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Brain functional network (BFN) analysis is becoming a crucial way to explore the inherent

organized pattern of the brain and reveal potential biomarkers for diagnosing neurological

or psychological disorders. In so doing, a well-estimated BFN is of great concern. In

practice, however, noises or artifacts involved in the observed data (i.e., fMRI time

series in this paper) generally lead to a poor estimation of BFN, and thus a complex

preprocessing pipeline is often used to improve the quality of the data prior to BFN

estimation. One of the popular preprocessing steps is data-scrubbing that aims at

removing “bad” volumes from the fMRI time series according to the amplitude of the

head motion. Despite its helpfulness in general, this traditional scrubbing scheme cannot

guarantee that the removed volumes are necessarily unhelpful, since such a step is fully

independent to the subsequent BFN estimation task. Moreover, the removal of volumes

would reduce the statistical power, and different numbers of volumes are generally

scrubbed for different subjects, resulting in an inconsistency or bias in the estimated

BFNs. To address these issues, we develop a new learning framework that conducts BFN

estimation and data-scrubbing simultaneously by an alternating optimization algorithm.

The newly developed algorithm adaptively weights volumes (instead of removing them

directly) for the task of BFN estimation. As a result, the proposed method can not only

reduce the difficulty of threshold selection involved in the traditional scrubbing scheme,

but also provide a more flexible framework that scrubs the data in the subsequent

FBN estimation model. Finally, we validate the proposed method by identifying subjects

with mild cognitive impairment (MCI) from normal controls based on the estimated

BFNs, achieving an 80.22% classification accuracy, which significantly improves the

baseline methods.

Keywords: index terms-brain functional network, functional magnetic resonance imaging, scrubbing, Pearson’s

correlation, sparse re presentation, mild cognitive impairment

INTRODUCTION

Functional magnetic resonance imaging (fMRI), by detecting the change of cerebral blood oxygen
saturation degree, achieves the purpose of non-invasive “observation” of the brain activities
(Brunetti et al., 2006; Whittingstall et al., 2008). Based on the observed brain activities in fMRI, one
can explore the brain in vivo from multiple aspects. For example, in 1995, Biswal et al. first showed
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activation maps of the human brain by fMRI data, under a state
in which the subject did not carry out any specific tasks (Biswal
et al., 1995), which opened a new area for studying spontaneous
fluctuations of the brain at resting state.

While resting-state fMRI (rs-fMRI) is potentially useful in
clinical practice, finding biomarkers that can identify patients
from normal controls (NCs) has been a primary driver of
resting state research over the last decades (Li et al., 2019b).
Unfortunately, it is hard to reveal informative patterns by a
direct comparison of the fMRI time series between different
subjects, since the fMRI signals are arbitrarily scaled and
have no unit (Jenkinson and Chappell, 2018). In contrast,
brain functional network (BFN), as a measure of the relative
relationship between the fMRI time series, can provide a more
reliable way of exploring the inherent organization of the brain
(Liu et al., 2015; Yu et al., 2019), and has been used in identifying
neurological or psychiatric disorders (Stam, 2014), including
autism spectrum disorder (Weikai et al., 2017), major depressive
disorder (Greicius et al., 2007), obsessive compulsive disorder
(Admon et al., 2012), Alzheimer’s disease (AD) (Jin et al., 2010;
Shi et al., 2017), and its early stage, namely mild cognitive
impairment (MCI) (Yu et al., 2017; Li et al., 2019b), to name
a few.

Due to its importance, researchers have proposed a series of
BFN estimation methods in recent years. However, in general,
estimating a “good” BFN is still an extremely challenging
problem, because complex artifacts or noises are always involved
in the observed fMRI data. In practice, a preprocessing
pipeline, including motion correction, nuisance regression,
spatial smoothing and temporal filtering (Poldrack et al., 2011),
etc., is employed to improve the quality of data. For example, as a
simple and popular preprocessing step, the scrubbing operation
has been investigated to clean potentially “bad” volumes if
the head motion measured by frame-wise displacement (FD)
(Power et al., 2012a) or DVARS (Yan et al., 2013) is greater
than a threshold. Despite its helpfulness in general, it is hard to
guarantee that all the removed volumes are necessarily unhelpful,
since the scrubbing operation is independent of the ensuing BFN
estimation task.

Recently, Li et al. proposed a task-dependent scrubbing
method by incorporating the scrubbing operation into the BFN
estimation task (Li et al., 2019a). Although it can optimize
the data scrubbing and BFN estimation jointly, Li’s method
removes the “bad” volumes by a hard regularized parameter that
is similar to the thresholding scheme used in the traditional
scrubbing strategy. As a result, different numbers of volumes are
generally removed for different subjects, which leads to a bias or
inconsistency in the estimated BFNs. Moreover, the hard removal
of volumes always reduces the statistical power, which is a serious
problem, especially when the number of volumes is limited in the
fMRI time series.

To address these issues, in this paper, we develop a new
learning approach for BFN estimation based on weighted fMRI
time series, where the weight on each volume is adaptively
estimated from the data. Consequently, the proposed method
not only reduces the difficulty of threshold selection involved in
the traditional scrubbing scheme, but also provides a framework

for a more flexible data “scrubbing” operation that jointly works
with the BFN estimation task. Finally, we validate the proposed
method by using it to identify subjects with MCI from NCs based
on a publicly available dataset. The experimental results illustrate
that the proposed approach can achieve better classification
accuracy than the baseline methods. For reproducing our results,
we also share the source codes in https://github.com/Huihui-
Chen/Adaptively-weighted.

The rest of this paper is organized as follows. In Section
related methods, we review two baseline methods, PC and SR,
for BFN estimation. In Section BFN estimation, we propose the
new BFN learning framework, including its motivation, model,
and algorithm. In Section experiments, we evaluate our proposed
method with experiments. Finally, we conclude the paper with a
brief discussion in Section conclusion.

RELATED METHODS

Due to the potential applications in exploring the inherent
organization and neurodegenerative diseases of the brain, many
BFN estimationmethods have been proposed in the past decades.
In this section, we review two representatives of them, PC and SR,
which are closely related to our study.

Pearson’s Correlation
Suppose that the brain, according to a certain atlas, has been
parcellated into N regions of interest (ROIs), and there are T
measurements over time, each of the ROIs correspond to an
extracted time seriesxi ∈ RT×1, i = 1, · · · ,N. Then, the edge
weight matrix C=

(

Cij

)

N×N
of PC-based BFN can be defined

as follows:

Cij =
(xi − x̄i)

T(xj − x̄j)
√

(xi − x̄i)
T(xi − x̄i)

√

(xj − x̄j)
T(xj − x̄j)

(1)

Where Cij is the estimated functional connectivity between the
ith and jth ROIs, and x̄i is the mean vector corresponding
toxi. Without loss of generality, we define a newxi ,

(xi − x̄i) /
√

(xi − x̄i)
T (xi − x̄i). As a result, Equation (1) can

be simplified intoCij = xi
Txj. Further, we supposeX =

[x1, x2, · · · , xN] ∈ RT×N , and thus we haveC = XTX.
Equivalently, PC-based BFN can be expressed as the solution of
the following optimization problem:

minC ‖ C− XTX ‖2F (2)

Where denotes the F-norm of a matrix. Such a reformulation
of PC makes it easy to be explained under a unified
graph learning framework as described in a recent study
(Qiao et al., 2018).

Sparse Representation
Different from PC that measures the full correlation between
ROIs, SR is one of the statistical methods for modeling the
partial correlation by regressing out the confounding effect from
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other ROIs (Peng et al., 2009). The model of SR is shown
as follows:

minCij

∑N

i=1



‖ xi −
∑

j 6=i

Cijxj‖
2 + λ

∑

j 6=i

∣

∣Cij

∣

∣



 , (3)

It can equivalently be expressed as the following matrix form:

minC ‖ X− XC ‖2F +λ ‖ C‖1 (4)

s.t.Cii = 0, ∀i = 1, · · · ,N,

Where‖·‖F and ‖·‖1 are F- and L1-norm of a matrix, respectively,
and Cii = 0 is employed for avoiding the trivial solution.
Traditionally, X − XC2

F in Equation (4) is called a data-fitting
term, and ‖ C‖1 a matrix-regularized term. The balance between
the two terms are controlled by a regularized parameterλ.

Note that the network matrix C obtained by solving Equation
(4) is generally asymmetric. For facilitating comparison among
different BFN estimation methods, we symmetrize it byCij =

sign(Cij)
√

CijCji, which is established on the theoretical basis for
supporting the relationship between SR and partial correlation
(Peng et al., 2009).

BFN ESTIMATION

Motivation
As mentioned earlier, the estimated BFNs rely heavily on the
quality of the data, but, unfortunately, the observed data in
practice usually contain strong noises caused by many factors,
especially, the head motion that results in both first- and higher-
order effects (Bijsterbosch et al., 2017). The first-order effect
mainly refers to the spatial misalignment from one volume to the

next, which can be corrected by spatially registering each volume
to a selected reference (Freire andMangin, 2001; Dijk et al., 2012).
In contrast, the higher-order effects, due to introducing noises
into blood oxygen level dependent (BOLD) signals, are much
harder to be removed from data and impact subsequent analyses
even after the spatial registration (Power et al., 2012b; Murphy
et al., 2013). Currently, three popular methods, including
nuisance regression, independent component analysis (ICA), and
scrubbing (Biswal et al., 1995; Rodriguez et al., 2012), are often
employed to relieve such higher-order effects. In this paper, we
mainly focus on the scrubbing operation, since it is closely related
to our proposed method.

The scrubbing operation cleans some potentially “bad”
volumes if the head motion, in the fMRI series, is greater than
a threshold. Despite its simplicity, popularity and empirical
effectiveness for removing “high-order” noises, such a scheme
has the following drawbacks: (1) the amount of volumes removed
by scrubbing is often relatively high [20–60% of all volumes
(Bijsterbosch et al., 2017)], which would significantly reduce
the statistical power of the data; (2) with a hard threshold,
different numbers of volumes are generally removed across
subjects, which leads to a bias or inconsistency in the estimated
BFNs; (3) the scrubbing operation is independent of the ensuing
BFN estimation task, and thus it is hard to know whether
the remaining volumes absolutely benefit from BFN estimation,
while the removed are necessarily unhelpful.

To address these issues, and differently from our previous
work (Chen, 2019), we develop a new learning approach for
BFN estimation based on weighted fMRI time series (instead
of direct removal of volumes according to a hard threshold
used in the traditional scrubbing scheme), where the weight
put on each volume is adaptively estimated from the data.
More specifically, as shown in Figure 1, an initial weight is
first set for each time point (or volume) in the fMRI signals.

FIGURE 1 | An example for intuitively illustrating how our proposed method works.
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Then, the following two steps are conducted till convergence:
(1) a BFN is estimated based on the weighted fMRI signals,
and (2) the weight on each volume is updated according
to the estimated BFN. It is worth emphasizing that the two
steps are not artificially designed by hand, but automatically
derived from the proposed model that will be described in the
next section.

Proposed Model and Algorithm
In this paper, we develop a new learning framework that conducts
BFN estimation and fMRI data “scrubbing” simultaneously in a
single model as follows:

minCij ,Wt

∑N

i,j=1

∑T

t=1
T2 ‖ wtx

(t)
i −

∑

i6=j
Cij(wtx

(t)
j )‖2

+ λ
∑

j 6=i

∣

∣Cij

∣

∣ (5)

s.t. 0 ≤ wt ≤ 1,
∑T

t=1
wt = 1

where the wt is the weight for the tth time point x
(t)
i associated

with the ith ROI, Cij is the estimated functional connectivity
between the ith and jth ROIs, and λ is a regularized parameter
for balancing the two terms in the objective function. Compared
with the traditional SR model given in Equation (3), the
proposed model introduces a weight wt into each time point
in the fMRI signals, and the weight is optimized as a variable.
Meanwhile, the proposed method implements new constraints

of0 ≤ wt ≤ 1,
∑T

t=1 wt = 1, which not only avoids a
trivial solution (i.e., wt = 0, ∀t), but also gives a probability
interpretation for the weight. Especially, Equation (5) would
reduce to the traditional SR model if wt = 1/T for allt =
1, 2, · · · ,T, meaning that the proposed model is more flexible
than SR.

Equivalently, Equation (5) can be expressed by the following
matrix form:

minC,W‖WX−WXC ‖2F + λC1 (6)

s.t.Cii = 0, 0 ≤ wt ≤ 1,
∑T

t=1
wt = 1,

WhereW = diag (w1,w2, · · ·,wT) is a diagonal weight matrix, C
is the adjacency matrix of BFN to be estimated, and X ∈ RT×N

is the fMRI data matrix (Without loss of generality, the data
matrix X here has been re-defined as X = TX for simplifying
the expression).

Comparison With Li et al.’s Method (Li
et al., 2019a)
Our method actually follows Li et al.’s research line. Their model
is listed as the following

minC,V‖ VX− VXC ‖2 + λ ‖ C1 ‖ −γ ‖ V ‖1

s.t.Cii = 0, 0 ≤ vt ≤ 1,∀i, t.

It is easy to see that these two approaches have something
in common. Both of them construct the BFNs using a sparse
representation technique and are task-dependent scrubbing
methods by incorporating the scrubbing operation into the
BFNs estimation task. It is also easy to see that there are
some differences between them. In Li’s model, they put a
regularization term (W’s l1 norm here) which can automatically
find and remove the “bad” volumes. However, we put another
new constraint as showed in (6) on the weights which leads
to a more flexible and sufficient utilization of the volumes.
The rationale behind this operation lies in that it is hard to
ensure that the so called “bad” volumes are really unhelpful.
Thus, Li’s method may be viewed as a “hard” operation while
ours a “soft” operation. Here we present an example as in
Figure 2. These are the weights from the same sample under
the same parameter, the green points are Li’s and the red are
ours. It seems interesting that they have certain coherence: the
removed volumes also have smaller weights and the remaining
have bigger weights. Further, In the last classification experiment,
our performance is superior to Li’s, which may verify our
intuition that the “bad” volumes may indeed benefit our BFNs
construction task.

Optimized Algorithm
In consideration of the fact that two variables, C and W, are
involved in Equation (6), we employ the alternative optimization
(AO) (Bazaraa et al., 2013) to solve this problem as given in the
two following steps.

Step 1: with a fixedW, estimate BFN C.
Note that the objective function in Equation (6)

is non-differentiable due to the L1-norm regularizer.
Therefore, we solve it via the proximal method (Combettes
and Pesquet, 2011). Specifically, for the data-fitting
termf (X,C) = ‖WX−WXC ‖2F , we first calculate its gradient
w.r.t. C and have∇Cf (X,C) = 2(XTWTWXC− XTWTWX). As

FIGURE 2 | A comparison of two methods.
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a result, we have the following updated formula for C according
to the gradient descent criterion:

Ck = Ck−1 − αk∇Cf
(

X,Ck−1

)

, (7)

Where αk denotes the step size of the gradient descent. Then,
the current C is mapped into a “feasible region” by the following
proximal operator (Combettes and Pesquet, 2011):

proxλ‖·‖1 (C) = [sgn(Cij)×max(abs
(

Cij

)

− λ, 0)]N×N (8)

Where sgn
(

Cij

)

and abs
(

Cij

)

return the sign and absolute value
ofCij, respectively.

Step 2: with a fixed C, updateW.
When C is a constant matrix, Equation (6) reduces to the

following optimization problem:

minW ‖WX−WXC ‖2F (9)

s.t.0 ≤ wt ≤ 1,
∑T

t=1
wt = 1.

We can rewrite it as follows:

minWt

∑T

t=1
‖ X(t) − X(t)C‖2w2

t (10)

s.t.0 ≤ wt ≤ 1,
∑T

t=1
wt = 1

By defining the Lagrange multipliers of Equation (10), we have

L (W,α) =
∑T

t=1
‖ X(t) − X(t)C‖2w2

t − α

(

∑T

t=1
wt − 1

)

(11)

Let the derivative of Equation (11) w.r.t.W be zero, that is,

2‖ X(t) − X(t)C ‖2wt − α = 0, (12)

And then, we get

wt =
1

2
α‖ X(t) − X(t)C ‖−2. (13)

Due to the constraint
∑T

t=1 wt = 1, we have the
following equation:

∑T

t=1
α‖ X(t) − X(t)C‖

−2
= 2, (14)

Which results in the following solution ofα,

α = 2/
∑T

t=1
‖ X(t) − X(t)C ‖−2 (15)

Finally, we substitute Equation (15) into Equation (13), and get:

wt =‖ X
(t) − X(t)C‖−2/

∑T

t=1
‖ X(t) − X(t)C ‖−2. (16)

This gives a closed-form solution for wt with a clear physical
explanation that the weight of the tth time point depends on the
data fitting error at current moment. In other words, the weights
tend to be related to the quality of data.

Now, we simply summarize the above algorithm in the
following Table 1.

TABLE 1 | Algorithm.

Input: X, λ //data and parameters

Output: C, W //brain network and weighted matrix

Initialize W;

while not converge

while not converge

C← C− α∇Cf (X,C);

C← proxλ‖·‖1

(

C
)

= [sgn
(

Cij

)

×max(abs
(

Cij

)

λ, 0)]N×N;

end

update W by Equation (17);

end

return C,W;

EXPERIMENTS

We will evaluate the performance of our method by applying
it to the early identification of AD. As a common form of
dementia, AD occurs most frequently in the aged population. It
not only influences the daily life of patients, but also causes heavy
economic burden for the patient’s family and society (Peng et al.,
2019). As an intermediate between AD and normal aging, MCI is
believed to be the earliest clinically detectable stage of progression
toward AD (Li et al., 2020). Every year, subjects with MCI may
evolve to AD with a rate of 10–15% (Petersen and Roberts, 2009),
while healthy controls develop into dementia with a rate of 1–2%
annually (Bischkopf et al., 2010). Therefore, the early detection of
MCI is vital for delaying the transition from MCI to AD (Chaves
et al., 2012; Zhang et al., 2019). In the next experiments, we
estimate BFNs based on fMRI data and apply the estimated BFNs
as features to classify the subjects with MCI from NCs.

Data Acquisition and Preprocessing
The data used in this study were shared by a recent study (Yan
et al., 2013), and can be freely downloaded from Neuroimaging
Informatics Tools and Resources Clearinghouse (NITRC).1

Concretely, 91 subjects (45 MCIs and 46 NCs) were participated
in our experiment. The subjects were scanned by 3.0T Siemens
scanners with the following scanning parameters: TR/TE is
3,000/30ms, imaging matrix size is 74 × 74, 45 slices, and voxel
size is 2.97× 2.97× 3 mm3.

The acquired fMRI images were processed by SPM8 toolbox2

based on the well-accepted pipeline (Rubinov and Sporns,
2010). For each subject, the first 10 volumes were removed for
signal stabilization. The remaining volumes were first corrected
for different slice acquisition timing and head motion. Then,
regression of ventricle and white matter signals as well as six
head-motion profiles were conducted to reduce the influences of
nuisance signals. The fMRI series were further band-pass filtered
from 0.01 to 0.08Hz. After that, the corrected images were
registered to Montreal Neurological Institute (MNI) standard
space, and, based on the automated anatomical labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002), pre-processed fMRI signals

1http://www.nitrc.org/projects/modularbrain/
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were partitioned into 90 ROIs. Please refer to (Qiao et al., 2016)
for the description of the preprocessing pipeline in detail. Finally,
for each subject, the mean time series of each ROI (Michel et al.,
2012) were extracted and put into the column of a data matrix X
that is the only material for estimating BFNs.

Brain Functional Network Estimation
As mentioned above, now each subject corresponds to a data
matrix, by which we can construct BFNs using different methods.
For SR-based methods, they involve a regularized parameter λ

that generally affects the subsequent classification performance
significantly. Therefore, in our experiments, we select the optimal
parametric values for them based on the training set from a
candidate range of [2−5, 2−4, · · · , 20, · · · , 24, 25]. Contrary to SR,
the PC-based BFN estimation model is parameter-free. However,
to improve its flexibility and conduct a fair comparison, we
introduce a threshold parameter in PC to remove a proportion
of weak edge weights (connections) in the estimated BFN. To
be consistent with SR-based methods, we also use 11 candidate
values ranging from [1%, 10%,· · · , 90%, 100%], where the
percentage means the proportion of weak connections that
are discarded.

Feature Selection and Classification
With the constructed BFNs for all subjects, the next tasks are
feature selection and classification. In this paper, we regard the
pairwise functional connections between 90 ROIs as features
for MCI identification. As a result, the symmetric BFN adjacent
matrix contains 90 × (90 − 1)/2 = 4005 features, which
would lead to the so-called curse of dimensionality and overfit
the training data. Therefore, we reduce the data dimensions by
selecting discriminative features based on the t-test with fixed p-
values prior to the subsequent classification task. In particular,
we set p-value= 0.005 for PC, and 0.01 for other methods,
due to their empirically best performance. Based on the selected
features, we use the popular linear SVM with default parameter
(C= 1) for classification.

The detailed pipeline for feature selection and classification
is shown in Figure 3. Due to the small sample size, we employ
the leave-one-out (LOO) cross validation strategy for testing the
performance of the involved methods. Specifically, for a total

of S subjects, one is left out in each loop for testing, while the
remaining S-1 subjects are used for training the model.

As described earlier, the free parameter involved in the BFN
estimation methods may have a significant influence on the
network topology and the final classification result. Therefore, for
eachmethodwe first estimate BFNs based on different parametric
values, and then in each loop we use an inner LOO to validate the
classification accuracy on the training data for finding the optimal
parametric values in the range of candidate set. Concretely, in
each iteration, one of the S-1 training samples/subjects is left out
to validate the performance, while the remaining S-2 subjects
are for training the model. Then, with the optimal network
parametric value, we re-run feature selection and SVM classifier.
The final classification accuracy is calculated by averaging the
results from all subjects.

Results
Brain Network Visualization
In our experiment, we construct BFNs using four different
methods, including PC, SR, SR+SS (Li et al., 2019a) and the
proposed adaptively-weighted scheme (namely SR+W). The SR-
based models in this paper are solved via SLEP toolbox (Liu et al.,
2011). The adjacency matrices of BFNs estimated by different
methods are shown in Figure 4. It can be observed that the BFN
estimated by PC (a) has a topology that is highly different from
those estimated by SR-based methods, since they use different
data fitting terms (or, equivalently, capture different statistical
dependency between ROIs). In contrast, the SR-based methods
lead to similar topological structures since using the same kind of
data fitting term for capturing the partial correlation. Compared
with the traditional SR, SR+SS (c) affect the network structure
significantly due to the direct and stringent removal of volumes
from fMRI time series, while the proposed SR+W method (d)
can preserve the original network structure well by using a more
flexible and lenient volume-weighted strategy.

Classification Performance
In this paper, we use four quantitative measures, including
accuracy (ACC), sensitivity (SEN), specificity (SPE), and false
positive rate (FPR) to evaluate the classification performance
of different methods. Their mathematical definitions are given

FIGURE 3 | The MCI identification pipeline based on the estimated BFNs.
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as follows:

ACC =
TP + TN

TP + FP + TN + FN

SEN =
TP

TP + FN

SPE =
TN

TN + FP

FPR =
FP

FP + TN

Where TP, TN, FP, and FN indicate true positive, true negative,
false positive, and false negative, respectively. In this paper, we
treat the MCI samples as positive class and the NC samples as
negative class.

The classification results corresponding to different methods
are reported in Figure 5. Despite its popularity, PC-based BFNs
tend to involve many indirect and redundant connections (as
shown in Figure 4 earlier), whichmay affect its final classification
performance. In contrast, SR can regress out the confounding
effect from other ROIs, and thus achieve a better classification
accuracy than PC. Different from the traditional PC and SR,
SR+SS can detect and remove some potential “dirty” data,
which may be one of the reasons for the improved classification
accuracy. The proposed SR+W method further introduces a
more flexible strategy into the traditional SRmodel for adaptively
weighting the fMRI data, and achieves the best classification
accuracy, illustrating that the adaptively weighted scheme can
improve the quality (at least, the discriminative power) of the
estimated BFNs to some extent.

Sensitivity to Network Model Parameters
In general, model parameters have a heavy influence on the
network topology and then the final classification accuracy. To
investigate the sensitivity of the involved methods to different
values of parameters, we conduct classification experiments on
the above data set via LOO cross validation. We report the
classification accuracy corresponding to different parametric
values in Figure 6 for different BFN estimation methods. It
can be observed that the proposed method achieves the best
performance for most of the parametric values. However, it is
exceedingly sensitive to the model parameter.

Top Discriminative Features (Networks Connections)
In this paper, we regard the connections between ROIs as features
for identifying subjects with MCI from NCs in the dataset. Since
the selected features (network connections) may be different in
each folder of cross validation, we sort features according to
their average of p-values on all folders. As a result, by recording
the selected features during the training process, we select 69
discriminative connections and visualize them in Figure 7. Note
that the thickness of an arc is inversely proportional to the p-
values for indicating the discriminative power of a connection in
the classification task. The colors of arcs are randomly generated
only for a clearer visualization. From Figure 7, we can find that
the brain regions associated with top discriminative features
include the temporal gyrus, parietal lobules, parahippocampus,
supramarginal gyrus and precuneus, etc. This result conforms to
the previous neuroimaging biomarker reports and the pathology
studies on MCI (Greicius et al., 2007; Albert et al., 2011). The
existing studies (Wang et al., 2013; Gardini et al., 2015) have
pointed out that patients with MCI and AD have the same
regional network connectivity anomalies compared with healthy
controls. Therefore, it has practical significance to realize the
early diagnosis of MCI and inhibit its evolution into AD.

Performance Evaluation on Simulated Data
We also carried out experiments on a set of simulated Bold signals
for evaluating the generalizability of the proposed algorithm and
analyzing their ability to detect the true network. At first, we

FIGURE 5 | Classification results corresponding to different methods.

FIGURE 4 | The BFN adjacency matrices constructed by different methods. (A) PC, (B) SR, (C) SR+SS, (D) SR+W.
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FIGURE 6 | Classification accuracy associated with different method under 11 different parametric values.

prepared a known network as Figures 8A,B beforehand which
is consistent with the hypothesis of our model as the ground
truth, that is, it has a clear sparse structure. Then, based on this
ground truth network we generate the Bold signals with 80 time
points using linear sparse combinations of two given real ROI
time series x1, x2, associated with ROI1 and ROI2, that is

data = [x1, x2]

[

1 0 3 0 1
0 1 0 2 0.5

]

(17)

Further, to be more in line with the actual scenario, we
change several time points randomly in the generated data for
simulating the possible artifacts, noises, or “abnormal” resting-
state processes. Specifically, we add Gaussian noise to the data
to simulate the inevitable noise in real settings and introduce
five “dirty” points to simulate the possible functional “noises,”
by setting them off the main direction. The eventually signals
are illustrated as in Figure 8C. Finally, we estimate FBNs based
on the simulated BOLD signals using different methods, and
visualize the estimated results in Figures 8D–G.

We have the following observation from Figure 8: (1) PC leads
to some false connections and produce a dense topology; (2)
SR cannot recover the original graph yet as PC although it can
remove some connections which makes it exhibit a little cleaner

structure. (3) SR+SS can basically reflect the original graph
except that an extra edge has been added. However, the order
of the weight values have been significantly altered. (4) Different
from the above three methods, the proposed algorithm can not
only reveal the original topology structure but also preserve the
order of the weight values even if it also has an additional edge.
The similarity between the estimated brain networks and ground
truth by Pearson’s correlation coefficient is shown in Table 2. The
results show that our method achieves the highest similarity to
the ground truth.

CONCLUSION

It is known that the quality of estimated BFNs heavily depends
on the observed data. However, in practice, the observed fMRI
data are commonly influenced by many factors, especially
head motion. Although complex preprocessing pipelines are
employed to remove the effects of head motion as much
as possible, they are fully independent to the ensuing BFN
estimation. Therefore, in this paper we propose a new learning
model to estimate BFN together with data “scrubbing” by
adaptively weighting the volumes in fMRI time series. Then,
we develop an efficient AO algorithm to solve the proposed
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FIGURE 7 | The most discriminative features (connections) for the 90 ROIs of AAL template involved in the classification tasks. The figure is created by circularGraph

tool, shared by Paul Kassebaum. http://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph.

FIGURE 8 | (A,B) The given network as ground truth; (C) The simulated BOLD signals generated according to our motivation; (D–G) The estimated FBNs by running

four different methods based on the simulated BOLD signals in (C).

Frontiers in Aging Neuroscience | www.frontiersin.org 9 January 2021 | Volume 12 | Article 595322

http://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Chen et al. Estimating Brain Functional Networks for MCI Identification

TABLE 2 | The similarity between ground truth network and the generated FBNs.

PC SR SR+SS SR+W

Ground truth 33.4% 49.1% 62.7% 78.6%

model and get a closed-form weight update formula with a
clear physical explanation. Experiments on a publicly available
dataset show that our estimated BFN can result in the best
classification accuracy for an MCI identification task. Finally, but
interestingly, it is worth emphasizing that, despite its helpfulness
in the final performance, the proposed BFN estimation method
is unsupervised, meaning that both the weights on data and the
network itself are learnt without using the label information.
Regarding the fact that our final goal is to improve the
classification accuracy, in the future we therefore plan to develop
supervised BFN learning algorithms toward a better (at least
more discriminative) human brain connectome.
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