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Background: Basal ganglia perivascular spaces are associated with cognitive decline

and cardiovascular risk factors. There is a lack of studies on the cardiovascular risk

burden of basal ganglia perivascular spaces (BG-PVS) and their relationship with gray

matter volume (GMV) and GM cerebral blood flow (CBF) in the aging brain. Here, we

investigated these two issues in a large sample of cognitively intact older adults.

Methods: A total of 734 volunteers were recruited. MRI was performed with 3.0 T

using a pseudo-continuous arterial spin labeling (pCASL) sequence and a sagittal

isotropic T1-weighted sequence for CBF and GMV analysis. The images obtained from

406 participants were analyzed to investigate the relationship between the severity of

BG-PVS and GMV/CBF. False discovery rate-corrected P-values (PFDR) of <0.05 were

considered significant. The images obtained from 254 participants were used to study

the relationship between the severity of BG-PVS and cardiovascular risk burden. BG-PVS

were rated using a 5-grade score. The severity of BG-PVS was classified as mild

(grade <3) and severe (grade ≥3). Cardiovascular risk burden was assessed with the

Framingham General Cardiovascular Risk Score (FGCRS).

Results: Severe basal ganglia perivascular spaces were associated with significantly

smaller GMV and CBF in multiple cortical regions (PFDR <0.05), and were associated

with significantly larger volume in the bilateral caudate nucleus, pallidum, and putamen

(PFDR <0.05). The participants with severe BG-PVS were more likely to have a higher

cardiovascular risk burden than the participants with mild BG-PVS (60.71% vs. 42.93%;

P =0.02).

Conclusion: In cognitively intact older adults, severe BG-PVS are associated with

smaller cortical GMV and CBF, larger subcortical GMV, and higher cardiovascular

risk burden.

Keywords: enlarged perivascular spaces, basal ganglia, magnetic resonance imaging, cerebral blood flow, gray

matter volume, cardiovascular risk burden
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INTRODUCTION

Perivascular spaces, also known as Virchow–Robin spaces, are
interstitial fluid-filled spaces surrounding the wall of small
penetrating vessels (Arbel-Ornath et al., 2013; Yakushiji et al.,
2014). Accumulating evidence has shown that the severity of
basal ganglia perivascular spaces (PVS) (BG-PVS) is associated
with vascular abnormalities and vascular cognitive decline
(Kalaria, 2012; Banerjee et al., 2017; Duperron et al., 2018). BG-
PVS can also be observed in elderly individuals (Zhu et al.,
2010). However, the significance in an aging brain remains
poorly understood. In addition, the relationship between the
severity of BG-PVS and regional gray matter volume (GMV)
and gray matter cerebral blood flow (CBF) remains unclear.
A community-based study (Zhu et al., 2010) revealed that
PVS are not associated with visually inspected brain atrophy
and does not yield brain volume quantification. Therefore, the
relationship between BG-PVS and the quantified volume of
different brain regions remains to be explored further. CBF,
which reflect hemodynamic alterations, is an imaging biomarker
for the identification of vulnerable brain regions. Since BG-PVS
are considered to be caused by vascular abnormalities (Kress
et al., 2014; Kyrtsos and Baras, 2015; Ramirez et al., 2016),
it was hypothesized that individuals with BG-PVS could have
alterations in CBF and GMV. Previous studies have shown that
BG-PVS are associated with various cardiovascular risk factors
(such as age, sex, hypertension, and arteriolosclerosis) (Zhu
et al., 2010; Aribisala et al., 2014). It is well established that
cardiovascular risk factors are interrelated, making it difficult
to isolate their individual effects on BG-PVS. The Framingham
General Cardiovascular Risk Score (FGCRS), which combines
multiple cardiovascular risk factors with demographic data,
can be used to assess cardiovascular risk burden (D’Agostino
et al., 2008). However, to the best knowledge of the authors,
studies that link BG-PVS with cardiovascular risk burden are
lacking. Hence, this study extended the research mentioned
above and carried out cross-sectional estimation of cognitively
intact older adults to determine whether GMV and CBF are
associated with the severity of BG-PVS. This study also aimed
to evaluate the relationship between BG-PVS and cardiovascular
risk burden.

MATERIALS AND METHODS

Participants
This study was approved by the institutional review board of
Peking UnionMedical College Hospital (PUMCH), and a written
informed consent was obtained from all the participants, who
were recruited from two ongoing cohort studies (cohort A and
cohort B). Cohort A is a community-based study that comprises
elderly subjects from Beijing, China. Cohort B is a large-scale
willed body donation program in the Chinese Academy of
Medical Sciences and PUMCH (Zhang et al., 2018).

Figure 1 shows the flowchart of participant enrollment. This
cross-sectional study included 734 participants (n = 301 for
cohort A and n = 433 for cohort B). The exclusion criteria
of participants were as follows: (1) under 55 years old; (2)

a Mini-Mental State Exam (MMSE) score of <27 who might
have apparent cortical hypoperfusion and atrophy (Schuff et al.,
2009; Gao et al., 2013; Sun et al., 2016; Ten Kate et al., 2018);
(3) an unavailable MMSE score; (4) left-handed participants;
(5) a history of intracranial surgery before MRI; and (6) with
brain tumor, stroke, and mental disorder. Thus, a total of
193 participants were excluded. The remaining 541 participants
(n= 256 for cohort A and n= 285 for cohort B) were eligible for
the subsequent analysis. Participants with inferior image quality
(n = 18), unavailable pseudocontinuous arterial spin labeling
(pcASL) data (n= 117), and/or incomplete clinical data (n= 287)
were also excluded. Finally, the MRI images obtained from 406
participants were used to investigate the relationship between
the severity of BG-PVS and GMV/CBF, while the MRI images
obtained from 254 participants were used to investigate the
relationship between the severity of BG-PVS and cardiovascular
risk burden.

MRI Acquisition
The magnetic resonance imaging studies of cohort A were
performed with a 3.0 T GE MRI scanner (GE Discovery MR750,
GE Healtchare, Milwaukee, WI, United States). The MRI
protocols used with cohort A comprised three serial sequences:
an axial T2-PROPELLER sequence (TR/TE = 7,912/92ms; slice
thickness= 4mm; and FOV= 256× 256 mm2), an axial pCASL
sequence (TR/TE = 4,886/10.5ms; FOV = 240 × 240 mm2;
slice thickness = 4mm; post-labeling delay = 2,025ms; labeling
duration = 1,450ms), and a sagittal 3D BRAVO sequence
(TI/TR/TE = 400/6.9/2.6ms; FOV = 256 mm2 × 256 mm2;
slice thickness = 1. mm; matrix size = 256 × 256). The
MRI studies of cohort B were performed with another 3.0
Tesla GE MRI scanner (GE SIGNA PET/MR, GE Healthcare
Systems, Chicago IL, United States). The MRI protocols used
for cohort B were as follows: an axial T2-PROPELLER sequence
(TR/TE = 3,324/81ms; slice thickness = 4mm; and FOV = 256
× 256 mm2), an axial pCASL sequence (TR/TE= 4,874/10.7ms;
FOV = 240 × 240 mm2; slice thickness = 4mm; post-labeling
delay = 2,025ms; labeling duration = 1,450ms), and a sagittal
T1-weighted 3D BRAVO sequence (TI/TR/TE = 450/7.4/3.2ms;
FOV = 256 mm2 × 256 mm2; slice thickness = 1.1mm; matrix
size = 256 × 256). The MR sequences and parameters used
with cohort B were similar to those used with cohort A, which
could greatly reduce the potential differences between the MRI
scanners (Lundervold et al., 2000; Mutsaerts et al., 2015; Liu et al.,
2020).

ASL Data Process
CBF maps of ASL were generated on GE AW 4.5 workstation
by a software 3D ASL Functool kit (Lin et al., 2018). This
software processes pcASL data in a standardized one-click
mode. The same model used for CBF calculation was based
on a previous study (Williams et al., 1992; Lin et al., 2020).
Data were preprocessed using SPM12 (Wellcome Department
of Cognitive Neurology, Institute of Neurology, London,
United Kingdom) implemented on MATLAB (MathWorks,

Frontiers in Aging Neuroscience | www.frontiersin.org 2 August 2021 | Volume 13 | Article 599724

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Liu et al. CBF and Structures in PVS

FIGURE 1 | Study flowchart shows the recruitment of study participants. MMSE, Mini-Mental State Exam; pCASL, pseudo-continuous arterial spin labeling.

Natick, MA, United States). First, the CBF maps were co-
registered to 3D T1-weighted images. Second, the 3D T1-
weighted images were segmented into the gray matter, white
matter, and cerebrospinal fluid (CSF) based on tissue probability
maps in each voxel and then normalized into a Montreal
Neurological Institute (MNI) template. After that, the spatially
normalized images were smoothed with an isotropic Gaussian
kernel filter of 6mm full width at half maximum (FWHM). The
MNI-normalized smoothed gray matter was used to create a gray
matter mask with a threshold value of 0.5. Finally, the Hammers
atlas was used to extract the CBF of 68 brain regions.

Anatomic Morphometric Analysis
A morphometric analysis based on the 3D T1-weighted images
was performed using CAT12 implemented on SPM12 (Wellcome
Department of Cognitive Neurology, Institute of Neurology,
London, United Kingdom) (Farokhian et al., 2017). The standard
pipeline was first used to segment the 3D T1-weighted images
into gray matter, white matter, and CSF. After that, the 3D
T1-weighted images were normalized to the MNI template and
smoothed with an isotropic Gaussian kernel filter of 8mm
FWHM. Then, the Hammers atlas was used to extract the GMV
of 68 brain regions (Rodionov et al., 2009; Yaakub et al., 2020).

Rating of MRI-Visible BG-PVS
Basal ganglia perivascular spaces were identified according to
the standards for reporting vascular changes on neuroimaging

(Wardlaw et al., 2013). These were visually rated on axial T2-
weighted images on a predefined slice (the first slice above the
anterior commissure in the BG) (Banerjee et al., 2017) by a
trained rater. Then, 82 (20%) individuals were randomly selected
and visually assessed by another rater. Both raters were blinded
to the clinical information. Only lesions that met the following
conditions were regarded as BG-PVS: CSF-like signal lesions
(hyperintense on T2 and hypointense on T1, and fluid-attenuated
inversion recovery); lesions with a linear, round, or ovoid shape;
lesions with a clear boundary; the maximum diameter of lesions
<3mm; lesions with no mass effect; and lesions in the areas
supplied by perforating arteries (Zhu et al., 2010). Basal ganglia
perivascular spaces were rated using a 5-grade score: grade 0 for
no BG-PVS, grade 1 for <10 BG-PVS, grade 2 for 10 to 20 BG-
PVS, grade 3 for 20 to 40 BG-PVS, and grade 4 for >40 BG-PVS
(Doubal et al., 2010; Banerjee et al., 2017). Both hemispheres were
counted, and the hemisphere with higher score was recorded.
The number of individuals at each grade of BG-PVS varies
greatly (Zhu et al., 2010; Yakushiji et al., 2014). Therefore, for
statistical analysis, we categorized the severity of BG-PVS as mild
(grade <3) or severe (grade ≥3). Figure 2 presents the BG-PVS
examples for each severity grade.

Assessment of Cardiovascular Risk Burden
We calculated FGCRS based on age, sex, high-density lipoprotein
cholesterol, total cholesterol, systolic blood pressure (SBP),
diabetes, and smoking history (D’Agostino et al., 2008). FGCRS is
calculated by summing up the points from all of these risk factors.
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FIGURE 2 | Examples of MRI-visible BG-PVS. (A,B) Axial T2-weighted images

show the mild grade of BG-PVS (arrow), (C,D) Axial T2-weighted images show

the severe grade of BG-PVS (arrow).

According to FGCRS, the cardiovascular risk burden was divided
into two categories for statistical analysis, lower (FGCRS <17)
and higher (FGCRS ≥17) (Song et al., 2020).

Statistical Analysis
Statistical analysis was performed using SPSS (version 20, IBM
Inc., Armonk, NY, United States). Categorical variables were
tested by χ

2 test, and were described in both percentage and
frequency. Continuous variables were tested by Student’s t-test
or Mann–Whitney U test, and were described with mean and SD
estimates. The inter-rater consistency of the severity of BG-PVS
was evaluated with kappa (κ) value.

Using age, sex, scanner, and total intracranial volume (TIV)
as covariates, the difference in GMV between the mild and
severe BG-PVS groups was analyzed using univariate linear
models. Using age, sex, scanner, and regional GMV as covariates,
the difference in CBF between the mild and severe BG-
PVS groups was analyzed using univariate linear models. The
Benjamini–Hochberg procedure was performed to control for
false discovery rate (FDR). FDR-corrected P-values (PFDR) of
<0.05 were considered significant. Logistic regression analysis
was performed to assess the difference in cardiovascular risk
burden between the mild and severe BG-PVS groups.

RESULTS

Inter-rater Consistency
The inter-rater consistency was high for assessing the severity of
BG-PVS (κ =0.883). The two raters reached a consensus on the
classification of 81 images.

Basal Ganglia Perivascular Spaces, Gray
Matter Volume, and Cerebral Blood Flow
A total of 406 participants (169 men and 237 women, mean age:
69.44 ± 7.89 years old) were included in the GMV and CBF
analysis (see Table 1 for the summary of details).

Among the 68 brain regions exacted from Hammers atlas, a
total of 10 brain structures (e.g., ventricles and corpus callosum)
that did not belong to the gray matter were excluded, and the
remaining 58 brain regions were used for morphological and
metabolic analysis.

The gray matter volume analysis revealed that the severe
BG-PVS group had a significantly smaller GMV than the mild
BG-PVS group, in the bilateral lateral occipital lobe, bilateral
rectus gyrus, right orbitofrontal gyrus, right posterior temporal
lobe, and right inferior middle temporal lobe (PFDR <0.05,
corrected for age, sex, scanner, and TIV, Figure 3) (see details
in Supplementary Material 1). In addition, the severe BG-PVS
group also showed a significantly larger volume in the bilateral
caudate nucleus, pallidum, and putamen (PFDR <0.05, corrected
for age, sex, scanner, and TIV, Figure 3).

Figure 4 shows the statistical result of the CBF. Compared
with the mild BG-PVS group, the severe BG-PVS group showed
widespread hypoperfusion in the cortex and left thalamus (PFDR
<0.05, corrected for age, sex, scanner, and regional GMV,
Figure 4) (see details in Supplementary Material 1).

BG-PVS and Cardiovascular Risk Burden
A total of 254 participants (107 men and 147 women, mean age:
71.27 ± 7.77 years old) were included in the analysis between
the severity of BG-PVS and cardiovascular risk burden. Table 2
presents the comparison of cardiovascular risk factors of all
individuals stratified by the severity of BG-PVS. Severe BG-PVS
were associated with male sex (P = 0.023) and age (P < 0.001).
Those in the severe BG-PVS group were more likely to have
hypertension (P = 0.032), higher SBP (P = 0.001), and higher
total cholesterol (P = 0.001). The participants with severe BG-
PVS were twice as likely to have a high cardiovascular risk burden
than the participants with mild BG-PVS (P= 0.02; OR, 2.06; 95%
CI, 1.12–3.77).

DISCUSSION

This study showed that BG-PVS were associated with
cardiovascular risk burden and regional differences in CBF
and GMV. This study advanced those of several groups (Kalaria,
2012; Banerjee et al., 2017; Duperron et al., 2018), which
associated BG-PVS with vascular cognitive impairment with a
larger population of cognitively intact individuals.

Previous MRI studies have shown no association between BG-
PVS and whole-brain atrophy (Zhu et al., 2010, 2011; Yakushiji
et al., 2014). However, a strong association between PVS and
brain weight has been observed in a postmortem study (van
Swieten et al., 1991). This study found that the severe BG-PVS
group showed a significantly smaller volume in the occipital
lobe, temporal lobe, orbitofrontal gyrus, and rectus gyrus. In
the occipital lobe and posterior temporal lobe, these are regions
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TABLE 1 | Demographic characteristics of the overall MRI sample classified according to the severity of BG-PVS.

Mild BG-PVS group Severe BG-PVS group Statistical test P value

Number 316 (77.83%) 90 (22.17%)

Mean age at MRI (SD) 68.27 (7.45) 73.57 (8.03) Student’s t <0.001***

Male (%) 120 (37.97) 49 (54.44) χ2 0.005**

MMSE score 28.84 (1.06) 28.77 (1.02) Mann-Whitney U 0.466

BG-PVS, basal ganglia perivascular spaces; MMSE, Mini-Mental State Exam; SD, standard deviation.

*P < 0.05; **P < 0.01; ***P < 0.001.

FIGURE 3 | Significant difference in GMV between the mild BG-PVS group and the severe BG-PVS group. The severe BG-PVS group shows a significantly smaller

volume in multiple cortical areas and a larger volume in the bilateral caudate nucleus, pallidum, and putamen (PFDR < 0.05, corrected for age, sex, scanner and TIV).

The F-score bar is shown on the right. The left part of the figure represents the individual’s right side. GMV, gray matter volume; BG-PVS, basal ganglia perivascular

spaces; TIV, total intracranial volume.

that showed a smaller volume related to cognitive impairment
and visuospatial processing deficits (Millington et al., 2017; Chen
et al., 2019). Furthermore, the temporal lobe is also vulnerable
to vascular abnormalities (De Jong et al., 1999; de Toledo Ferraz
Alves et al., 2011). Next, the orbitofrontal gyrus and rectus gyrus
are related to emotion and cognitive function (Suzuki et al., 2019;
Xu et al., 2019). We also observed a significantly larger volume
in the bilateral caudate nucleus, pallidum, and putamen in the
severe BG-PVS group. Such volume differences in older adults

have not been reported previously. The larger volume of the basal
ganglia reflects functional changes in the cortico-basal ganglia-
thalamocortical circuit and has been observed in patients with
cognitive and behavioral impairment (Alexander and Crutcher,
1990; Frangou et al., 2004; Langen et al., 2007; Sandman et al.,
2014).

After covarying CBF with regional GMV, we found a limited
spatial overlap between the GMV and CBF pattern. Compared
with the mild BG-PVS group, the severe BG-PVS group showed
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FIGURE 4 | Significant difference in CBF between the mild BG-PVS group and the severe BG-PVS group. The severe BG-PVS group shows a significantly lower CBF

in the cortex and left thalamus (PFDR < 0.05, corrected for age, sex, scanner and regional GMV). The F-score bar is shown on the right. The left part of the figure

represents the right side of the individual. CBF, gray matter cerebral blood flow; BG-PVS, basal ganglia perivascular spaces; GMV, gray matter volume.

widespread hypoperfusion in the cortex, except for the right
amygdala and right anterior middle temporal lobe. Therefore,
it was hypothesized that BG-PVS were related to a whole-brain
perfusion change rather than localized changes. The association
between BG-PVS and CBF is in line with previous studies
showing that CBF is negatively related to BG-PVS (Wang et al.,
2020). However, the results contradicted with an MRI study of
132 memory clinic patients that observed no association between
BG-PVS and total brain perfusion (Onkenhout et al., 2020).
This discrepancy could be explained by differences in the study
population. The normal cortex has a relatively high CBF to
supply the metabolic activity of the cortex (Gregg et al., 2015).
The presence of cerebral hypoperfusion can put older subjects
at risk for neuronal injuries (Sowell et al., 2003; Gregg et al.,
2015). Another study (Toth et al., 2017) found that even mild
impairment of CBF can promote cognitive impairment in the
elderly. These bodies of evidence led the authors of this study to
consider severe BG-PVS, which were previously considered to be
present in normal aging, as an abnormality.

The gray matter volume and cerebral blood flow analysis
in this study showed that individuals with severe BG-PVS

suffered chronic brain atrophy and hypoperfusion. Therefore,
it is important to maintain brain health by controlling the
severity of BG-PVS. The results revealed that BG-PVS are
associated with numerous cardiovascular risk factors (such as
age, sex, and hypertensive arteriopathy), consistent with previous
studies (Zhu et al., 2010; Kress et al., 2014; Kyrtsos and Baras,
2015; Ramirez et al., 2016). This study also demonstrated the
relationship between the severity of BG-PVS and cardiovascular
risk burden, suggesting that BG-PVS can be used as an
imaging marker to predict cardiovascular risk. Future studies can
investigate whether CBF, GMV, and cardiovascular parameters
are independently associated with BG-PVS, or whether there are
any interaction effects between these different biomarkers.

This study focused on cognitively intact individuals and
presented some new findings that might suggest directions
for future research. There is a growing body of evidence that
cerebral microvascular dysfunction and brain hypoperfusion play
critical roles in the pathogenesis of dementia (Kalaria, 2012;
Banerjee et al., 2017; Toth et al., 2017). However, the association
between baseline BG-PVS and neurodegenerative disease still
needs to be verified. In addition, the findings highlight the
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TABLE 2 | Comparison of cardiovascular risk factors in subjects with mild or severe BG-PVS.

Mild BG-PVS group Severe BG-PVS group Statistical test P value

Number 198 (77.95%) 56 (22.05%)

Mean age (SD) 69.55 (7.07) 77.32 (7.14) Student’s t <0.001***

Male (%) 76 (38.38) 31 (55.36) χ
2 0.023*

MMSE score 28.76 (1.07) 28.59 (0.93) Mann-Whitney U 0.197

Higher cardiovascular risk burden (%) 85 (42.93) 34 (60.71) Logistic regression 0.020*

Mean SBP mm Hg (SD) 132.53 (16.01) 140.91 (16.85) Student’s t 0.001**

TChol mg/dL (SD) 199.57 (39.79) 179.29 (43.98) Student’s t 0.001**

HDL-C mg/dL (SD) 51.87 (12.51) 55.05 (16.85) Student’s t 0.193

Smoker (%) 45 (22.73) 12 (21.43) χ
2 0.837

Hypertension (%) 106 (53.53) 39 (69.64) χ
2 0.032*

Diabetes (%) 41 (20.71) 11 (19.64) χ
2 0.862

BG-PVS, basal ganglia perivascular spaces; MMSE, Mini-Mental State Exam; SD, standard deviation; SBP, systolic blood pressure; TChol, total cholesterol, HDL-C, high-density

lipoprotein cholesterol.

*P < 0.05; **P < 0.01; ***P < 0.001.

importance of controlling the cardiovascular risk burden in
individuals with severe BG-PVS, which may have both public
and clinical significance. This study is crucial for understanding
the evolution of BG-PVS-related diseases and can improve future
treatment decisions.

There are some limitations to this study. First, the visual
scoring system was an observer-dependent task (Dubost et al.,
2019). The automated quantification of BG-PVS was more
effective and objective than visual scoring (Dubost et al., 2019).
Furthermore, the automated quantification had great potential
to evaluate the burden of BG-PVS as a continuous rather than
categorical measure (Dubost et al., 2019). This would allow for an
accurate diagnosis and bettermonitoring of BG-PVS progression.
Second, the investigators used the number of classic BG-PVS to
reflect the burden of BG-PVS. However, it was unclear whether
single, large, and tumefactive BG-PVS would be more relevant
in the clinic than multiple small BG-PVS (Ramirez et al., 2016).
Third, FGCRS was based on the European population, which
might influence its generalization to the Chinese population.
Fourth, cardiovascular risk factors were categorically treated in
this study. The relationship between BG-PVS and cardiovascular
risk factors can be better elucidated by analyzing cardiovascular
disease severity and duration of exposure.

CONCLUSION

This study indicated that for cognitively intact older adults,
the presence of severe BG-PVS is associated with smaller
cortical GMV and CBF, larger subcortical GMV, and a higher
cardiovascular risk burden. This study suggested that early
identification is crucial for understanding the evolution of BG-
PVS-related diseases.
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