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Background: Several studies have linked type 2 diabetes (T2D) to an increased risk
of developing Alzheimer’s disease (AD). This has led to an interest in using antidiabetic
treatments for the prevention of AD. However, the underlying mechanisms explaining the
relationship between T2D and AD have not been completely elucidated.

Objective: Our objective was to examine cerebral '8F-fluorodeoxyglucose (FDG) uptake
during normal aging and in AD patients in regions associated with diabetes genetic
risk factor expression to highlight which genes may serve as potential targets for
pharmaceutical intervention.

Methods: We calculated regional glucose metabolism differences in units of
standardized uptake values (SUVR) for 386 cognitively healthy adults and 335 clinically
probable AD patients. We then proceeded to extract gene-expression data from the
publicly available Allen Human Brain Atlas (HBA) database. We used the nearest genes to
46 AD- and T2D-associated SNPs previously identified in the literature, and mapped their
expression to the same 34 cortical regions in which we calculated SUVRs. SNPs with
a donor consistency of 0.40 or greater were selected for further analysis. We evaluated
the associations between SUVR and gene-expression across the brain.

Results: Of the 46 risk-factor genes, 15 were found to be significantly correlated with
FDG-PET brain metabolism in healthy adults and probable AD patients after correction
for multiple comparisons. Using multiple regression, we found that five genes explained
a total of 72.5% of the SUVR variance across the healthy adult group regions, while four
genes explained a total of 79.3% of the SUVR variance across the probable AD group
regions. There were significant differences in whole-brain SUVR as a function of allele
frequencies for two genes.

Abbreviations: AD, Alzheimer’s disease; ADAS-Cog, AD Assessment Scale-cognitive subscale; ADNI, AD Neuroimaging
Initiative; MCI, Mild Cognitive Impairment; MMSE, Mini-Mental State Examination; SNP, Single Nucleotide Polymorphism;
T2D, type 2 diabetes.
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Conclusions: These results highlight the association between risk factor genes for
T2D and regional glucose metabolism during both normal aging and in probable AD.
Highlighted genes were associated with mitochondrial stability, vascular maintenance,
and glucose intolerance. Pharmacological intervention of these pathways has the
potential to improve glucose metabolism during normal again as well as in AD patients.

Keywords: normal aging brain, Alzhermer disease, type 2 diabetes, gene expression, brain metabolic imaging

INTRODUCTION

There is a considerable body of literature on associations between
type 2 diabetes (T2D) and dementia, especially Alzheimer’s
disease (AD). A 2009 meta-analysis by Lu et al. (2009) calculated
that individuals with T2D were 39% more likely to develop
AD than non-diabetics; reports since then have confirmed this
finding. In a review, Strachan et al. (2011) reported that T2D led
to a 1.5 to 2.5-fold increase in the risk for all-cause dementia.
Cheng et al. (2012) found that participants with T2D had a 21%
higher risk for mild cognitive impairment (MCI), 46% higher risk
for AD, and 51% higher risk for any dementia than participants
without diabetes.

This association has led to an increased interest in using
anti-diabetic treatment for the prevention of AD. Li et al.
(2015) reviewed the efficacy of anti-diabetic treatment in AD
clinical trials and found that several of the current anti-diabetic
medication was effective at delaying the symptoms or onset
of AD. However, a Cochrane review did not find any effects
of diabetic conventional treatments in preventing cognitive
impairment in individuals with T2D (Areosa Sastre et al., 2017).
The authors acknowledged that longer follow-up studies are
necessary to assess the impact of T2D on the progression from
MClI to AD.

The association between T2D and AD is correlated to
changes in dementia biomarkers. For example, Schneider et al.
(2007) studied the association between T2D, brain volumes, and
vascular pathology. The authors found that T2D participants
with high levels of glycated hemoglobin (HbA1C) had smaller
brain volumes across the whole cortex and a higher burden
of lacunes.

Baker et al. (2011) measured 18F-ﬂuorodeoxyglucose
(FDG) uptake using positron emission tomography (PET) in
patients with T2D. Brain glucose metabolism was expressed as
standardized uptake values, normalized using the whole brain
(SUVR). The authors found that T2D patients had significantly
lower SUVR when compared to healthy adults, in regions
that are typically hypometabolic in AD patients. In a separate
study, Craft et al. (2012) measured FDG-PET uptake following
an intranasal insulin therapy in patients with MCI and AD.
They found that brain FDG-PET uptake was higher in patients
receiving the intervention when compared with placebo.

However, pathophysiologically the relationship has not been
completely elucidated. de La Monte (2017) has suggested that
much of the mechanisms involved in AD can be attributed
to impairments in insulin and IGF signaling. Indeed, insulin
resistance in T2D has been shown to exacerbate directly amyloid
and tau pathologies, and their shared pathophysiological

traits of synaptic dysfunction, inflammation, and autophagic

impairments (Chatterjee and Mudher, 2018). Further
investigations are required to better our understanding of
these shared pathways.

One avenue of research is related to the shared genetic
components between T2D and AD, which have been reported
as possible common mechanisms for disease development
(Chatterjee and Mudher, 2018). There have been limited studies
however on the functionality of these shared genetic components.

In a recent study, our group examined 40 T2D risk-factor
single-nucleotide polymorphisms (SNPs) and their association
with progression from MCI to clinically probable AD (Girard
et al,, 2018). We found that SNPs located in two genes (SRR and
TCF7L2) were most strongly associated with the conversion of
MCI to probable AD.

We were interested in furthering this research by examining
associations between the expression of identified diabetes
genetic risk factors and cerebral glucose metabolism using
FDG-PET. While genotyping data is profusely available
in the literature, localized (voxel-wise) genetic expression
across the brain is not. Only one major atlas has been
derived and released for such a purpose, namely the
Allen Human Brain Atlas (HBA; Allen Institute for Brain
Science; Hawrylycz et al, 2012)!. A previous report has
correlated HBA cell-specific gene expression with regional
profiles of MRI-based estimates of cortical thickness (Shin
et al, 2018). We wanted to perform a similar experiment
towards studying the impact of T2D genetic risk on
brain metabolism.

To this end, we analyzed glucose metabolism data from
cognitively healthy adults as well as clinically probable AD
patients and compared SUVR on a regional basis to gene
expression measured in the independent HBA sample. This
was done under the strict assumption that gene expression
from the HBA would resemble those from our study group.
We hypothesized that average regional expression in some
genetic markers would be correlated with FDG-PET uptake
values. These highlighted genes could then be used as targets
for pharmaceutical intervention for improving cerebral glucose
metabolism during normal aging and in AD.

MATERIALS AND METHODS

Overview
We analyzed gene-expression data from the publicly available
Allen HBA database (Hawrylycz et al., 2012), which have been

!http://www.brain-map.org
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FIGURE 1 | Flowchart describing the datasets and proposed analysis.

mapped by (French and Paus, 2015) from the HBA to the
34 cortical regions defined by the Desikan-Killiany Atlas used
by FreeSurfer (Desikan et al., 2006). We then computed regional
cerebral glucose metabolism FDG-PET standardized uptake
values for participants in the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) in the same cortical areas. Using 31 T2D
associated SNPs previously identified in our Girard et al.’s (2018)
study, as well as 15 T2D associated SNPs validated by Mahajan
et al. (2018), we evaluated associations between SUVR and
gene-expression across the brain. A summary of our analysis is
shown in Figure 1.

Allen Human Brain Atlas

Gene-expression data were obtained in postmortem human
brains from the Allen HBA that provides comprehensive
coverage of the normal adult brain (Hawrylycz et al., 2012).
Fresh-frozen brains were slabbed, sectioned, and blocked.
Expert macrodissection of anatomically defined cortical regions
was guided by histological information (Nissl and other
markers). Isolated RNA was hybridized to custom 64K
Agilent microarrays (58,692 probes). The above steps were
carried out by the Allen Institute, which released expression
data for the left hemispheres of six donors (five males
aged 24, 31, 39, 55, and 57 years; and one female aged
49 vyears). All donors were free of drugs prescribed for
psychiatric disorders.

Allen HBA Mapping to the Desikan-Killiany

Atlas

Using procedures developed by French and Paus (2015),
gene-expression data from the Allen HBA was mapped
to the 34 left hemisphere cortical regions defined by the
Desikan-Killiany Atlas (Desikan et al., 2006).

FDG-PET ADNI Participant Inclusion

Criteria

Participants’ data used in the preparation of this article were
obtained from the Alzheimer’s disease Neuroimaging Initiative
(ADNI) database’ in March 2017. ADNI was launched in
2003 as a public-private partnership, led by Michael W. Weiner®.
Approval from the local ethics board and informed consent of
the participants was obtained as part of the ADNI study.

We included all participants enrolled in the ADNI study that
had undergone FDG-PET scanning. Participants were classified
as cognitively healthy (CH) or clinically probable AD (Table 1).
Probable AD was diagnosed according to the National Institute
of Neurological and Communicative Disorders and Stroke and
the Alzheimer’s Disease and Related Disorders Association
(Mckhann et al., 1984) criteria, with a Clinical Dementia
Rating of 1.

Zhttp://adni.loni.usc.edu
3http://www.adni-info.org
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TABLE 1 | Characteristics of study participants.

TABLE 2 | Correlation between type 2 diabetes risk genes and brain
standardized values (SUVR) uptake.

Healthy adults Alzheimer’s
(n = 386) (n = 335) Healthy adults AD patients

Mean SD Mean SD p-value r p r P
Age (vears) 745 6.2 75.5 7.6 0.05 TOMMA40 -0.737 8.38E-12 —0.801 5.77E-15
Sex (% Female) 51.5 - 41.2 - 0.02 ANKH 0.693 4.20E-10 0.770 2.58E-13
MMSE 29.0 1.9 23.0 3.4 <0.001 DUSP9 —0.689 6.05E-10 —0.723 3.19E-11
Body mass index (kg/m?) 27.4 4.8 25.9 4.8 <0.001 MRPS30 0.654 8.15E-09 0.620 7.58E-08
Scanner resolution 5.9 0.7 6.0 0.7 0.14 MRAS —0.637 2.53E-08 —0.703 1.84E-10
LPA —0.604 1.97E-07 —-0.579 8.38E-07
TCF7L2 0.591 4.24E-07 0.583 6.51E-07
H CDKN1B 0.578 8.62E-07 0.598 2.84E-07
FDG PET AnaIVSIs . . . PPAP2B —0.563 1.94E-06 —0.633 3.39E-08
The FDG-PET processing steps have been described in detail  goxn 0.550 357E-06 0.582 7 05E-07
previously (Nugent et al, 2020). In general, steps include  MRPS6 -0.545 4.63E-06 -0.573 1.11E-06
co-registration to the first FDG-PET frame; averaging of all SRR -0.523 1.29E-05 —0.563 1.89E-06
timeframes; and partial volume correction using region-based SCD5 —0.426 5.50E-04 —0.497 4.01E-05
l-wi ti t . f th tric t £ PTPRD 0.398 1.36E-03 0.417 7.51E-04
voxel-wise correction, an extension of the geometric transfer o _0.353 4.87E-03 0497 5.41E-04

matrix method. Partial volume correction was implemented
using PETPVC, which is available on GitHub* (further details
may be found at Thomas et al., 2011). All PET images were then
converted to SUVR by voxel-wise division to the average activity
of the pons, which has been validated as the most appropriate
reference region for aging research (Nugent et al., 2020). Finally,
average SUVR activity was extracted using FreeSurfer ROL

Selected SNPs

We investigated 31 T2D associated SNPs previously identified
in Girard et al. (2018) in addition to 15 T2D associated SNPs
validated by Mahajan et al. (2018). The full list of SNPs is
summarized in Supplementary Table 1. Sequencing data was
sourced from ADNI GO/2 GWAS, derived using an Illumina
HumanOmniExpress BeadChip. SNPs with a donor consistency
of 0.40 or greater were selected for further analysis to control
for the effects of age and sex. Donor consistency was calculated
as the average donor correlation to the median for each SNP
and provides a measure of consistency across the participant’s
brains sampled.

Statistical Analyses

First, Pearson correlations were used to study associations
between ADNI-based SUVR and HBA-based gene expression,
with a Bonferroni correction applied for multiple comparisons.
Second, to assess the independent association of gene expression
and SUVR across regions, we used multiple regression models in
the healthy adult and AD groups to predict regional SUVR using
regional gene expression as predictors. Models were conducted
using the Scikit-learn python module (Pedregosa et al., 2011).
All 46 risk-factor genes were entered as predictors and the best
ones were selected according to the mean squared error loss
using recursive feature elimination with 10-fold cross-validation
(RFECV function). R* was computed with the r2_score metric
function based on 10-fold cross-validation. With the R package
relaimpo, the function calc.relimp was used to calculate the
relative importance of each predictor that was retained in the
model. The Img metric was used, based on (Lindeman et al,
1980), which calculates an R? partitioned by averaging sequential

4https://github.com/UCL/PETPVC

Only significant results are displayed. Results are arranged in order of decreasing p-value.

sums of squares while taking into account all possible orders of
the predictors.

RESULTS

Sample Characteristics

Table 1 shows the characteristics of the study participants.
There were significant differences between healthy adult and AD
groups. The AD group was significantly older, had a smaller ratio
of females, had lower MMSE, and lower body mass index.

Linear Regression Models

In the healthy adult group, five genes were retained by the model
and explained a total of 72.5% of the SUVR variance across
regions. These included TOMM40 (41.4%), PPAP2B (17.9%),
PHACTRI (8.1%), PAM (3.8%) and CDKALLI (1.2%).

In the probable AD group, four genes explained a total of
79.3% of the SUVR variance across regions. These included
TOMM40 (32.0%), ANKH (27.5%), PPAP2B (16.3%), and
CDKALI (3.56%).

SUVR —Genetic Expression Correlations

Of the 46 risk-factor genes, 15 were found to be significantly
correlated with FDG-PET brain metabolism in healthy adults
and probable AD patients (Table 2). TOMM40 (Figure 2) had
the most significant correlation with SUVR (CH: r = —0.74,
p = 8.38E-12; probable AD: r = —0.80, p = 5.77E-15), followed
by ANKH (CH: r = 0.69, p = 4.2E-10; probable AD: r = 0.77,
p = 2.58E-13), DUSP9Y (CH: r = —0.69, p = 6.05E-10; probable
AD:r=—-0.72, p = 3.19E-11), MRPS30 (CH: r = 0.65, p = 8.15E-
09; probable AD: r = 0.62, p = 7.58E-08), MRAS (CH: r = —0.64,
p = 2.53E-08; probable AD: r = —0.70, p = 1.84E-10), and
LPA (CH: r = —0.60, p = 1.97E-07; probable AD: r = —0.58,
p = 8.38E-07).

SUVR Uptake and Allele Frequencies

There were significant differences in average SUVR for the
whole brain as a function of allele frequencies for two
genes. TOMM40 A/A allele frequencies were associated with
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FIGURE 2 | Standardized values (SUVR) plotted against regional gene expression for genes with most significant correlations; TOMM40 and ANKH. Each point

represents a region of the Desikan—Killiany (DKT) Atlas.
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significantly greater SUVR when compared to A/G expression
in the right (p = 0.002) and left (p = 0.001) cortex (Figure 4A).
A/A expression was also associated with significantly greater
SUVR when compared to G/G expression in the right (p = 0.05)
and left (p = 0.045) cortex. DUSP9 A/G allele frequencies were
associated with significantly greater SUVR when compared to
A/A expression in the right (p = 0.021) and left (p = 0.005)
cortex (Figure 4B). A/G expression was also associated with
significantly greater SUVR when compared to G/G expression in
the left cortex (p = 0.021).

DISCUSSION

Our results highlighted several significant associations between
gene expression and SUVR uptake for both the healthy adults
and AD groups. TOMMA40 expression was most highly associated
with SUVR and explained the most variance in the linear
regression models for both the healthy adults and AD groups.
PPAP2B, PHACTR1, ANKH, PAM, and CDKALI were also
associated with SUVR.

TOMMA40

GWAS have reported an increased risk for AD associated
with the rs2075650 (TOMM40) minor allele (Kulminski et al.,
2019). The TOMM40 gene encodes the outer mitochondrial
membrane pore subunit (TOM40), a pore that enables the
transport of proteins into mitochondria and is necessary
for proper mitochondrial functions (Humphries et al., 2005).
TOMM40 is protective of mitochondrial function and is
necessary for adequate oxidative phosphorylation, deficits of
which may result in cognitive difficulties (Zeitlow et al., 2017).
Linkage disequilibrium (LD) between rs2075650 (TOMM40) and
rs429358 (SNP encoding the APOE e4 allele) are modest, while
previously often only been considered in unison with APOE,
recent studies have found that TOMM40 may have effects that
are independent of APOE (Roses et al., 2016). We found that
rs2075650 minor allele frequencies were associated with lower
SUVR in the cerebral cortex (Figure 4). TOMM40 may be

an important therapeutic target for the treatment of glucose
hypometabolism which has long been associated with AD.

PPAP2B

Schunkert et al. (2011) identified in a GWAS the minor
allele C at rs17114036 (PPAP2B) as being associated with
coronary artery disease. The PPAP2B gene encodes the enzyme
LPP3, which is a glycoprotein that is localized in the cell
plasma membrane. LPP3 is blood flow-sensitive and promotes
anti-inflammatory responses via the inhibition of LPA signaling.
LPA exerts growth-factor like effects via the stimulation of
cell migration. Inactivation of LPP3 or elevated LPA has been
associated with vascular dysfunction and is thought to contribute
to the pathology of various disorders including cancer and
atherosclerosis (Ren et al., 2013; Mega et al.,, 2015). The vascular
burden has been associated with cognitive performance in
older adults (Decarli et al., 2019) and is commonly present in
dementia patients (Schneider et al., 2007). Interventions aimed
at alleviating vascular burden are promising for the treatment of
impaired cognition in older adults. Vascular complications have
also been highlighted as a substantial burden in T2D patients
(Kosiborod et al., 2018).

PHACTR1

rs12526453 (PHACTR1) has been associated with coronary
artery calcification through genome-wide association studies
(Van Setten et al., 2013). Increased PHACTRI1 expression has
been found in atherosclerotic lesions (Reschen et al., 2016). The
PHACTRI gene product has an inhibitory effect on protein
phosphatase 1 (PP;). Phactrl protein is selectively expressed
in the brain, where high levels were found in the cortex,
hippocampus, and striatum, with enrichment of the protein
at synapses (Allen et al., 2004). PP; is part of a family of
serine/threonine phosphatases that are present in both the
nucleus and cytoplasm (Reschen et al., 2016). PP; is involved
in a wide array of physiological processes, including muscle
contraction, glycogen metabolism, neuronal signaling, and actin
cytoskeleton organization (Sagara et al., 2009).

Frontiers in Aging Neuroscience | www.frontiersin.org

October 2020 | Volume 12 | Article 580633


https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

Nugent et al.

Genetic Risk Factors Brain Hypometabolism

0.9 q
% CON
® AD

0.8

SUVR

0.2 T T T T T

£ 7.4 7.6 7.8 8.0
ANKH

FIGURE 3 | SUVR plotted against regional gene expression for genes with a significant interaction effect. Each point represents a region of the DKT atlas.

0.9 7
X CON
® AD
0.8
X
i x
07 . B x x x
x
x X% x X x x% x
o 0.6 X x x % X x®
> % oo % © R0 x x 9 x e
5 ®0 oo g e o 993 X X X
D05 70 4 WEX % © O -
L] ® ) .
o ¥, X x
0.4 4 X ° . X
[ ] L ]
0.3
0.2 T T T T T
1.4 1.6 1.8 2.0 2.2 24

MC4R

0.75

n: 444 n: 246 n: 44

0:701 p=0.05

0651 ©=0.002

ns

0.60 -

SUVR

0.55 A

0.50 4

0.45 -
A/A AIG G/G

0.75

n: 501 n: 138 n: 95

0.70 -

ns

0.65 £=0.021

ns

0.60 -

SUVR

0.55 4

0.50 -

0.45 -
A/A AIG G/G

Right cortex

FIGURE 4 | Left and Right whole-brain cortical SUVR expressed as a function of allele frequencies for TOMMA40 (A) and DUSP9 (B).

0.75

n; 444 n: 246 n: 44

0.70
p=0.045

0651 p=0.001

ns
0.60 -

0.55 A

0.50 4

0.45 -
A/A AG G/G

0.75

n: 501 n: 138 n: 95

0.70 A

ns

—0.005 |7
& 0=0.021

0.65 -

0.60

0.55 A

0.50 -

0.45 -

AIA AIG GIG
Left cortex

ANKH

ANKH is a transmembrane protein that exports the enzyme
pyrophosphate (PP;). TNF-a is responsible for a decrease in
ANKH expression and subsequent reduction in PP; export
(Bessueille and Magne, 2015). PP; is a mineralization inhibitor

with crystal formation resulting from decreased PP; levels. PP;
also plays a role in lipid metabolism as well as calcification.
Mutations in ANKH result in diseases associated with excessive
mineralization, including calcification of arteries leading to
atherosclerosis (Bessueille and Magne, 2015).
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PAM

PAM is an enzyme that catalyzes the carboxy-terminal amidation
of glycine-extended peptide which is an important step in the
posttranslational modification of many bioactive neuropeptides.
Amidation is a process that increases the biological potency of
a peptide. Schafer et al. (1992) found PAM expressed in all
major brain areas of the adult rat except for the cerebellum. The
highest levels were found in the hypothalamus, hippocampus,
and olfactory cortex. Thomsen et al. (2018) found that PAM
silencing leads to decreased insulin exocytosis in response to
glucose. Therefore, PAM is a critical element in the mobilization
of insulin in response to glucose.

CDKAL1

A variant of the CDKALI gene was reported to be associated
with T2D and reduced insulin release in humans (Stancakova
et al., 2008). Ohara-Imaizumi et al. (2010) studied the effects of
the CDKALLI gene using CDKAL1 knockout mice. The authors
determined that CDKALLI controls insulin release by facilitating
ATP generation, leading to the activation of ATP-sensitive K*
channels and the subsequent increase in Ca?* concentrations.
However, while CDKAL played a critical role in insulin release,
knockout mice still had normal glucose homeostasis. Therefore,
additional genetic and environmental factors may be needed to
cause impaired glucose tolerance.

Interaction Effects

There appears to be an interaction between probable AD
patients and healthy adults for SUVR correlations with the
genetic expression for ANKH and MC4R (Figure 3). The
slope for the positive correlation between ANKH expression
and SUVR was greater in probable AD than healthy adults.
Increasing MC4R expression was associated with lower SUVR
for healthy adults but not for probable AD patients. Mutations
in MC4R are associated with hyperphagia, severe childhood
obesity, and hyperinsulinemia. MC4R is a key regulator of
energy balance, influencing food intake, and energy expenditure
through functionally divergent central melanocortin neuronal

pathways (Chambers et al., 2008). Alterations in MC4R signaling
affect glucose utilization and insulin sensitivity.

Allelic Expression

A/A TOMMA4O0 allelic expression resulted in significantly higher
SUVR uptake, while A/G DUSP9 allelic expression resulted in
significantly higher SUVR uptake in the right and left cortical
hemispheres (Figure 5). Enhanced DUSP9 expression has a
protective effect against the development of insulin resistance by
counteracting the effects of proinflammatory cytokines, such as
TNF-a (Emanuelli et al, 2008). Increasing DUSP9 activity
is a potential therapeutic target for the treatment of
insulin-resistant disorders.

Limitations

There are several limitations associated with this study that must
be acknowledged. First, our analysis included all AD cases in
ADNI regardless of race or ethnicity which may affect FDG-PET
brain metabolism. The participants included in the HBA sample
were aged 24-57 while the ADNI participants were significantly
older. While we assumed gene expression does not change during
aging, the possibility of changes in gene expression with age, or
in AD, should be further explored when considering any specific
gene. Furthermore, given that we analyzed SUVR across several
brain regions our results are less affected by isolated changes
in gene expression in one region or a set of specific regions.
Next, the HBA sample is small, with only six participants. Hence,
we operated under the strict assumption that the genetic profile
of the HBA would match that of the ADNI participants. There
was a very small but significant age difference between the older
adults and AD groups. Also, The AD group had significantly
lower BMI and a lower proportion of Females. These differences
may have affected the results of the study. Future studies should
control for these variables. Despite these significant limitations,
the uniqueness of the HBA sample makes it indispensable for
exploratory studies such as this. We are not aware of any
comparable data in a group of older adults that would match the
ADNI FDG-PET sample.
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FIGURE 5 | Pie chart showing the percentage of explained variance for each gene retained in the general linear model for Healthy adults (A) and Alzheimer’s

disease (AD) patients (B).
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CONCLUSION

Our results found an association between expression of risk
factor genes for T2D and glucose metabolism in older adults
and probable AD patients. These genes were associated with
mitochondrial stability, vascular maintenance, and glucose
intolerance. Future studies should assess non-conventional T2D
interventions, including targeting risk-factor genes such as
TOMMA40, to improve glucose metabolism in older adults and
AD patients.
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