N2

N0_p

Low Gamma F 0.916 0.788 0.664 0.536 0.091 0.086 0.733 0.557

C 0.844 0.494 0.536 0.450 0.239 0.250 0.639 0.630

P 0.966 0.911 0.863 0.595 0.214 0.208 0.945 0.725

LT 0.706 0.476 0.557 0.830 0.290 0.459 0.702 0.411

RT 0.771 0.111 0.665 0.655 0.782 0.114 0.834 0.441

O 0.973 0.811 0.475 0.960 0.177 0.406 0.720 0.172

High gamma F 0.541 0.530 0.403 0.744 0.089 0.285 0.306 0.981

C 0.823 0.833 0.572 0.995 0.128 0.713 0.356 0.402

P 0.908 0.795 0.712 0.901 0.051 0.474 0.944 0.490

LT 0.630 0.758 0.444 0.970 0.101 0.707 0.665 0.813

RT 0.374 0.278 0.036 0.420 0.422 0.162 0.947 0.830

O 0.493 0.638 0.726 0.745 0.055 0.633 0.603 0.460

N0_r

Low Gamma F −0.04 −0.10 −0.16 0.22 0.56 −0.57 −0.12 0.21

C −0.07 −0.25 −0.22 0.27 0.41 −0.40 −0.17 0.17

P 0.02 −0.04 −0.06 0.19 0.43 −0.44 0.03 0.13

LT −0.14 0.26 −0.21 0.08 0.37 −0.26 0.14 0.29

RT 0.11 −0.54 −0.16 −0.16 0.10 −0.53 0.08 −0.28

O 0.01 −0.09 −0.26 0.02 0.46 −0.30 −0.13 0.47

High gamma F −0.22 −0.23 −0.30 −0.12 0.57 −0.38 −0.36 0.01

C −0.08 −0.08 −0.20 0.00 0.52 −0.13 −0.33 0.30

P 0.04 −0.09 −0.13 −0.05 0.63 −0.26 −0.03 0.25

LT −0.17 −0.11 −0.27 −0.01 0.55 −0.14 0.16 0.09

RT −0.32 −0.38 −0.66 −0.29 0.29 −0.48 −0.02 −0.08

O 0.25 −0.17 −0.13 −0.12 0.62 −0.17 −0.19 0.26

Correlations between EEG gamma power with accuracy (ACC) and response time (RT) for both CH-PATs and CH-NATs during 0-back testing for both low and high
gamma power. P-values are reported (in bold italics when < 0.05) and Pearson Correlation “r” (underlined when < −0.5 or > 0.5).

with Barr et al. (2014) who conducted EEG experiments on
cognitively healthy individuals ages 19–60: while our cohort
is > 60 years, our results are consistent with their findings of
increased gamma activity during high load relative to low load
conditions. N-back testing may be a useful tool for observing
neurocognitive changes in aging individuals and may provide
insight into how gamma oscillations are implicated in the
early stages of AD.

Gamma Oscillations in Relation to AD Pathology
Gamma oscillations have recently been the focus of several
AD studies for their potential therapeutic properties. Recent
studies have reported that gamma oscillations are impaired in
AD patients and AD animal models, specifically in circuits
pertaining to memory acquisition and retrieval (Nakazono et al.,
2018). Studies on transgenic AD mice have shown gamma
impairments in neuronal spike activity and LFP oscillatory
activity. For instance, in a study performed by Goutagny
et al. (2013), 1-month old TgCRND8 transgenic mice showed
impaired theta-gamma cross-frequency coherence before plaque
formation. In terms of tau formation, Booth et al. (2016)
showed that in amice model of tauopathy (rTg4510), within
the medial entorhinal cortex, gamma activities in dorsal region

was preferentially disrupted while those in ventral regions were
comparatively preserved. They conclude that this disruptions
and the corresponding flattened dorsoventral gradients of
theta-gamma coupling may contribute to spatial learning and
memory deficit observed in this tauopathy mouse model
(Booth et al., 2016). Furthermore, Iaccarino et al. (2016)
and Nakazono et al. (2018), using 5XFAD transgenic AD
mice models showed impaired gamma oscillations within the
hippocampus at 3 months before plaque deposition. In addition,
photostimulation of hippocampal circuits within the gamma
band increased Aβ42 clearance and p-tau reduction, specifically
in CA1 (Iaccarino et al., 2016). This suggests that gamma power
helps hippocampal fidelity with increased clearance protecting
neurons in the memory circuit. In the neocortex, gamma
oscillations are impaired within the parietal cortex of J20 AD
mice models (Verret et al., 2012; Verret, 2012). Together, these
studies demonstrate that the gamma rhythm is impaired in the
hippocampus and possibly other regions of the neocortex in
AD mouse models before Aβ plaque pathology. Given these
findings, qEEG may be a useful tool for detecting gamma
power impairments in mice before plaque deposition. Further
exploration of the mechanisms underlying gamma impairment is
needed. Further studies in humans to validate the use of qEEG as
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TABLE 5 | Correlation of gamma and behavior performances during 2-back.

CH-NAT CH-PAT

ACC_N0 RT_N0 ACC_N2 RT_N2 ACC_N0 RT_N0 ACC_N2 RT_N2

N2_p

Low Gamma F 0.0098 0.100 0.102 0.449 0.744 0.830 0.451 0.886

C 0.016 0.072 0.136 0.452 0.390 0.640 0.911 0.305

P 0.027 0.059 0.206 0.449 0.713 0.924 0.809 0.535

LT 0.024 0.194 0.150 0.388 0.645 0.779 0.190 0.354

RT 0.024 0.057 0.135 0.546 0.109 0.372 0.739 0.073

O 0.063 0.052 0.340 0.525 0.743 0.796 0.566 0.555

High gamma F 0.017 0.060 0.090 0.723 0.479 0.992 0.288 0.633

C 0.021 0.088 0.087 0.684 0.764 0.975 0.558 0.531

P 0.026 0.025 0.141 0.738 0.965 0.835 0.613 0.777

LT 0.007 0.093 0.054 0.590 0.828 0.963 0.263 0.383

RT 0.030 0.037 0.144 0.979 0.097 0.416 0.628 0.196

O 0.022 0.034 0.164 0.895 0.786 0.757 0.734 0.724

N2_r

Low Gamma F 0.77 −0.55 0.55 0.27 −0.12 −0.08 −0.27 −0.05

C 0.73 −0.59 0.51 0.27 −0.31 0.17 0.04 −0.36

P 0.69 −0.61 0.44 0.27 −0.13 −0.03 −0.09 −0.22

LT 0.70 −0.45 0.49 0.31 0.17 −0.10 −0.45 0.33

RT 0.70 −0.62 0.51 0.22 −0.54 −0.32 −0.12 −0.59

O 0.61 −0.63 0.34 0.23 −0.12 0.09 −0.21 0.21

High gamma F 0.73 −0.61 0.56 0.13 −0.25 0.00 −0.37 −0.17

C 0.71 −0.57 0.57 0.15 −0.11 −0.01 −0.21 −0.23

P 0.69 −0.70 0.50 0.12 −0.02 −0.08 −0.18 −0.10

LT 0.78 −0.56 0.62 0.19 0.08 −0.02 −0.39 0.31

RT 0.68 −0.66 0.50 −0.01 −0.55 −0.29 −0.18 −0.45

O 0.71 −0.67 0.48 0.05 0.10 0.11 −0.12 0.13

Correlations between EEG gamma power with accuracy (ACC) and response time (RT) for both CH-PATs and CH-NATs during 0-back testing for both low and high
gamma power. P-values are reported (in bold italics when < 0.05) and Pearson Correlation “r” (underlined when < −0.5 or > 0.5).

an effective tool for detecting early dysfunction in high-risk AD
individuals are needed.

Due to the novelty of the role of gamma power within the
brain, few studies have explored gamma power impairments
in AD patients. Nonetheless, it is a rapidly expanding field
of study that may yield useful therapies for AD. EEG
studies have previously characterized AD patients as exhibiting
high delta and theta power while showing decreased alpha
and beta power (Babiloni et al., 2016a,b,c,d; Wang et al.,
2017). Interestingly, Wang et al. (2017) compared resting
EEGs between CH and AD patients with both eyes open
and closed and showed increased gamma power in AD
patients compared to controls (Wang et al., 2017). They
propose that the presence of abnormally greater ongoing
resting gamma power might be a result of GABAergic
interneuron dysfunction within neuronal networks in AD
patients; the over couplings between frequency domain may
suggest more cognitive resources needed in AD patients to
maintain the resting brain state (Wang et al., 2017). In our
study, CH-PATs showed elevated gamma power in the low
load condition and compromised gamma power in the high
load conditions, indicating that possible disinhibition due to
disruptions within these networks results in the expenditure

of maximum neural resources to maintain the testing goal at
low load challenge. Further studies with a larger cohort may
further support the use of EEG for early AD detection and
validate our hypothesis.

Mechanisms, Models, and Theories
About the Gamma Frequency
The precision timing of neuronal-spiking activities is theorized
to play a critical role in the coding of information (O’Keefe
and Recce, 1993; Wang and Buzsaki, 1996; Singer, 1999; Buzsaki
and Wang, 2012; Buzsaki and Schomburg, 2015). This precision
spiking is thought to contribute significantly to the generation
of the gamma frequency (Jia and Kohn, 2011). Previous
studies have also shown that some cortical neurons show a
“resonance phenomenon” at specific frequencies, particularly
10, 20, 40, and 80 Hz (Herrmann, 2001; Herrmann and
Demiralp, 2005). One theory for the presence of these resonance
frequencies is that neuronal clusters in feedback circuits,
such as the visual circuit, transmit time-delayed information
from higher to lower processing centers resulting in temporal
synchronization of activity at 40 Hz (Herrmann, 2001; Herrmann
and Demiralp, 2005). We have not found this specific 40 Hz
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effect in our data. Future studies are needed to clarify this
resonance phenomenon in our aging population. However,
even parvalbumin-positive (PV+) cells exhibiting no resonating
frequencies exhibit gamma, indicating that timing plays a critical
part in the synchronized spiking observed in the gamma rhythm
(Fuchs et al., 2007).

Gamma activity is thought to be mediated by GABAergic
interneurons firing at specific time points within a spike
cycle, increasing the probability of excitatory synchronization in
neuronal clusters (Hasenstaub et al., 2005; Jia and Kohn, 2011).
This mechanism, GABAergic interneurons firing specifically
at the minima of a spike cycle in neuronal clusters within
complex circuits, is thought to be associated with gamma activity
production and cortical fidelity (Missonnier et al., 2004; Barr
et al., 2014). Current research presents several models for the
mechanism and propagation of gamma power mediated by
GABAergic interactions. One model posits a “stripped-down”
network consisting of only inhibitory neurons known as the
Inhibitory network gamma (ING) (Wang and Buzsaki, 1996;
Buzsaki and Wang, 2012; Buzsaki and Schomburg, 2015). In this
model, experimenters noticed that gamma oscillations emerged
in two different ways. First, if the firing rate is relatively tonic,
there is well-defined periodicity within the gamma rhythm
(Kopell et al., 2000). However, stochastic inputs and irregular
firing create an unstable asynchronous state that results in gamma
emergence (Wang and Buzsaki, 1996; Geisler et al., 2005; Ardid
et al., 2010; Buzsaki and Wang, 2012). Synchronization occurs
when a cluster of interneurons firing synchronously, creating a
spike in the post synaptic neuron during hyperpolarization decay,
reinitiates the spike cycle. In this model inhibitory-inhibitory
interaction is the driving mechanism for gamma propagation.
Another model posits reciprocal connections between excitatory
pyramidal and inhibitory interneurons known as the pyramidal-
interneuron network gamma (PING) (Wilson and Cowan, 1972;
Wang and Buzsaki, 1996; Kopell et al., 2000; Geisler et al.,
2005; Buzsaki and Wang, 2012; Buzsaki and Schomburg, 2015).
The PING network model describes the delay in pyramidal
and intraneuronal spikes and that timing delay is thought to
be one of the most prominent features of gamma propagation
in vitro and in vivo (Bragin et al., 1995; Csicsvari et al., 2003;
Hasenstaub et al., 2005; Hajos and Paulsen, 2009; Tiesinga and
Sejnowski, 2009; Buzsaki and Schomburg, 2015). Studies have
shown that the genetic knockdown of AMPA receptors on
fast-spiking interneurons reduces the amplitude of the gamma
rhythm (Fuchs et al., 2007). Between the two models, the PING
model has more support than the ING model as studies show that
disconnecting many INGs within the CA1 of the hippocampus
does not significantly affect gamma power in mice (Wulff
et al., 2009). However, this does not discount INGs since they
have been shown to produce gamma oscillations as previously
mentioned and gamma is present in regions such as the basal
ganglia that possess few excitatory networks. These models are
likely cooperative, independent of inhibition or excitation but
on the timing of GABAergic neurons within their respective
clusters. In our study, we speculate that these networks are
compromised within CH-PATs, given their CSF classifications,
because of interference caused by abnormal β-amyloid and tau.

Previous studies have shown that soluble β-amyloid within the
hippocampus of mice causes hyperactivity prior to the formation
of plaques (Busche et al., 2012), and a tauopathy mice model
shows abnormal gamma activities (Booth et al., 2016). The
interference caused by soluble β-amyloid/tau may disrupt the
time-specific firing of GABAergic interneurons within INGs and
PINGs, resulting in compromised gamma activity, observed in
CH-PATs compared to CH-NATs.

Excessive Low Gamma During Low Load
WM and Insufficient Gamma During High
Load WM Challenge in CH-PATs vs.
CH-NATs
In our study, we evaluated the synaptic mechanisms underlying
gamma activity in a cognitive healthy (CH) aging cohort who
have been classified by CSF amyloid/tau ratio as either normal
(CH-NATs) or pathological (CH-PATs). We show that during
low load WM challenge, CH-PATs had increased low gamma
activity in the frontal and central regions known to be centers for
executive function and higher order processes, suggesting hyper-
activity during low load challenge (Baddeley, 1998b). Given
the significantly decreased high gamma during the high load
challenge, our data may suggest that the high load condition
may be overtaxing for CH-PATs, resulting in failing gamma
modulation. This condition is consistent with our previous
analysis of alpha event-related desynchronization (ERD), where
we showed a higher load WM challenge overtaxed CH-PAT
participants (Arakaki et al., 2019). Alpha ERD reflects cortical
activation (Klimesch, 2012). There are recent reports on the roles
that high frequency and low-frequency gamma play in cognition
(Ray and Maunsell, 2011). Two leading hypotheses are proposed:
first, high gamma functions the same as low gamma oscillations
as it pertains to cognition and somatosensory integration, just at a
higher frequency and shorter timescale; second hypothesis states
that high-gamma power is related to spiking activity unrelated
to information processing and integration (Ray and Maunsell,
2011). A study on gamma power and spiking activity in the
primary visual cortex (V1) of awake monkeys while varying
stimulus size found that low gamma power was anti-correlated
with high-gamma power, suggesting that the two phenomena
are distinct and have different origins and functions (Ray and
Maunsell, 2011). In addition, when baseline power is set as a
response measure for bars moving in random patterns on a
screen, only bands within the low gamma region (35–45 Hz)
showed a significant change in response to the stimulus, showing
an increase in spectral power (Sederberg et al., 2007). These
findings suggest that low gamma power is a more accurate
indication of held attention and learning. However, future
studies should explore the role of both high and low gamma in
cortical regions.

Data Interpretation: Gamma Power
During the resting state (both during eyes open and eyes closed),
there were no gamma differences between the two groups.
Interestingly, there were gamma changes during tasks in CH-
PATs versus CH-NATs, and these changes are notably different
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between 0-back and 2-back. For 0-back, there is almost no effect
size in the high gamma band, and a strong, positive, localized
(frontocentral) effect size in the low gamma band. Conversely,
for 2-back, we observed medium to large negative effect sizes
for both low and high gamma bands which are homogeneous
across the scalp, based on Cohen’s effect size interpretation
(Sawilowsky, 2009). These results are strikingly different between
conditions. These data suggest brain hyperactivity during low
load challenge, with inefficiency during high load challenge in
this early AD stage. This explanation is consistent with alpha
power findings in the same population and in other early AD
studies (Nava-Mesa et al., 2014; Arakaki et al., 2019). This
small preliminary cohort has low statistical power: we only
observed significant p-values at LT for low gamma and P for
high gamma during 2-back testing. However, when adding effect
size, we observed a global increase of gamma power based on
Cohen’s d, which improved our comprehension of this study
(Sullivan and Feinn, 2012).

Using a simple WM paradigm, we challenged and unmasked
disrupted gamma activity within several cortical regions
analogous to treadmill electrocardiogram testing to unmask
latent coronary ischemia. Consistent with our previous report
on alpha ERD, our exploratory gamma measures from the brain
challenge test also has predictive potential for CH-PATs (Arakaki
et al., 2019). Our pilot findings encourage further insightful
investigations into the possible physiological changes that occur
before the onset of AD.

There are negative gamma power values (Tables 2, 3),
suggesting lower gamma power than baseline measures. That is
not surprising when we average across epochs after calculating
power, which gives stronger baseline values than averaging before
power calculation (Luck, 2014).

High-frequency brain activity in the gamma range (30–
80 Hz) and above overlaps with muscle activity (20–300
Hz), which is difficult to discriminate by a single technique
(Muthukumaraswamy, 2013). In this study, we believe the
gamma effect is more brain activity than muscle for the following
reasons: (1) we ensure data collection has minimal muscle
artifact by directing participants to relax the face/neck/shoulder
and make sure no visible muscle noise is recorded; (2) in
the topoplots, we observed frontocentral low gamma change
during 0-back, which is not the edge of the electrode montage
(peripheral sensors) and thus less likely to be muscle activity; (3)
muscle artifact tends to be higher frequency, such as posterior
head muscles peak over 80 Hz (Kumar et al., 2003a,b) and
extraocular muscles over 60 Hz (Carl et al., 2012), which tend
to contaminate peripheral sensors. Low gamma range activity
can be from the frontal facial muscles and, if so, will be mainly
at the front sensors (Fp1/Fp2), which did not show changes in
the topomap; (4) There are no differences between CH-NATs
and CH-PATs during resting state, both eyes open and eyes
closed. Therefore, our pilot findings of gamma changes during
low and high load WM challenge are more likely to have a
brain origin, though they may not be completely free of muscle
artifact. Advanced approaches that we did not use to remove
gamma, including ICA (Olbrich et al., 2011), beamforming
(Hipp et al., 2011), and additional EMG sensors on the face,

etc., have downsides, including inter-observer differences and
signal complicity.

Gamma Power Does Not Correlate With
Response Time or Accuracy in CH-PATs
Given how little is known about the early stage of amyloid/tau
changes in CH-PATs, we show several associations between
physiological and behavioral domains in CH-NATs, but not
in CH-PATs. That is in line with previous studies on gamma
and behavioral performance. Studies in humans have shown
that gamma power is correlated with memory retrieval success
and modulating accuracy (Schneider et al., 2008; Stevenson
et al., 2018). In addition, gamma power is associated with
increased congruence in a cross-modality test involving visual
and auditory stimuli (Schneider et al., 2008). This association
helps us better understand the role gamma power may play in
cortical processing, specifically in core executive functions such
as WM. Also, our data may provide pilot information for further
differentiating how pathological versus healthy aging affects the
brain. By measuring gamma power and behavioral components
such as accuracy to a standardized baseline in CH individuals,
we may be able to unmask physiological dysfunctions that
are currently undetected within the elderly population. Future
studies that explore the causal relationship between gamma
power and dysfunction in both physiological and behavioral
domains will allow us to better understand this early stage of AD.

Limitations and Future Directions
There are some limitations in our study, mainly because it
was exploratory, with a relatively small number of participants.
Therefore, the small preliminary cohort limited the statistical
power of this study, which provides only pilot results that
need further investigation. We assessed a highly homogenous
cohort, most being Caucasian females of European descent.
Future studies should be sex balanced and include a more
comprehensive range of participants from different racial and
ethnic backgrounds. Nevertheless, both CH-NATs and CH-PATs
were age and sex-matched with no significance between the
two groups, indicating that these variables did not skew our
results. Another limitation is that this was a cross-sectional
study. Investigating the relationships between gamma oscillations
and CH-PATs longitudinally may help to unmask further
neurophysiological dysfunctions underlying pathological versus
healthy aging. Our study shows high temporal resolution using
qEEG to detect dysfunctions with accurate temporal precision.
However, future studies that explore dysfunction in CH-PATs
with high spatial accuracy may help elucidate which regions are
affected. EEG recordings can often become unrepresentative due
to muscle artifacts. Muscular activities significantly contaminate
EEG signals complicating further analysis (Chen et al., 2016).
Nevertheless, EEG signals can also become unrepresentative
during the preprocessing stage (Vorobyov and Cichocki, 2002).
For instance, the reference electrode is an extraneous variable
that affects the signal (Junghofer et al., 1999). We used widely
accepted pre-processing methods to reduce distortions in the
signal (Delorme and Makeig, 2004). Although beyond the scope
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of the current analysis, future studies should implement a
standardized method of selecting the reference electrode or using
multichannel references to decrease electrode bias (Yao, 2001;
Yao et al., 2005; Chen et al., 2016). Finally, further study of
the relationship between gamma and low-frequency band power
(such as alpha and theta) in CH-PATs may show associations
between gamma and lower frequency dysfunction. To further
evaluate whether these findings have clinical significance, we are
planning a more extensive follow-up study to see if our findings
are replicable in a new cohort.

CONCLUSION

The objective of this exploratory cross-sectional study was to
evaluate and detect potentially compromised gamma activity in
CH-PATs compared to CH-NATs using a simple WM paradigm
combined with qEEG. The study revealed that gamma activities
are compromised in CH-PAT. The results support our hypothesis
by showing compromised gamma power in CH-PATs with
loss of their gamma correlation with behavioral performance.
Our study suggests that further development of WM testing
combined with non-invasive qEEG is a possible complementary
component of the armamentarium for differentiating early
dementia from normal aging.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by the Huntington Medical Research

Institutes (HMRI) Institutional Review Board (IRB). The
patients/participants provided their written informed consent
to participate in this study.

AUTHOR CONTRIBUTIONS

XA and MH conceived and designed the experiments and
performed the experiments. RR, XA, QL, AF, and MH analyzed
the data. RR and XA wrote the manuscript. RR, QL, AF, MH,
and XA edited the manuscript. All authors contributed toward
the final manuscript.

FUNDING

This research was funded by a grant from the L. K. Whittier
Foundation and NIA R56AG063857. HMRI provided additional
financial support.

ACKNOWLEDGMENTS

Betty Chung and David Buennagel assisted with participant
recruitment. We thank the study participants for their
participation in this research. We thank Dr. Sandya
Narayanswami for editing.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnagi.
2020.574214/full#supplementary-material

REFERENCES
Andersen, R. A., and Buneo, C. A. (2003). Sensorimotor integration in posterior

parietal cortex. Adv. Neurol. 93, 159–177.
Arakaki, X., Lee, R., King, K. S., Fonteh, A. N., and Harrington, M. G. (2019). Alpha

desynchronization during simple working memory unmasks pathological aging
in cognitively healthy individuals. PLoS One 14:e0208517. doi: 10.1371/journal.
pone.0208517

Arakaki, X., Shoga, M., Li, L., Zouridakis, G., Tran, T., Fonteh, A. N., et al.
(2018). Alpha desynchronization/synchronization during working memory
testing is compromised in acute mild traumatic brain injury (mTBI). PLoS One
13:e0188101. doi: 10.1371/journal.pone.0188101

Arakaki, X., Wei, K., Tran, T., Liu, Q., Fonteh, A., Harrington, M., et al. (2020).
Correlation of neural oscillations during stroop testing with hippocampal
and amygdala volume differ between cognitively healthy normal aging and
pre-symptomatic Alzheimer’s Disease. FASEB J. 34:4684.

Ardid, S., Wang, X. J., Gomez-Cabrero, D., and Compte, A. (2010). Reconciling
coherent oscillation with modulation of irregular spiking activity in selective
attention: gamma-range synchronization between sensory and executive
cortical areas. J. Neurosci. 30, 2856–2870. doi: 10.1523/jneurosci.4222-09.2010

Babiloni, C., Del Percio, C., Caroli, A., Salvatore, E., Nicolai, E., Marzano, N.,
et al. (2016a). Cortical sources of resting state EEG rhythms are related to

brain hypometabolism in subjects with Alzheimer’s disease: an EEG-PET study.
Neurobiol. Aging 48, 122–134. doi: 10.1016/j.neurobiolaging.2016.08.021

Babiloni, C., Del Percio, C., Vecchio, F., Sebastiano, F., Di Gennaro, G., Quarato,
P. P., et al. (2016b). Alpha, beta and gamma electrocorticographic rhythms
in somatosensory, motor, premotor and prefrontal cortical areas differ in
movement execution and observation in humans. Clin. Neurophysiol. 127,
641–654. doi: 10.1016/j.clinph.2015.04.068

Babiloni, C., Lizio, R., Marzano, N., Capotosto, P., Soricelli, A., Triggiani, A. I., et al.
(2016c). Brain neural synchronization and functional coupling in Alzheimer’s
disease as revealed by resting state EEG rhythms. Int. J Psychophysiol. 103,
88–102. doi: 10.1016/j.ijpsycho.2015.02.008

Babiloni, C., Lopez, S., Del Percio, C., Noce, G., Pascarelli, M. T., Lizio, R.,
et al. (2020). Resting-state posterior alpha rhythms are abnormal in subjective
memory complaint seniors with preclinical Alzheimer’s neuropathology and
high education level: the INSIGHT-preAD study. Neurobiol. Aging 90, 43–59.
doi: 10.1016/j.neurobiolaging.2020.01.012

Babiloni, C., Triggiani, A. I., Lizio, R., Cordone, S., Tattoli, G., Bevilacqua, V.,
et al. (2016d). Classification of single normal and alzheimer’s disease individuals
from cortical sources of resting state EEG rhythms. Front. Neurosci. 10:47.
doi: 10.3389/fnins.2016.00047

Baddeley, A. (1998a). Recent developments in working memory. Curr. Opin.
Neurobiol. 8, 234–238. doi: 10.1016/s0959-4388(98)80145-1

Frontiers in Aging Neuroscience | www.frontiersin.org 12 October 2020 | Volume 12 | Article 574214

https://www.frontiersin.org/articles/10.3389/fnagi.2020.574214/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2020.574214/full#supplementary-material
https://doi.org/10.1371/journal.pone.0208517
https://doi.org/10.1371/journal.pone.0208517
https://doi.org/10.1371/journal.pone.0188101
https://doi.org/10.1523/jneurosci.4222-09.2010
https://doi.org/10.1016/j.neurobiolaging.2016.08.021
https://doi.org/10.1016/j.clinph.2015.04.068
https://doi.org/10.1016/j.ijpsycho.2015.02.008
https://doi.org/10.1016/j.neurobiolaging.2020.01.012
https://doi.org/10.3389/fnins.2016.00047
https://doi.org/10.1016/s0959-4388(98)80145-1
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-574214 October 8, 2020 Time: 20:16 # 13

Rochart et al. WM Gamma in CH-PATs

Baddeley, A. (1998b). Working memory. C. R Acad. Sci. III. 321, 167–173.
Barr, M. S., Radhu, N., Guglietti, C. L., Zomorrodi, R., Rajji, T. K., Ritvo, P., et al.

(2014). Age-related differences in working memory evoked gamma oscillations.
Brain Res. 1576, 43–51. doi: 10.1016/j.brainres.2014.05.043

Bartos, M., Vida, I., and Jonas, P. (2007). Synaptic mechanisms of synchronized
gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8,
45–56. doi: 10.1038/nrn2044

Booth, C. A., Ridler, T., Murray, T. K., Ward, M. A., de Groot, E., Goodfellow,
M., et al. (2016). Electrical and network neuronal properties are preferentially
disrupted in dorsal, but not ventral, medial entorhinal cortex in a mouse model
of tauopathy. J. Neurosci. 36, 312–324. doi: 10.1523/jneurosci.2845-14.2016

Bragin, A., Jando, G., Nadasdy, Z., Hetke, J., Wise, K., and Buzsaki, G. (1995).
Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat.
J. Neurosci. 15(1 Pt. 1), 47–60. doi: 10.1523/jneurosci.15-01-00047.1995

Buneo, C. A., Jarvis, M. R., Batista, A. P., and Andersen, R. A. (2003). Properties
of spike train spectra in two parietal reach areas. Exp. Brain Res. 153, 134–139.
doi: 10.1007/s00221-003-1586-2

Busche, M. A., Chen, X., Henning, H. A., Reichwald, J., Staufenbiel, M., Sakmann,
B., et al. (2012). Critical role of soluble amyloid-beta for early hippocampal
hyperactivity in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci.
U.S.A. 109, 8740–8745. doi: 10.1073/pnas.1206171109

Buzsaki, G., and Schomburg, E. W. (2015). What does gamma coherence tell
us about inter-regional neural communication? Nat. Neurosci. 18, 484–489.
doi: 10.1038/nn.3952

Buzsaki, G., and Wang, X. J. (2012). Mechanisms of gamma oscillations.Annu. Rev.
Neurosci. 35, 203–225. doi: 10.1146/annurev-neuro-062111-150444

Carl, C., Acik, A., Konig, P., Engel, A. K., and Hipp, J. F. (2012). The saccadic spike
artifact in MEG. Neuroimage 59, 1657–1667. doi: 10.1016/j.neuroimage.2011.
09.020

Chen, C. M., Stanford, A. D., Mao, X., Abi-Dargham, A., Shungu, D. C., Lisanby,
S. H., et al. (2014). GABA level, gamma oscillation, and working memory
performance in schizophrenia. Neuroimage Clin. 4, 531–539. doi: 10.1016/j.
nicl.2014.03.007

Chen, X., Liu, A., Chiang, J., Wang, Z. J., McKeown, M. J., and Ward, R. K. (2016).
Removing muscle artifacts from EEG data: multichannel or single-channel
techniques? IEEE Sens. J. 16, 1986–1997. doi: 10.1109/jsen.2015.2506982

Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice.
Cambridge, MA: MIT Press.

Cohen, M. X., and Donner, T. H. (2013). Midfrontal conflict-related theta-band
power reflects neural oscillations that predict behavior. J. Neurophysiol. 110,
2752–2763. doi: 10.1152/jn.00479.2013

Corbetta, M., Kincade, J. M., and Shulman, G. L. (2002). Neural systems for visual
orienting and their relationships to spatial working memory. J. Cogn. Neurosci.
14, 508–523. doi: 10.1162/089892902317362029

Courtney, S. M., Petit, L., Haxby, J. V., and Ungerleider, L. G. (1998). The role of
prefrontal cortex in working memory: examining the contents of consciousness.
Philos. Trans. R Soc. Lond. B Biol. Sci. 353, 1819–1828. doi: 10.1098/rstb.1998.
0334

Craik, F. I. M., Byrd, M., and Swanson, J. M. (1987). Patterns of memory loss in
three elderly samples. Psychol. Aging 2, 79–86. doi: 10.1037/0882-7974.2.1.79

Craik, F. I. M., and Dirkx, E. (1992). Age-related differences in three tests of visual
imagery. Psychol. Aging 7, 661–665. doi: 10.1037/0882-7974.7.4.661

Csicsvari, J., Jamieson, B., Wise, K. D., and Buzsaki, G. (2003). Mechanisms
of gamma oscillations in the hippocampus of the behaving rat. Neuron 37,
311–322. doi: 10.1016/s0896-6273(02)01169-8

Dauwels, J., Vialatte, F., Musha, T., and Cichocki, A. (2010). A comparative
study of synchrony measures for the early diagnosis of Alzheimer’s disease
based on EEG. Neuroimage 49, 668–693. doi: 10.1016/j.neuroimage.2009.
06.056

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis.
J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Dreher, J. C., and Grafman, J. (2003). Dissociating the roles of the rostral
anterior cingulate and the lateral prefrontal cortices in performing two tasks
simultaneously or successively. Cereb. Cortex 13, 329–339. doi: 10.1093/cercor/
13.4.329

Fuchs, E. C., Zivkovic, A. R., Cunningham, M. O., Middleton, S., Lebeau,
F. E., Bannerman, D. M., et al. (2007). Recruitment of parvalbumin-positive

interneurons determines hippocampal function and associated behavior.
Neuron 53, 591–604. doi: 10.1016/j.neuron.2007.01.031

Gajewski, P. D., Hanisch, E., Falkenstein, M., Thones, S., and Wascher, E. (2018).
What does the n-back task measure as we get older? relations between working-
memory measures and other cognitive functions across the lifespan. Front.
Psychol. 9:2208. doi: 10.3389/fpsyg.2018.02208

Geisler, C., Brunel, N., and Wang, X. J. (2005). Contributions of intrinsic
membrane dynamics to fast network oscillations with irregular neuronal
discharges. J. Neurophysiol. 94, 4344–4361. doi: 10.1152/jn.00510.2004

Goldman-Rakic, P. S. (1994). Working memory dysfunction in schizophrenia.
J. Neuropsychiatry Clin. Neurosci. 6, 348–357.

Goutagny, R., Gu, N., Cavanagh, C., Jackson, J., Chabot, J. G., Quirion, R., et al.
(2013). Alterations in hippocampal network oscillations and theta-gamma
coupling arise before Abeta overproduction in a mouse model of Alzheimer’s
disease. Eur. J. Neurosci. 37, 1896–1902. doi: 10.1111/ejn.12233

Hajos, N., and Paulsen, O. (2009). Network mechanisms of gamma oscillations
in the CA3 region of the hippocampus. Neural Netw. 22, 1113–1119. doi:
10.1016/j.neunet.2009.07.024

Hansson, O., Zetterberg, H., Buchhave, P., Londos, E., Blennow, K., and Minthon,
L. (2006). Association between CSF biomarkers and incipient Alzheimer’s
disease in patients with mild cognitive impairment: a follow-up study. Lancet
Neurol. 5, 228–234. doi: 10.1016/s1474-4422(06)70355-6

Harrington, M. G., Chiang, J., Pogoda, J. M., Gomez, M., Thomas, K., Marion,
S. D., et al. (2013). Executive function changes before memory in preclinical
Alzheimer’s pathology: a prospective, cross-sectional, case control study. PLoS
One 8:e79378. doi: 10.1371/journal.pone.0079378

Harrington, M. G., Edminster, S. P., Buennagel, D. P., Chiang, J. P., Sweeney, M. D.,
CHui, H. C., et al. (2019). Four-year longitudinal study of cognitively healthy
individuals: csf amyloid/tau levels and nanoparticle membranes identify high
risk for Alzheimer’s Disease. Alzheimers Dement. 15:299.

Hasenstaub, A., Shu, Y., Haider, B., Kraushaar, U., Duque, A., and McCormick,
D. A. (2005). Inhibitory postsynaptic potentials carry synchronized frequency
information in active cortical networks. Neuron 47, 423–435. doi: 10.1016/j.
neuron.2005.06.016

Herrmann, C. S. (2001). Human EEG responses to 1-100 Hz flicker: resonance
phenomena in visual cortex and their potential correlation to cognitive
phenomena. Exp. Brain Res. 137, 346–353. doi: 10.1007/s002210100682

Herrmann, C. S., and Demiralp, T. (2005). Human EEG gamma oscillations in
neuropsychiatric disorders. Clin. Neurophysiol. 116, 2719–2733. doi: 10.1016/j.
clinph.2005.07.007

Hipp, J. F., Engel, A. K., and Siegel, M. (2011). Oscillatory synchronization in
large-scale cortical networks predicts perception. Neuron 69, 387–396. doi:
10.1016/j.neuron.2010.12.027

Howard, M. W., Rizzuto, D. S., Caplan, J. B., Madsen, J. R., Lisman, J.,
Aschenbrenner-Scheibe, R., et al. (2003). Gamma oscillations correlate with
working memory load in humans. Cereb. Cortex 13, 1369–1374. doi: 10.1093/
cercor/bhg084

Iaccarino, H. F., Singer, A. C., Martorell, A. J., Rudenko, A., Gao, F., Gillingham,
T. Z., et al. (2016). Gamma frequency entrainment attenuates amyloid load and
modifies microglia. Nature 540, 230–235. doi: 10.1038/nature20587

Jack, CR Jr, Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B.,
et al. (2018). NIA-AA research framework: toward a biological definition of
Alzheimer’s disease. Alzheimers Dement 14, 535–562. doi: 10.1016/j.jalz.2018.
02.018

Jia, X., and Kohn, A. (2011). Gamma rhythms in the brain. PLoS Biol. 9:e1001045.
doi: 10.1371/journal.pbio.1001045

Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., and Mintun, M. A.
(1993). Spatial working memory in humans as revealed by PET. Nature 363,
623–625. doi: 10.1038/363623a0

Junghofer, M., Elbert, T., Tucker, D. M., and Braun, C. (1999). The polar average
reference effect: a bias in estimating the head surface integral in EEG recording.
Clin. Neurophysiol. 110, 1149–1155. doi: 10.1016/s1388-2457(99)00044-9

Kimberg, D. Y., Aguirre, G. K., and D’Esposito, M. (2000). Modulation of task-
related neural activity in task-switching: an fMRI study. Brain Res. Cogn. Brain
Res. 10, 189–196. doi: 10.1016/s0926-6410(00)00016-1

Klimesch, W. (2012). alpha-band oscillations, attention, and controlled access to
stored information. Trends Cogn. Sci. 16, 606–617. doi: 10.1016/j.tics.2012.10.
007

Frontiers in Aging Neuroscience | www.frontiersin.org 13 October 2020 | Volume 12 | Article 574214

https://doi.org/10.1016/j.brainres.2014.05.043
https://doi.org/10.1038/nrn2044
https://doi.org/10.1523/jneurosci.2845-14.2016
https://doi.org/10.1523/jneurosci.15-01-00047.1995
https://doi.org/10.1007/s00221-003-1586-2
https://doi.org/10.1073/pnas.1206171109
https://doi.org/10.1038/nn.3952
https://doi.org/10.1146/annurev-neuro-062111-150444
https://doi.org/10.1016/j.neuroimage.2011.09.020
https://doi.org/10.1016/j.neuroimage.2011.09.020
https://doi.org/10.1016/j.nicl.2014.03.007
https://doi.org/10.1016/j.nicl.2014.03.007
https://doi.org/10.1109/jsen.2015.2506982
https://doi.org/10.1152/jn.00479.2013
https://doi.org/10.1162/089892902317362029
https://doi.org/10.1098/rstb.1998.0334
https://doi.org/10.1098/rstb.1998.0334
https://doi.org/10.1037/0882-7974.2.1.79
https://doi.org/10.1037/0882-7974.7.4.661
https://doi.org/10.1016/s0896-6273(02)01169-8
https://doi.org/10.1016/j.neuroimage.2009.06.056
https://doi.org/10.1016/j.neuroimage.2009.06.056
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1093/cercor/13.4.329
https://doi.org/10.1093/cercor/13.4.329
https://doi.org/10.1016/j.neuron.2007.01.031
https://doi.org/10.3389/fpsyg.2018.02208
https://doi.org/10.1152/jn.00510.2004
https://doi.org/10.1111/ejn.12233
https://doi.org/10.1016/j.neunet.2009.07.024
https://doi.org/10.1016/j.neunet.2009.07.024
https://doi.org/10.1016/s1474-4422(06)70355-6
https://doi.org/10.1371/journal.pone.0079378
https://doi.org/10.1016/j.neuron.2005.06.016
https://doi.org/10.1016/j.neuron.2005.06.016
https://doi.org/10.1007/s002210100682
https://doi.org/10.1016/j.clinph.2005.07.007
https://doi.org/10.1016/j.clinph.2005.07.007
https://doi.org/10.1016/j.neuron.2010.12.027
https://doi.org/10.1016/j.neuron.2010.12.027
https://doi.org/10.1093/cercor/bhg084
https://doi.org/10.1093/cercor/bhg084
https://doi.org/10.1038/nature20587
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.1371/journal.pbio.1001045
https://doi.org/10.1038/363623a0
https://doi.org/10.1016/s1388-2457(99)00044-9
https://doi.org/10.1016/s0926-6410(00)00016-1
https://doi.org/10.1016/j.tics.2012.10.007
https://doi.org/10.1016/j.tics.2012.10.007
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-574214 October 8, 2020 Time: 20:16 # 14

Rochart et al. WM Gamma in CH-PATs

Kopell, N., Ermentrout, G. B., Whittington, M. A., and Traub, R. D. (2000). Gamma
rhythms and beta rhythms have different synchronization properties. Proc. Natl.
Acad. Sci. U.S.A. 97, 1867–1872. doi: 10.1073/pnas.97.4.1867

Kumar, S., Narayan, Y., and Amell, T. (2003b). Power spectra of
sternocleidomastoids, splenius capitis, and upper trapezius in oblique
exertions. Spine J. 3, 339–350. doi: 10.1016/s1529-9430(03)00077-9

Kumar, S., Narayan, Y., and Amell, T. (2003a). EMG power spectra of cervical
muscles in lateral flexion and comparison with sagittal and oblique plane
activities. Eur. J. Appl. Physiol. 89, 367–376. doi: 10.1007/s00421-003-0797-3

Lianyang, L., Arakaki, X., Thao, T., Harrington, M., Padhye, N., and Zouridakis,
G. (2016). Brain activation profiles in mTBI: evidence from ERP activity
of working memory response. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016,
1862–1865.

Lim, H. K., Nebes, R., Snitz, B., Cohen, A., Mathis, C., Price, J., et al. (2014).
Regional amyloid burden and intrinsic connectivity networks in cognitively
normal elderly subjects. Brain 137(Pt. 12), 3327–3338. doi: 10.1093/brain/
awu271

Lopez, M. E., Bruna, R., Aurtenetxe, S., Pineda-Pardo, J. A., Marcos, A., Arrazola,
J., et al. (2014). Alpha-band hypersynchronization in progressive mild cognitive
impairment: a magnetoencephalography study. J. Neurosci. 34, 14551–14559.
doi: 10.1523/jneurosci.0964-14.2014

Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique.
Cambridge, MA: The MIT Press, 279–282.

Lutzenberger, W., Pulvermuller, F., Elbert, T., and Birbaumer, N. (1995). Visual
stimulation alters local 40-Hz responses in humans: an EEG-study. Neurosci.
Lett. 183, 39–42. doi: 10.1016/0304-3940(94)11109-v

Miller, E. K., and Cohen, J. D. (2001). An integrative theory of prefrontal cortex
function. Annu. Rev. Neurosci. 24, 167–202. doi: 10.1146/annurev.neuro.24.1.
167

Missonnier, P., Gold, G., Leonards, U., Costa-Fazio, L., Michel, J. P., Ibanez, V.,
et al. (2004). Aging and working memory: early deficits in EEG activation of
posterior cortical areas. J. Neural Transm 111, 1141–1154.

Mormino, E. C., Smiljic, A., Hayenga, A. O., Onami, S. H., Greicius, M. D.,
Rabinovici, G. D., et al. (2011). Relationships between beta-amyloid and
functional connectivity in different components of the default mode network
in aging. Cereb Cortex 21, 2399–2407. doi: 10.1093/cercor/bhr025

Muller, E. G., Edwin, T. H., Stokke, C., Navelsaker, S. S., Babovic, A., Bogdanovic,
N., et al. (2019). Amyloid-beta PET-Correlation with cerebrospinal fluid
biomarkers and prediction of Alzheimer s disease diagnosis in a memory clinic.
PLoS One 14:e0221365. doi: 10.1371/journal.pone.0221365

Muthukumaraswamy, S. D. (2013). High-frequency brain activity and muscle
artifacts in MEG/EEG: a review and recommendations. Front. Hum. Neurosci.
7:138. doi: 10.3389/fnhum.2013.00138

Nakamura, A., Cuesta, P., Fernandez, A., Arahata, Y., Iwata, K., Kuratsubo, I., et al.
(2018). Electromagnetic signatures of the preclinical and prodromal stages of
Alzheimer’s disease. Brain 141, 1470–1485. doi: 10.1093/brain/awy044

Nakazono, T., Jun, H., Blurton-Jones, M., Green, K. N., and Igarashi, K. M. (2018).
Gamma oscillations in the entorhinal-hippocampal circuit underlying memory
and dementia. Neurosci Res 129, 40–46. doi: 10.1016/j.neures.2018.02.002

Nava-Mesa, M. O., Jimenez-Diaz, L., Yajeya, J., and Navarro-Lopez, J. D. (2014).
GABAergic neurotransmission and new strategies of neuromodulation to
compensate synaptic dysfunction in early stages of Alzheimer’s disease. Front.
Cell Neurosci. 8:167. doi: 10.3389/fncel.2014.00167

O’Keefe, J., and Recce, M. L. (1993). Phase relationship between hippocampal place
units and the EEG theta rhythm. Hippocampus 3, 317–330. doi: 10.1002/hipo.
450030307

Olbrich, S., Jodicke, J., Sander, C., Himmerich, H., and Hegerl, U. (2011). ICA-
based muscle artefact correction of EEG data: what is muscle and what is brain?
Comment on McMenamin et al. Neuroimage 54, 4–9.

Owen, A. M., McMillan, K. M., Laird, A. R., and Bullmore, E. (2005). N-
back working memory paradigm: a meta-analysis of normative functional
neuroimaging studies. Hum. Brain Mapp. 25, 46–59. doi: 10.1002/hbm.20131

Palop, J. J., and Mucke, L. (2016). Network abnormalities and interneuron
dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 17, 777–792. doi: 10.
1038/nrn.2016.141

Qi, Z., Wu, X., Wang, Z., Zhang, N., Dong, H., Yao, L., et al. (2010). Impairment
and compensation coexist in amnestic MCI default mode network. Neuroimage
50, 48–55. doi: 10.1016/j.neuroimage.2009.12.025

Rabinowitz, J. C., Ackerman, B. P., Craik, F. I., and Hinchley, J. L. (1982). Aging
and metamemory: the roles of relatedness and imagery. J. Gerontol. 37, 688–695.
doi: 10.1093/geronj/37.6.688

Rajmohan, R., and Reddy, P. H. (2017). Amyloid-Beta and Phosphorylated
Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s disease
Neurons. J Alzheimers Dis. 57, 975–999. doi: 10.3233/jad-160612

Ray, S., and Maunsell, J. H. (2011). Different origins of gamma rhythm and high-
gamma activity in macaque visual cortex. PLoS Biol. 9:e1000610. doi: 10.1371/
journal.pbio.1000610

Rojas, G. M., Alvarez, C., Montoya, C. E., de la Iglesia-Vaya, M., Cisternas, J. E.,
and Galvez, M. (2018). Study of resting-state functional connectivity networks
using EEG electrodes position as seed. Front. Neurosci 12:235. doi: 10.3389/
fnins.2018.00235

Rushworth, M. F., Krams, M., and Passingham, R. E. (2001a). The attentional role
of the left parietal cortex: the distinct lateralization and localization of motor
attention in the human brain. J. Cogn. Neurosci. 13, 698–710. doi: 10.1162/
089892901750363244

Rushworth, M. F., Paus, T., and Sipila, P. K. (2001b). Attention systems and the
organization of the human parietal cortex. J. Neurosci. 21, 5262–5271. doi:
10.1523/jneurosci.21-14-05262.2001

Salthouse, T. A. (2003). Memory aging from 18 to 80. Alzheimer Dis. Assoc. Disord.
17, 162–167. doi: 10.1097/00002093-200307000-00008

Salthouse, T. A., and Ferrer-Caja, E. (2003). What needs to be explained to
account for age-related effects on multiple cognitive variables? Psychol. Aging
18, 91–110. doi: 10.1037/0882-7974.18.1.91

Sawilowsky, S. S. (2009). New effect size rules of thumb. J. Modern Appl. Statist.
Methods 8, 597–599. doi: 10.22237/jmasm/1257035100

Schneider, T. R., Debener, S., Oostenveld, R., and Engel, A. K. (2008). Enhanced
EEG gamma-band activity reflects multisensory semantic matching in visual-
to-auditory object priming. Neuroimage 42, 1244–1254. doi: 10.1016/j.
neuroimage.2008.05.033

Sederberg, P. B., Schulze-Bonhage, A., Madsen, J. R., Bromfield, E. B., Litt,
B., Brandt, A., et al. (2007). Gamma oscillations distinguish true from false
memories. Psychol. Sci. 18, 927–932. doi: 10.1111/j.1467-9280.2007.02003.x

Shulman, G. L., d’Avossa, G., Tansy, A. P., and Corbetta, M. (2002a). Two
attentional processes in the parietal lobe. Cereb. Cortex 12, 1124–1131. doi:
10.1093/cercor/12.11.1124

Shulman, G. L., Tansy, A. P., Kincade, M., Petersen, S. E., McAvoy, M. P., and
Corbetta, M. (2002b). Reactivation of networks involved in preparatory states.
Cereb. Cortex 12, 590–600. doi: 10.1093/cercor/12.6.590

Singer, W. (1999). Neurobiology: striving for coherence. Nature 397, 391–393.
doi: 10.1038/17021

Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan,
A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s
disease: recommendations from the National Institute on Aging-Alzheimer’s
Association workgroups on diagnostic guidelines for Alzheimer’s disease.
Alzheimers Dement. 7, 280–292.

Sperling, R. A., Mormino, E. C., Schultz, A. P., Betensky, R. A., Papp, K. V.,
Amariglio, R. E., et al. (2019). The impact of amyloid-beta and tau on
prospective cognitive decline in older individuals. Ann. Neurol. 85, 181–193.

Stevenson, R. F., Zheng, J., Mnatsakanyan, L., Vadera, S., Knight, R. T., Lin,
J. J., et al. (2018). Hippocampal CA1 gamma power predicts the precision of
spatial memory judgments. Proc. Natl. Acad. Sci. U.S.A. 115, 10148–10153.
doi: 10.1073/pnas.1805724115

Sullivan, G. M., and Feinn, R. (2012). Using Effect Size-or Why the P Value Is Not
Enough. J Grad Med Educ. 4, 279–282. doi: 10.4300/jgme-d-12-00156.1

Tallon-Baudry, C., and Bertrand, O. (1999). Oscillatory gamma activity in humans
and its role in object representation. Trends Cogn. Sci. 3, 151–162. doi: 10.1016/
s1364-6613(99)01299-1

Tallon-Baudry, C., Bertrand, O., Peronnet, F., and Pernier, J. (1998). Induced
gamma-band activity during the delay of a visual short-term memory task in
humans. J. Neurosci. 18, 4244–4254. doi: 10.1523/jneurosci.18-11-04244.1998

Tiesinga, P., and Sejnowski, T. J. (2009). Cortical enlightenment: are attentional
gamma oscillations driven by ING or PING? Neuron 63, 727–732. doi: 10.1016/
j.neuron.2009.09.009

van Vugt, M. K., Schulze-Bonhage, A., Litt, B., Brandt, A., and Kahana, M. J. (2010).
Hippocampal gamma oscillations increase with memory load. J. Neurosci. 30,
2694–2699. doi: 10.1523/jneurosci.0567-09.2010

Frontiers in Aging Neuroscience | www.frontiersin.org 14 October 2020 | Volume 12 | Article 574214

https://doi.org/10.1073/pnas.97.4.1867
https://doi.org/10.1016/s1529-9430(03)00077-9
https://doi.org/10.1007/s00421-003-0797-3
https://doi.org/10.1093/brain/awu271
https://doi.org/10.1093/brain/awu271
https://doi.org/10.1523/jneurosci.0964-14.2014
https://doi.org/10.1016/0304-3940(94)11109-v
https://doi.org/10.1146/annurev.neuro.24.1.167
https://doi.org/10.1146/annurev.neuro.24.1.167
https://doi.org/10.1093/cercor/bhr025
https://doi.org/10.1371/journal.pone.0221365
https://doi.org/10.3389/fnhum.2013.00138
https://doi.org/10.1093/brain/awy044
https://doi.org/10.1016/j.neures.2018.02.002
https://doi.org/10.3389/fncel.2014.00167
https://doi.org/10.1002/hipo.450030307
https://doi.org/10.1002/hipo.450030307
https://doi.org/10.1002/hbm.20131
https://doi.org/10.1038/nrn.2016.141
https://doi.org/10.1038/nrn.2016.141
https://doi.org/10.1016/j.neuroimage.2009.12.025
https://doi.org/10.1093/geronj/37.6.688
https://doi.org/10.3233/jad-160612
https://doi.org/10.1371/journal.pbio.1000610
https://doi.org/10.1371/journal.pbio.1000610
https://doi.org/10.3389/fnins.2018.00235
https://doi.org/10.3389/fnins.2018.00235
https://doi.org/10.1162/089892901750363244
https://doi.org/10.1162/089892901750363244
https://doi.org/10.1523/jneurosci.21-14-05262.2001
https://doi.org/10.1523/jneurosci.21-14-05262.2001
https://doi.org/10.1097/00002093-200307000-00008
https://doi.org/10.1037/0882-7974.18.1.91
https://doi.org/10.22237/jmasm/1257035100
https://doi.org/10.1016/j.neuroimage.2008.05.033
https://doi.org/10.1016/j.neuroimage.2008.05.033
https://doi.org/10.1111/j.1467-9280.2007.02003.x
https://doi.org/10.1093/cercor/12.11.1124
https://doi.org/10.1093/cercor/12.11.1124
https://doi.org/10.1093/cercor/12.6.590
https://doi.org/10.1038/17021
https://doi.org/10.1073/pnas.1805724115
https://doi.org/10.4300/jgme-d-12-00156.1
https://doi.org/10.1016/s1364-6613(99)01299-1
https://doi.org/10.1016/s1364-6613(99)01299-1
https://doi.org/10.1523/jneurosci.18-11-04244.1998
https://doi.org/10.1016/j.neuron.2009.09.009
https://doi.org/10.1016/j.neuron.2009.09.009
https://doi.org/10.1523/jneurosci.0567-09.2010
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-574214 October 8, 2020 Time: 20:16 # 15

Rochart et al. WM Gamma in CH-PATs

Verret, L. (2012). [Repairing rhythms in the brain of Alzheimer’s mouse models].
Med. Sci. 28, 1044–1047.

Verret, L., Mann, E. O., Hang, G. B., Barth, A. M., Cobos, I., Ho, K., et al. (2012).
Inhibitory interneuron deficit links altered network activity and cognitive
dysfunction in Alzheimer model. Cell 149, 708–721. doi: 10.1016/j.cell.2012.
02.046

Vorobyov, S., and Cichocki, A. (2002). Blind noise reduction for multisensory
signals using ICA and subspace filtering, with application to EEG analysis. Biol.
Cybern. 86, 293–303. doi: 10.1007/s00422-001-0298-6

Wang, J., Fang, Y., Wang, X., Yang, H., Yu, X., and Wang, H. (2017).
Enhanced gamma activity and cross-frequency interaction of resting-state
electroencephalographic oscillations in patients with alzheimer’s disease. Front.
Aging Neurosci. 9:243. doi: 10.3389/fnagi.2017.00243

Wang, X. J., and Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition
in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413.
doi: 10.1523/jneurosci.16-20-06402.1996

Wilder, C. M. K., Nolty, A., Arakaki, X., Fonteh, A. N., and Harrington,
M. G. (2018). Boston naming test predicts deterioration of cerebrospinal fluid
biomarkers in pre-symptomatic Alzheimer’s disease. FASEB J. 32:545.

Wilson, H. R., and Cowan, J. D. (1972). Excitatory and inhibitory interactions in
localized populations of model neurons. Biophys. J. 12, 1–24. doi: 10.1016/
s0006-3495(72)86068-5

Wulff, P., Ponomarenko, A. A., Bartos, M., Korotkova, T. M., Fuchs, E. C., Bahner,
F., et al. (2009). Hippocampal theta rhythm and its coupling with gamma
oscillations require fast inhibition onto parvalbumin-positive interneurons.
Proc. Natl. Acad. Sci. U.S.A. 106, 3561–3566. doi: 10.1073/pnas.0813176106

Yao, D. (2001). A method to standardize a reference of scalp EEG recordings to a
point at infinity. Physiol. Meas. 22, 693–711. doi: 10.1088/0967-3334/22/4/305

Yao, D., Wang, L., Oostenveld, R., Nielsen, K. D., Arendt-Nielsen, L., and Chen,
A. C. (2005). A comparative study of different references for EEG spectral
mapping: the issue of the neutral reference and the use of the infinity reference.
Physiol. Meas. 26, 173–184. doi: 10.1088/0967-3334/26/3/003

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Rochart, Liu, Fonteh, Harrington and Arakaki. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 15 October 2020 | Volume 12 | Article 574214

https://doi.org/10.1016/j.cell.2012.02.046
https://doi.org/10.1016/j.cell.2012.02.046
https://doi.org/10.1007/s00422-001-0298-6
https://doi.org/10.3389/fnagi.2017.00243
https://doi.org/10.1523/jneurosci.16-20-06402.1996
https://doi.org/10.1016/s0006-3495(72)86068-5
https://doi.org/10.1016/s0006-3495(72)86068-5
https://doi.org/10.1073/pnas.0813176106
https://doi.org/10.1088/0967-3334/22/4/305
https://doi.org/10.1088/0967-3334/26/3/003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

	Compromised Behavior and Gamma Power During Working Memory in Cognitively Healthy Individuals With Abnormal CSF Amyloid/Tau
	Introduction
	Working Memory (WM) and Alzheimer's Disease (AD)
	Gamma and AD

	Materials and Methods
	Participants
	Procedures
	EEG Recordings
	Behavioral and EEG Data Processing
	Statistical Methods

	Results
	Time-Frequency Plots of Mean Gamma During 2-Back
	Gamma Power in Brain Regions
	Gamma Power Correlates With Accuracy in CH-NATs

	Discussion
	Gamma Power Studies in Other Settings
	N-back Working Memory in Relation to Gamma Oscillations
	Gamma Oscillations in Relation to AD Pathology

	Mechanisms, Models, and Theories About the Gamma Frequency
	Excessive Low Gamma During Low Load WM and Insufficient Gamma During High Load WM Challenge in CH-PATs vs. CH-NATs
	Data Interpretation: Gamma Power
	Gamma Power Does Not Correlate With Response Time or Accuracy in CH-PATs
	Limitations and Future Directions

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


