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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by

the accumulation of toxic misfolded proteins, which are believed to have propagated

from disease-specific epicenters through their corresponding large-scale structural

networks in the brain. Although previous cross-sectional studies have identified potential

AD-associated epicenters and corresponding brain networks, it is unclear whether these

networks are associated with disease progression. Hence, this study aims to identify the

most vulnerable epicenters and corresponding large-scale structural networks involved

in the early stages of AD and to evaluate its associations with multiple cognitive domains

using longitudinal study design. Annual neuropsychological and MRI assessments

were obtained from 23 patients with AD, 37 patients with amnestic mild cognitive

impairment (MCI), and 33 healthy controls (HC) for 3 years. Candidate epicenters were

identified as regions with faster decline rate in the gray matter volume (GMV) in patients

with MCI who progressed to AD as compared to those regions in patients without

progression. These epicenters were then further used as pre-defined regions of interest

to map the synchronized degeneration network (SDN) in HCs. Spatial similarity, network

preference and clinical association analyses were used to evaluate the specific roles of the

identified SDNs. Our results demonstrated that the hippocampus and posterior cingulate

cortex (PCC) were the most vulnerable AD-associated epicenters. The corresponding

PCC-SDN showed significant spatial association with the patterns of GMV atrophy

rate in each patient group and the overlap of these patterns was more evident in the

advanced stages of the disease. Furthermore, individuals with a higher GMV atrophy rate

of the PCC-SDN also showed faster decline in multiple cognitive domains. In conclusion,

our findings suggest the PCC and hippocampus are two vulnerable regions involved

early in AD pathophysiology. However, the PCC-SDN, but not hippocampus-SDN, was

more closely associated with AD progression. These results may provide insight into the

pathophysiology of AD from large-scale network perspective.
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INTRODUCTION

The human brain is traditionally considered to be a patchwork
composed of neurons with specific functions and has been

thoroughly dissected into histologically distinct regions based
on functional organization or cellular cytoarchitecture. Advances

in neuroimaging techniques have generated a novel view of the
brain as a complex interconnected system that exerts its functions
via both local and long-range connections (Biswal et al., 1995).

Although the exact roles of these large-scale brain networks are
not fully understood, disruptions of these networks have been
demonstrated in various neurological diseases (Ahmed et al.,
2016).

A pathological hallmark of neurodegenerative diseases is
misfolded protein deposition in specific brain areas. In patients
with Alzheimer’s disease (AD), β-amyloid and tau proteins are
widespread in many cortical regions and are correlated with
clinical symptoms and cognitive functions (Braak and Braak,
1991). Recent studies further suggested that these misfolded
proteins may be deposited in certain vulnerable anatomical
regions early on, and spread along their corresponding large-
scale networks in the brain as the disease progresses (Pievani
et al., 2014; Franzmeier et al., 2020). According to this brain
network degeneration hypothesis, the process may begin in
epicenters of disease-specific networks, which are specific brain
regions that are structurally and/or functionally vulnerable to
the disease (Seeley et al., 2009). Misfolded proteins then spread
along corresponding brain networks rather than by geographical
proximity (Iba et al., 2013). Based on this hypothesis, several

cross-sectional studies have identified AD epicenters as brain
areas with maximal atrophy in patients with AD compared to
healthy controls (HCs). These epicenters were then used as
seeds to determine their corresponding structural and functional
brain networks in HCs (Seeley et al., 2009; Dickerson et al.,
2017). However, the epicenters identified using this approach
may not be the earliest disease-involved regions, as AD pathology
accumulates in the brain prior to the onset of clinical symptoms
(Jack et al., 2010). In addition, it is also unclear whether these
identified brain networks are associated with disease progression.

To identify AD-associated structural brain networks based
on characteristics of disease progression, a 3-year-prospective
study was conducted and the epicenters were posited as regions
with greater annual atrophy rates in gray matter volume
(GMV) in patients with mild cognitive impairment (MCI)
who progressed to AD during the follow-up period as well
as AD patients who were at an earlier stage. These regions
were used as candidate epicenters to establish synchronized
degeneration networks (SDNs) based on covariance patterns of
annual GMV atrophy rates in HCs. This approach has been
proposed as a surrogate marker for investigating longitudinal
changes in large-scale structural networks (Alexander-Bloch
et al., 2013). In contrast with the widely-used structural
covariance network approach, which models the cross-sectional
co-variance pattern of morphometric features across the study
participants, the SDN approach uses longitudinal GMV atrophy
rates as a coupling factor to construct the related structural
network. Consequently, brain networks established using the

SDN approach would more likely capture the progressive
characteristic of neurodegenerative disease. We hypothesized
that large-scale SDNs established with our identified epicenters
could predict disease progression and provide further evidence
supporting the network degeneration hypothesis for AD
pathophysiology from a longitudinal perspective.

MATERIALS AND METHODS

Participants
Patients with amnestic MCI, patients with AD dementia, and
HCs were recruited for the study. During the 3-year follow up,
patients with MCI who progressed to AD were classified as
MCIp; those that remained stable were classified as MCIs. All
patients were recruited from thememory clinic at Taipei Veterans
General Hospital (TVGH), Taiwan. Before the study began,
written informed consent was obtained from all participants
and guardians for AD patients. This study was approved by the
Local Ethics Committee of Human Research in TVGH (N0.97-
04-1OA). Every subject was interviewed by the neurologist for
history-taking and neuropsychological evaluation. Laboratory
and MR examinations were used to exclude other major
neurological diseases such as tumors, strokes, and severe white
matter disease. None of the participants had a history of major
head injury, brain tumor, stroke, epilepsy, alcoholism, major
psychiatric illness, or other systemic diseases affecting cognitive
function. HCs were volunteers with no neurological disease and
no cognitive complaints.

Clinical Assessments
The Mini-Mental State Examination (MMSE) was administered
to assess global cognitive function (Folstein et al., 1975).
To evaluate performance in different cognitive domains, the
following cognitive tests were used:

• Verbal memory: the Chinese version of the Verbal Learning
Test (CVVLT; nine items, four trials, and 10-min delayed
recall) (Chang et al., 2010)

• Language: the categorical (animals) Verbal Fluency Test
(VFT) and 30-item Boston Naming Test (BNT) (Cheung et al.,
2004)

• Visuospatial function: the modified Rey-Osterrieth Complex
Figure Test (CFT) (Boxer et al., 2003)

• Executive function: the modified Trail-Making Test, Part B
(TMT-B) (Kramer et al., 2003)

The diagnosis of AD was based on the criteria from the National
Institute of Neurological and Communicative Disorders and
Stroke-Alzheimer’s Disease and Related Disorders Association
(NINCDS/ADRDA) (McKhann et al., 1984). All patients with
AD had mild dementia with a baseline CDR score of 1
at the time of enrollment. All patients with amnestic MCI
fulfilled the Petersen criteria (Petersen et al., 1999): (1) memory
complaints, preferably corroborated by an informant; (2)
objective memory impairment (verbal memory test, CVVLT ≤5,
below 1.5 standard deviations of normal data) (Chang et al.,
2010); (3) normal general cognitive function (MMSE ≥24);
(4) intact daily living activities; and (5) dementia criteria not
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met. As defined for amnestic MCI, only patients with isolated
memory impairments and without neuropsychological evidence
of dysfunction in other cognitive domains were recruited. All
participants were scheduled to receive clinical and imaging tests
annually for 3 years. Only subjects that received at least two
MRI examinations (17 participants with 2 consecutive scans
and 76 participants with 3 consecutive scans) were included in
subsequent analyses.

Image Acquisition
The MRI scans were acquired using an eight-channel phased-
array head coil on the identical 1.5 T Excite-II MRI scanner
(General Electric Healthcare, Milwaukee, Wisconsin, USA) at
TVGH. Foam pads were used to minimize head movement
during image acquisition. T1 weighted anatomical images were
acquired using a 3-dimensional fluid-attenuated inversion-
recovery fast spoiled gradient recalled echo sequence with
the following imaging parameters: repetition time/echo
time/inversion time = 8.548/1.836/400ms; flip angle = 15
degrees; number of excitations = 1; matrix size = 256 ×

256 × 124 without inter-slice gap and interpolation; and
voxel size = 1.02 × 1.02 × 1.50 mm3. Each individual brain
scan was manually inspected for image artifacts and gross
anatomical abnormalities by an experienced radiologist before
the morphometry analysis. No participant was excluded for
brain abnormalities. Before subsequent image processing, we
reoriented all images to have an approximate point of origin at
the anterior commissure.

Image Analysis
A general overview of the analytical framework is
illustrated in Figure 1. Details of the analytic pipeline are
summarized below.

Estimating Individual Voxel-Wise Anatomical

Changing Rate Map
To estimate voxel-wise anatomical brain changes over time
and enable subsequent statistical analyses independent of the
number of time points, a two-stage tensor-based morphometry
approach was applied using Statistical Parametric Mapping
software (SPM12 version 7487, Wellcome Institute of Neurology,
University College London, UK, http://www.fil.ion.ucl.ac.uk/
spm/) with default settings and in-house MATLAB codes
(R2018a, Mathworks, Natick, MA). In the first stage, all available
native space T1w scans for each individual were warped
longitudinally to their corresponding midpoint average image
using an inverse-consistent non-linear registration approach
available in the “Serial Longitudinal Registration” module of
SPM12 (Ashburner and Ridgway, 2012). Experiment times
for each scan were entered into the registration algorithm,
generating Jacobian determinant maps of each time point and
the corresponding midpoint average images for each individual.
All midpoint average anatomical images were subsequently
segmented into three distinct tissue types (gray matter, white
matter, and cerebrospinal fluid) using a unified segmentation
approach (Ashburner and Friston, 2005). The resulting gray
and white matter tissue segments were used to construct

group-specific tissue templates and estimate deformation
fields using a fast diffeomorphic image registration algorithm
(Ashburner, 2007). This procedure enabled the transformation
of individual Jacobian determinant maps into the standard
Montreal Neurological Institute (MNI) space. Subsequently,
to estimate voxel-wise changing rate maps, a linear regression
model was applied to the MNI-space Jacobian determinant
maps of each time point for each individual participant.
The estimated slope of the regression model presented the
changing rate of the brain across multiple time points. The
resulting changing rate maps were then further smoothed
using an isotropic 8mm full-width at half-maximum Gaussian
kernel. These preprocessed data encoded the relative speed
of brain expansion or contraction per individual, and were
used for subsequent voxel- and network-level analyses. To
exclude partial volume effects of borders between different
tissue types, individual unmodulated gray matter segments of
corresponding midpoint average images were averaged and set
at a threshold (0.2 intensity) to create explicit masks. Individual
native space baseline T1w scans were used to estimate total
intracranial volume.

Voxel-Wise Statistical Analyses of Changing Rate

Maps
The GLM Flex toolbox (http://mrtools.mgh.harvard.edu/index.
php?title=GLM_Flex) with appropriate statistical models was
used for the following voxel-wise statistical analyses. A single-
factor-four-level (HC, MCIp, MCIs, and AD) analysis of
covariance with age, sex, educational years, and total intracranial
volume as nuisance covariates was used to identify between-
group differences in GMV changing rates of local brain areas. A
separate one-sample t-test was performed for each study group
to map group-specific degenerative patterns (different from zero)
over time. Voxel-wise statistical results were set at a voxel-level
uncorrected p < 0.005 and extent threshold of family wise error
(FWE) corrected p < 0.05 (cluster extent= 513 voxels) using the
updated “3dFWHMx” and “3dClustSim” programs implemented
in the Analysis of Functional Neuroimages software (AFNI,
version 19.3.17). For transparency and reusability of statistical
results, all unthresholded statistical maps of direct group
comparisons and group-specific degenerative patterns can be
downloaded from the NeuroVault website (https://neurovault.
org/collections/3273/).

Disease-Specific Epicenter Identification and

Synchronized Structural Degeneration

Network Analysis
Disease-specific epicenters for synchronized SDN analysis were
identified by placing 6-mm-radius spheres at the most-significant
voxel from the above direct-group voxel-wise changing rate
analysis (MCIp vs. MCIs). Brain regions with significantly
higher GMV changing rates in MCIp were defined as early
AD-associated epicenters and further selected as seed regions-
of-interest (ROIs) for mapping large-scale SDNs in HCs. In
accordance with previous longitudinal studies (Alexander-Bloch
et al., 2013), we extracted mean changing rate values of seed ROIs
(hippocampus and the posterior cingulate cortex [PCC]) and
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FIGURE 1 | Framework of the study design and analyses. (A) The optimized longitudinal anatomical image preprocessing pipeline was used to generate individual

annual changing rate maps in Montreal Neurological Institute (MNI) standard space. (B) Vulnerable regions (hippocampus and PCC) were identified by comparing MNI

space annual changing rate maps between MCIp and MCIs groups. (C) Seed-based correlation analyses were conducted to identify corresponding large-scale

synchronized degeneration networks (SDNs) in the HC group. (D) A one-sample t-test was performed for each patient group to map group-specific degenerative

patterns (different than zero) over time. (E) Permutation test was conducted to assess the spatial similarity between SDNs and group-specific degenerative patterns

by comparing the strength of actual correlations with the distribution from randomly generated SDNs. (F) Network preference analysis and Spearman correlation

analysis were conducted to investigate clinical implications. AD, Alzheimer’s disease; ANCOVA, analysis of covariance; C.C., correlation coefficient; HC, healthy

control; HIPP, hippocampus; MCIp, mild cognitive impairment with progression to AD; MCIs, mild cognitive impairment stable without progression to AD; PCC,

posterior cingulate cortex; TP, time point; SDN, synchronized degeneration network.
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then entered these values into respective general linear models to
identify possible coupling patterns between seed ROIs and voxels
across the rest of the brain in HCs. The same nuisance covariate
settings and statistical criteria were used for SDN analyses.
Unthresholded statistical maps of these SDNs are also available
at the NeuroVault website (https://neurovault.org/collections/
3273/).

Spatial Similarity and Network Preference Analyses
To investigate whether AD-specific SDNs predicted the
longitudinal GMV atrophy rate in each disease group, a voxel-
wise spatial cross-correlation approach was used to assess
similarities between spatial distributions of unthresholded
group-specific degenerative maps and SDN maps (Douaud et al.,
2014). Using non-parametric permutation tests to assess the
statistical significance of observed spatial relationships, 1,000
randomGaussian noise maps were generated and smoothed with
corresponding estimated smoothness from SDN maps. We then
calculated 1,000 spatial cross-correlations between simulated
SDNs and group-specific degenerative maps, and compared
the strength of observed correlations with the empirically
generated null distribution. To test whether AD-specific SDNs
exhibited different vulnerability levels in each disease group,
network preference analysis was conducted (Seeley et al.,
2009). First, binarized network-level ROIs were generated from
previous SDN analysis with statistical thresholding (cluster-level
FWE corrected p < 0.05). We then calculated the goodness-of-fit
(GOF) score between binarized network ROIs and group-specific
degenerative patterns (from previous one-sample t-tests of voxel-

wise changing rate map analysis). The GOF score reflected how
well SDNs fit each group-specific degenerative pattern, and was
defined by the difference between the mean z-value within and
outside the binarized network ROIs. Furthermore, to confirm the
stability and reliability of the results of the network preference
analysis, we performed an additional GOF analysis using
binarized network-level ROIs with fixed network size. More
specifically, we first ranked the whole brain voxels from highest
to lowest according to the corresponding voxel-wise z-value of
PCC- and hippocampus-epicentered network analyses. After
voxel ranking procedure, 10 binarized network ROIs with
different network sizes from the top 1 to 10 percent of all brain
voxels with 1 percent intervals were generated for the PCC- and
hippocampus-epicentered SDNs, respectively. This procedure
provides a more identical network size for both AD-specific
SDNs to be used in the GOF-based network preference analysis.
The GOFs scores were then calculated using the same approach
which was mentioned above.

Relationship Between Cognitive Decline and the

Mean Changing Rate of AD-Specific Synchronized

Structural Degeneration Networks
To investigate the relationships between AD-specific SDNs and
cognitive decline, mean GMV changing rates of AD-specific
SDNs were extracted, averaged, and entered into MATLAB
software to perform partial Spearman’s rank order correlation
analysis with the changing rate of neuropsychological test scores.
Participants’ age, sex, education years, and total intracranial

volume were included as nuisance variables. A Bonferroni
correction was applied to correct for multiple comparisons for
correlation analyses, excluding the MMSE which was considered
a separate test representing global cognition. The threshold for
statistical significance was set at corrected p < 0.05.

Statistical Analyses of Demographic,
Clinical Characteristics, and Global Tissue
Volume at Baseline
The statistical analyses of non-voxel-wise data were performed
with IBM SPSS Statistics Version 25 (Armonk, NY). We used
the Shapiro-Wilk normality test to check that each variable was
normally distributed. The Chi-square test was used to examine
categorical data. The Analysis of Variance and Kruskal-Wallis
rank sum tests were used to identify differences in continuous
variables after considering distributional assumptions.
Two-tailed p < 0.05 were considered statistically significant.

RESULTS

Patients’ Characteristics and Clinical Data
In total, 23 patients with AD, 37 patients with MCI, and 33 HCs
were included at baseline. During the 3-year follow-up, 12 of
the patients with MCI progressed to AD (MCIp); the remaining
25 patients remained stable (MCIs). Patient demographics and
baseline cognitive function test results are listed in Table 1.
Age and sex were similar among study groups. Differences in
education years were noted. Post-hoc analysis revealed greater
education years in HCs than in MCIp (p = 0.011) and AD
patients (p = 0.036). Significant differences were observed in
the baseline cognitive function test results between study groups
with the exception of the complex figure test copy section (CFT
copy). In the majority of tests, HCs performed better than MCIs,
followed by MCIp and AD.

Epicenter Identification and Group
Differences in Annual GMV Atrophy Rate
Using the direct group comparison of voxel-wise annual GMV
atrophy rate maps between patients with MCIp and MCIs, the
hippocampus and PCCwere identified as the early AD-associated
disease epicenters (Figure 2A). Additionally, all possible group
differences in the regional GMV atrophy rate are illustrated
in Supplementary Figure 1; detailed anatomical locations are
listed in Supplementary Table 1. Overall, the AD group had the
fastest atrophy rate, followed by MCIp, MCIs, and HC groups.
More specifically, compared to HCs, patients with AD had faster
atrophy rates in the hippocampus, temporal pole, frontal lobe,
cingulate gyrus, and cuneus/precuneus. No brain areas exhibited
a decreased annual GMV atrophy rate when comparing disease
groups and HCs.

Spatial Distribution of Vulnerable SDNs
The spatial distribution of large-scale hippocampus- and
PCC-epicenter SDNs are illustrated in Figure 2B and the
detailed anatomical locations of the corresponding SDNs are
listed in Supplementary Table 2. The hippocampus-epicentered
SDN involved brain areas surrounding the hippocampus
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TABLE 1 | Demographics and baseline clinical characteristics.

HC MCIs MCIp AD p-value Post-hoc comparisons

Number 33 25 12 23

Female [n, (%)] 18 (54.5%) 16 (64.0%) 6 (50.0%) 12 (52.2%) 0.804a

Age (years) 74.9 (5.46) 77.1 (6.08) 77.1 (6.24) 78.3 (5.79) 0.066b

Education (years) 13.1 (3.21) 12.4 (3.53) 9.58 (4.48) 10.3 (4.87) 0.035b HC>MCIp/AD

MMSE 28.5 (1.42) 27.2 (1.87) 24.7 (2.50) 20.7 (2.86) <0.001b HC>MCIs>MCIp>AD

CVVLT 7.79 (1.29) 5.04 (1.43) 3.50 (2.81) 1.04 (1.40) <0.001c HC>MCIs/MCIp>AD

CFT copy 15.7 (1.57) 15.4 (1.71) 14.8 (2.01) 15.0 (1.72) 0.352b

CFT recall 11.5 (3.28) 6.96 (3.43) 4.58 (4.19) 0.83 (1.85) <0.001b HC>MCIs/MCIp>AD

VFT 16.8 (3.88) 12.7 (3.08) 13.6 (3.85) 12.3 (4.08) <0.001b HC>MCIs/MCIp/AD

BNT 28.2 (2.32) 26.6 (2.23) 24.5 (3.50) 23.5 (3.36) <0.001b HC>MCIs/MCIp/AD; MCIs>AD

TMT-B lines 13.3 (2.28) 11.4 (3.76) 11.2 (3.97) 8.59 (5.03) <0.001b HC>MCIs/MCIp/AD; MCIs>AD

GMV (cm3) 592 (57.1) 578 (56.9) 569 (51.5) 544 (47.0) 0.015c HC/MCIs>AD

WMV (cm3) 398 (50.8) 399 (47.5) 385 (46.0) 375 (33.9) 0.230c

CSFV (cm3) 471 (92.7) 504 (80.4) 506 (88.9) 499 (87.5) 0.073c

TIV (cm3 ) 1,460 (146) 1,481 (118) 1,461 (152) 1,451 (131) 0.895c

aChi-square test was used for group comparison in categorical variables.
bKruskal-Wallis rank sum test was used for comparing of group differences in continuous variables with non-normal distributions.
cAnalysis of variance test was used for comparing group differences in continuous variables with a normal distribution.

AD, Alzheimer’s disease; BNT, Boston Naming Test; CFT, Complex Figure Test; CSFV, Cerebrospinal fluid volume; CVVLT, Chinese version of the Verbal Learning Test; GMV, gray matter

volume; HC, healthy controls; MCIp, mild cognitive impairment-progression; MCIs, mild cognitive impairment-stable; MMSE, Mini-Mental Screening Examination; TIV, total intracranial

volume; TMT-B lines, Trail-making Test Part B lines completed in 120 s; VFT, Verbal Fluency Test; WMV, white matter volume.

(parahippocampus, entorhinal cortex, temporal pole, and
temporal fusiform cortex), frontal poles, and the cerebellum.
On the other hand, the PCC-epicentered SDN included more
widespread brain areas, including the cingulate, frontal lobe,
temporal lobe, insula, and cerebellum.

Spatial Similarity Between Vulnerable
SDNs and GMV Atrophy Rate Patterns in
Disease Groups
The voxel-wise spatial patterns of GMV atrophy rates for each
disease group are illustrated in Figure 2C. Significant spatial
correlation between atrophy patterns and SDNs were noted for
PCC-epicentered SDN (MCIs: r = 0.571, p < 0.001; MCIp: r =
0.639, p < 0.001; AD: r = 0.570, p < 0.001) and hippocampus-

epicentered SDN (MCIs: r = 0.285, p < 0.001; MCIp: r = 0.415,
p < 0.001), with the exception of the hippocampus-epicentered
SDN in the AD group (r = 0.1, p > 0.99).

Network Preference Analysis Revealed the
Specific Role of Each SDN
To examine network preferences across different disease
stages, we investigated the fitness between hippocampus/PCC-
epicentered SDNs and whole-brain atrophy rate patterns of all
disease groups (Figure 3). We first generated binarized masks
of hippocampus- and PCC-epicentered SDNs (FWE-corrected
p < 0.05, Figure 3A), and calculated the GOF according to the
different disease stages (Figure 3B). A higher GOF represented
more similarity between the SDN and disease atrophy pattern.
For the PCC-epicentered SDN, overlaps were more evident
with more advanced disease stages (GOF scores in MCIs =

0.610; MCIp = 0.827; AD = 0.874). This trend was not

observed for the hippocampus-epicentered SDN (GOF scores
in MCIs = 0.380; MCIp = 0.213; AD = 0.230). Furthermore,
the additional GOF-based network preference analysis, which
uses a different degree of fixed size approach to determine the
network ROIs, also demonstrated the same relationship between
SDN and disease atrophy pattern across different disease stages
(Supplementary Figure 2).

Correlations Between the GMV Atrophy
Rate of SDNs and Cognitive Decline
To test whether large-scale SDNs were associated with
progressive cognitive decline, we performed exploratory
correlation analyses between mean annual GMV atrophy rates
of each SDN and deterioration slopes of neuropsychological
test scores (Table 2). Significant correlations between PCC-
epicentered SDN, but not hippocampus-epicentered SDN, and
cognitive decline were observed in most domains (including
MMSE, CVVLT, CFT recall, VFT, and BNT).

DISCUSSION

The results from this 3-year longitudinal study support
the network degeneration hypothesis of AD. Our results
indicated that the PCC and hippocampus were the two
most vulnerable regions involved in the early-stage of AD.
Spatial correlation analysis further demonstrated PCC- and
hippocampus-epicentered SDNs in HCs strongly associated
with the GMV atrophy patterns of disease groups. However,
only the PCC-epicentered SDN was associated with disease
severity, and its GMV atrophy rate predicted cognitive decline
in multiple domains. These findings collectively indicate the
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FIGURE 2 | The spatial distribution of the vulnerable SDNs and GMV atrophy rate patterns in disease groups. (A) Direct group comparison of the annual gray matter

atrophy rate between MCIs and MCIp groups to identify early AD-associated epicenters. (B) Whole brain vulnerable SDNs illustrated in the HC group by seed-based

correlation analyses in the epicenters on (A). (C) Group-specific spatial patterns in each patient group based on one-sample t-tests. The transparent colors indicate

the z-value of statistical results without a significant threshold; the solid colors show the significant regions. AD, Alzheimer’s disease; HC, healthy control; HIPP,

hippocampus; GMV, gray matter volume; MCIp, mild cognitive impairment with progression to AD; MCIs, mild cognitive impairment stable without progression to AD;

PCC, posterior cingulate cortex; SDN, synchronized degeneration network.
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FIGURE 3 | Network preference analysis. (A) Statistical maps of the hippocampus- and PCC-SDNs. (B) Preference determined by goodness-of-fit showed a stronger

association of the PCC-SDN than that of the hippocampus-SDN, especially in the MCIp and AD groups. AD, Alzheimer’s disease; FWE, family-wise error; HIPP,

hippocampus; MCIp, mild cognitive impairment with progression to AD; MCIs, mild cognitive impairment stable without progression to AD; PCC, posterior cingulate

cortex; SDN, synchronized degeneration network.

TABLE 2 | Correlations between the mean annual gray matter volume atrophy

rate and slopes of neuropsychological test scores.

Spearman rank order test correlation coefficients

Hippocampus-SDN PCC-SDN

rho p-value rho p-value

MMSE 0.001 0.994 0.245 0.035*

CVVLT 0.093 0.432 0.400 <0.001†

CFT copy −0.030 0.799 0.052 0.659

CFT recall 0.089 0.455 0.336 0.004†

VFT 0.150 0.202 0.429 <0.001†

BNT 0.298 0.010 0.304 0.008†

Trail B line 0.052 0.668 0.215 0.076

*p < 0.05.
†p < 0.008 (statistically significant correlation after Bonferroni correction).

BNT, Boston Naming Test; CFT, Complex Figure Test; CVVLT, Chinese version of

the Verbal Learning Test; MMSE, Mini-Mental Screening Examination; PCC, posterior

cingulate cortex; SDN, synchronized degeneration network; TMT-B lines, Trail-making Test

Part B lines completed in 120 s; VFT, Verbal Fluency Test.

Significant values are bolded.

distinct roles of PCC- and hippocampus-epicentered SDNs in the
pathophysiology of AD.

The hippocampus, which plays an important role in
declarative memory, is the anatomical signature of AD (Schröder
and Pantel, 2016). Hippocampal atrophy, and more specifically,
its atrophy rate, may be potential biomarkers to predict the
conversion from MCI to AD (Henneman et al., 2009). Our
voxel-wise atrophy rate analyses supported the regional role of

the hippocampus in AD progression. In addition to its regional
significance, the hippocampus has also been shown to be an
important node in several large-scale brain networks and has
been implicated as part of the subsystem of the default mode
network (DMN) (Andrews-Hanna et al., 2010). Decreased
integrity of hippocampus-associated functional and structural
networks has also been reported (Zhou et al., 2008; O’Callaghan
et al., 2019). In this study, we used the coupling atrophy rate as
a surrogate image marker for longitudinal mapping of potential
large-scale brain SDNs. We identified the parahippocampus,
temporal pole, temporal fusiform cortex, frontal poles, and
cerebellum within a single hippocampus-epicentered SDN.
Although network mapping approaches vary among studies,
the spatial distribution of identified hippocampus-epicentered
SDNs is highly accordant with previous studies (Bai et al., 2009;
Zhu et al., 2018). Close connections between the hippocampus
and nearby regions, collectively referred to as the medial
temporal lobe, have been reported in various histopathological
and neuroimaging findings of AD (Braak and Braak, 1985,
1991). Beyond the limbic system, considerable evidence
indicates that the hippocampus and prefrontal cortex become
coupled via oscillatory synchrony reflecting bidirectional
information flow (Battaglia et al., 2011) and may play an
important role in memory and learning (Eichenbaum, 2017).
Taken together, these regional and network-level findings
underscore the importance of the hippocampus and its
corresponding functionally/structurally connected areas in
AD pathophysiology.

The PCC is an area in the brain with higher metabolic activity
and dense anatomical and functional connections to many
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other brain regions. PCC hypometabolism, volume atrophy, and
connectivity corruption have been reported in patients with AD
(Leech and Sharp, 2014). Longitudinal follow-up in patients with
MCI revealed that changes in PCC connectivity over time were
correlated with declines in MMSE and other cognitive test scores
(Wang et al., 2012). From a global network perspective, the PCC
is considered to be a central hub of the DMN and is inter-
connected with several large-scale brain networks (Raichle et al.,
2001). Based on its regional and global characteristics, previous
studies have indicated that the PCC may be involved in multiple
cognitive functions including autobiographical/episodic memory
retrieval, attention, salience, attention, and emotion (Leech and
Sharp, 2014). These domains of cognitive function also changed
during AD progression (Mortamais et al., 2017). Among these
multiple PCC-connected large-scale brain networks, DMN is the
first and most consistently reported network to be involved in
AD (Badhwar et al., 2017). DMN failure begins early in the
course of AD, even prior to measurable amyloid accumulation
(Jones et al., 2016). Furthermore, using various network mapping
approaches, including intrinsic functional connectivity and the
cross-sectional structural covariance method, previous studies
have reported that the integrity of the PCC-epicentered DMN
may be associated with the clinical severity and progression
of AD (Zhang et al., 2010), suggesting that the PCC and
its corresponding brain networks have important roles in
AD progression.

In our study, the PCC-epicentered SDN involved widespread
frontal, temporal, insular, and cerebellar areas. Most of these
areas overlap with the classical DMN that includes the precuneus,
medial and lateral parietal, medial prefrontal, and medial and
lateral temporal cortices (Raichle, 2015). The insular cortex
is a notable exception, as it is typically not included in the
DMN. The insular cortex is a core limbic area, historically and
phylogenetically associated with emotion, and may underpin the
behavioral and emotional symptoms in AD (Spalletta et al., 2010).
The insular and anterior cingulate cortices are key hubs of the
salience network that is also involved in AD and MCI. The
insula may play a role in connecting the salience network and
DMN, switching from externally-oriented to internally-oriented
mental status (Sridharan et al., 2008). Functional and structural
disruptions to the switching mechanism occur with disease
progression in patients with AD (Xie et al., 2012; Liu et al., 2018).
On the other hand, the cerebellum was shown to be involved in
the PCC-epicentered SDN. Although traditionally considered to
be involved in motor coordination, recent studies have further
suggested that the cerebellum may be involved in multiple
domains of cognitive function based on its complex spatial
connectivity profile with large-scale cortical brain networks
(King et al., 2019). Beyond its spatial characteristics, recent
intrinsic functional connectivity studies have further suggested
that the cerebellum may engage in a domain-general function in
the adaptive control of the cortical process which may impaired
in the progression of AD (Bai et al., 2011; Zheng et al., 2017;
Marek et al., 2018). Taken together, these findings suggest the
potential importance of the cerebellum in the pathogenesis
of AD.

The findings of our study demonstrated that compared to
the hippocampus-epicentered SDN, the PCC-epicentered SDN
atrophy rate was more strongly correlated with deterioration
slopes of cognitive tests in multiple domains. Moreover,
the PCC-epicentered SDN predicted AD progression better
than did the hippocampus SDN. One possible explanation
is that the hippocampus and the surrounding entorhinal
cortex are involved earliest in the course of AD (Braak and
Braak, 1991), which might suggest that further atrophy rate
in the hippocampus SDN is not as relevant. In addition,
compared to the hippocampus, the PCC may be an integrative
hub which mediates information flow across whole-brain
networks (Leech and Sharp, 2014). Although the PCC
and hippocampus are both components of the DMN, and
considering the different functional roles in the DMN (central
vs. peripheral), we propose that deficits in the PCC-epicentered
network may better represent overall AD progression in
terms of structural changes and cognitive decline in multiple
domains. In addition, the fact that we did not observe any
correlation between hippocampus-epicentered network and
cognitive decline might be due to the small sample size in
the current study. Future studies with a larger sample size
will be needed to confirm the potential role of core PCC
region and related connected brain areas and to determine
the exact mechanism of the involvement of this region in the
pathophysiology of AD.

To the best of our knowledge, this study is the first to
investigate the associations between structural network changes,
brain volume atrophy, and cognitive decline using an SDN
approach from a longitudinal perspective. One strength of our
study was its longitudinal follow-up design, which enabled us
to identify AD-related epicenters involved early in the course of
AD. Additionally, we demonstrated a relationship between large-
scale structural brain networks and AD progression. However,
our results should be interpreted with caution; first, due to
the longitudinal design, the dropout rate was high, limiting
the generalizability of our results to large disease populations.
However, our exploratory findings may guide future studies
with larger samples. Second, AD and MCI diagnoses were
made according to characteristic clinical presentation and
neuropsychological performance. Although these criteria are
widely accepted for both clinical and research purposes, potential
bias may exist due to a lack of amyloid and tau biomarkers. Third,
we defined the structural networks based on brain regions with
maximal changes during the conversion fromMCI to AD; earlier
changes occurring during the progression fromHC toMCImight
have been overlooked.

In conclusion, the PCC and hippocampus are two vulnerable
regions involved early in AD pathophysiology. Notably, the
PCC-epicentered, but not hippocampus-epicentered, network
predicts AD progression, including brain atrophy and cognitive
decline. Our results support the network degeneration hypothesis
of AD and suggest that PCC large-scale SDNs may be used
as potential markers for disease progression. Further, the
results provide insight regarding the mechanisms of network
pathology in AD.
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