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Background: Alzheimer’s disease (AD) is one of the major threats of the twenty-
first century and lacks available therapy. Identification of novel molecular markers for
diagnosis and treatment of AD is urgently demanded, and genetic biomarkers show
potential prospects.

Method: We identify and intersected differentially expressed genes (DEGs) from five
microarray datasets to detect consensus DEGs. Based on these DEGs, we conducted
Gene Ontology (GO), performed the Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis, constructed a protein—protein interaction (PPI) network,
and utilized Cytoscape to identify hub genes. The least absolute shrinkage and selection
operator (LASSO) logistic regression was applied to identify potential diagnostic
biomarkers. Gene set enrichment analysis (GSEA) was performed to investigate the
biological functions of the key genes.

Result: We identified 608 consensus DEGs, several dysregulated pathways, and 18
hub genes. Sixteen hub genes dysregulated as AD progressed. The diagnostic model
of 35 genes was constructed, which has a high area under the curve (AUC) value in
both the validation dataset and combined dataset (AUC = 0.992 and AUC = 0.985,
respectively). The model can also differentiate mild cognitive impairment and AD
patients from controls in two blood datasets. Brain-derived neurotrophic factor (BDNF)
and WW domain-containing transcription regulator protein 1 (WWTR1), which are
associated with the Braak stage, Aβ 42 levels, and β-secretase activity, were identified
as critical genes of AD.

Conclusion: Our study identified 16 hub genes correlated to the neuropathological
stage and 35 potential biomarkers for the diagnosis of AD. WWTR1 were identified
as candidate genes for future studies. This study deepens our understanding of the
transcriptomic and functional features and provides new potential diagnostic biomarkers
and therapeutic targets for AD.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative
disease in the elderly, affecting more than 35.6 million people
worldwide (Querfurth and LaFerla, 2010; Kumar et al., 2015).
Epidemiological analysis has predicted that the number will
rise to 65.7 million in 2030 and approximately 115.4 million
in 2050 (Prince et al., 2013). The symptoms usually start
with subtle memory loss and gradually progress to affect
other cognitive domains as the condition deteriorates, such as
language, visuospatial skills, motor skills, executive function,
and activities of daily living (McKhann et al., 2011; Huang
and Mucke, 2012). As AD usually has concealed onset, most
patients with AD are already at an advanced stage at the
time of diagnosis. Furthermore, the long-term care and related
costs of AD contribute a substantial economic burden to the
society and family. It is reported that the global societal cost
for dementia is projected to grow to approximately $2 trillion
in 2030 (Wimo et al., 2017). Unfortunately, despite recent
progress in understanding the neurobiology and pathophysiology
of AD so far, no therapeutic strategies can effectively prevent
or cure AD. Therefore, research directed toward identifying AD
biomarkers is needed for the early diagnosis, prevention, and
treatment of AD.

AD is a characteristic “complex” disease resulting from
the interaction of genetic and environmental factors. It is
known that the primary pathogenesis of AD was β-amyloid
(Aβ) abnormal deposition, neurofibrillary tangles induced
by phosphorylation of tau proteins, inflammatory response,
oxidative stress, and neuronal apoptosis. All these processes
involve alterations in the expression and regulation of numerous
genes. Studies suggest that genetic factors are estimated to
attribute up to 79% to the risk for AD (Wingo et al., 2012).
The apolipoprotein E (APOE) ε4 allele has been identified
as the most substantial risk factor for AD (Rogaev et al.,
1995; Sherrington et al., 1995). Mutations in the genes which
enhanced generation and aggregation of Aβ, such as amyloid
precursor protein (APP), presenilin (1) (PSEN1), and presenilin
(2) (PSEN2), were included in the established genetic causes
of familial AD (Sorbi et al., 2001; Tanzi and Bertram, 2005).
Moreover, genetic analyses have suggested that the individual
differences and complicated pathogenesis of AD may be
influenced by multiple genes and their variants involved in
numerous biological functions and substantially increase the
risk of the disease (Hokama et al., 2014; Stopa et al., 2018).
Therefore, identification and comprehensive analyses of potential
candidate genes will considerably increase our understanding
of the biological mechanisms involved in disease pathogenesis
and could potentially be used as diagnostic or predictive
biomarkers for AD.

In recent years, bioinformatics analysis is widely applied in
molecular biology experiments and clinical practice (Banwait and
Bastola, 2015), revealing the key pathways and drug targets in
complex diseases (Khan et al., 2018). Thus, joint analysis of the
array-based data of AD may be a novel analytical strategy. Our
present study aims to reveal the transcriptomic characteristics
and identification of novel biomarkers of AD for diagnosis

and treatment. We identified co-differentially expressed genes
(DEGs) in AD of five microarray datasets in the Gene Expression
Omnibus (GEO). Based on the results, we performed a series
of analyses, including Gene Ontology (GO), Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment pathway analysis,
protein—protein interaction (PPI) analysis, and least absolute
shrinkage and selection operator (LASSO) logistic regression
analysis. We identified 18 hub genes and tested their expression
levels in different Braak stages. A 35-gene-based diagnosis model
was constructed, and then we test the diagnostic values for AD
and mild cognitive impairment (MCI). Finally, two key genes
were identified by overlapping the 18 hub genes and 35 diagnosis
genes. We further explored their correlations with β-secretase
activity and Aβ 42 levels. Gene set enrichment analysis (GSEA)
was used to explore the potential biological functions of hub
genes. Our present study could provide more insights into the
molecular mechanism of AD and provided potential biomarker
candidates for clinical diagnosis and treatment.

MATERIALS AND METHODS

Data Processing
GEO1 is a public functional genomics data repository of
high-throughput gene expression data, chips, and microarrays.
According to the following criteria, datasets were considered
eligible for our analysis: (1) datasets with AD samples; (2) datasets
supported by peer-reviewed PubMed-indexed publications; and
(3) studies with information about the technology and platform
utilized for studies. We selected 10 datasets (GSE33000,
GSE36980, GSE48350, GSE5281, GSE122063, GSE106241,
GSE4226, GSE97760, GSE63060, and GSE63061) related to
AD for analysis. A total of 757 non-demented healthy control
subjects (NDHCS) and 932 AD patients were analyzed. We
extracted the whole data of a single study, including all brain
regions, for analysis. The data sample collection is shown in
Table 1. The flowchart of the study is illustrated in Figure 1.

The GSE33000 (platform GPL4372) was composed of
postmortem prefrontal cortex (PFC) samples of 157 NDHCS
and 310 AD patients with matched genotype and clinical data.
The GSE36980 (platform GPL6244) was composed of the frontal
cortex (FC), temporal cortex (TC), and hippocampus (HPC)
from 47 NDHCS and 32 AD patients. From GSE48350 (platform
GPL570), we selected data from the HPC, entorhinal cortex
(EC), superior frontal cortex (SFC), and post-central gyrus
(PCGY) derived from 253 postmortem brains, among which 80
cases were diagnosed as having AD. The GSE122063 (platform
GPL16699) was composed of tissues collected from FC and TC,
44 tissues from NDHCS and 56 from AD patients. The GSE5281
(platform GPL570) was composed of tissues collected by laser
capture microscopy (LCM) from 74 NDHCS and 87 AD patients.
The brain regions included the EC, HPC, medial temporal
gyrus, posterior cingulate, SFC, and primary visual cortex. The
GSE106241 was enrolled for independent external validation. In

1http://www.ncbi.nlm.nih.gov/geo
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TABLE 1 | Dataset characteristics.

Dataset Platform/technology No. of samples Sample source Age Gender
female:male

Disease
stage

Country

GSE33000 GPL4372 (Rosetta/Merck
Human 44 k 1.1 microarray)

467 (310 AD, 157
NDHCS)

Prefrontal cortex AD:(53–100
y);

NDHCS:(22–
106
y)

209:258 – United States

GSE36980 GPL6244 [(HuGene-1_0–st)
Affymetrix Human Gene 1.0 ST
Array (transcript (gene) version)]

79 (32 AD, 47
NDHCS)

Frontal cortex, temporal
cortex and
hippocampus

AD:(83–105
y);

NDHCS:(54–
100
y)

42:37 – Japan

GSE122063 GPL16699 [Agilent–039494
SurePrint G3 Human GE v2 8
× 60 K Microarray 039381
(Feature Number version)]

100 (56 AD, 44
NDHCS)

Frontal cortex, temporal
cortex

AD:(63–91 y);
NDHCS:(60–

91
y)

68:32 – United States

GSE48350 GPL570 [(HG-U133_Plus_2)
Affymetrix Human Genome
U133 Plus 2.0 Array]

253 (80 AD, 173
NDHCS)

Hippocampus,
entorhinal cortex,
superior frontal cortex,
post-central gyrus

AD:(60–95 y);
NDHCS:(20–

99
y)

129:124 Braak
stage 0–6

United States

GSE5281 GPL570 [(HG-U133_Plus_2)
Affymetrix Human Genome
U133 Plus 2.0 Array]

161 (87 AD, 74
NDHCS)

Entorhinal cortex,
hippocampus, medial
tem poral gyrus,
posterior cingulate,
superior frontal gyrus
and primary visual
cortex

AD:(68–97 y);
NDHCS:(63–

102
y)

58:103 – United States

GSE106241 GPL24170 [Agilent-044312
Human 8 × 60 K Custom Exon
array (Probe Name version)]

60 (60 AD) Inferior termporal cortex AD:50–100 y 42:18 Braak
stage 0–6

Finland

GSE4226 GPL1211 (NIA MGC,
Mammalian Genome Collection)

28 (14 AD, 14
NDHCS)

Peripheral blood
mononuclear cells

– 14:14 – Canada

GSE97760 GPL16699 [Agilent-039494
SurePrint G3 Human GE v2 8
× 60 K Microarray 039381
(Feature Number version)]

19 (9 AD, 10
NDHCS)

Peripheral blood – 0:19 Advanced
AD

United States

GSE63060 GPL6947 (Illumina
HumanHT-12 V3.0 expression
beadchip)

329 (145 AD, 80
MCI, 104 NDHCS)

Peripheral blood AD (58–88 y);
MCI (63–90
y); NDHCS
(52–87 y)

200:129 – United
Kingdom

GSE63061 GPL10558 (Illumina
HumanHT-12 V4.0 expression
beadchip)

382 (139 AD, 109
MCI, 134 NDHCS)

Peripheral blood AD (59–95 y);
MCI (57–100
y); NDHCS
(63–91 y)

231:151 – United
Kingdom

The first five datasets were used for combined analysis, GSE106241 was used for independent validation analysis, and the last four datasets were used for evaluating the
diagnosis model in peripheral blood. AD, Alzheimer’s disease; MCI, mild cognitive impairment; NDHCS, non-demented healthy control subjects. GPL, Gene Expression
Omnibus Platform.

this dataset, 60 human temporal cortical tissue samples were
included and divided into seven groups based on Braak staging.

Gene expression profiles of peripheral blood were obtained
from GSE97760, GSE4226, GSE63060, and GSE63061. Study
subjects from GSE97760 (platform GPL16699) were all female,
including nine subjects with advanced AD and 10 age-matched
NDHCS. The GSE4226 (platform GPL1211) was composed of
peripheral blood mononuclear cells from 14 NDHCS and 14
AD patients. Datasets GSE63060 and GSE63061 were composed
of MCI patients, AD patients, and NDHCS. There are 329
samples (145 AD, 80 MCI, and 104 NDHCS) in GSE63060 and
382 samples (139 AD, 109 MCI, 134 NDHCS) in GSE63061.
Three borderline MCI samples, one NDHCS-to-AD sample,

one MCI-to-NDHCS sample, and one other sample, were
excluded from GSE63061.

Identification of Consensus DEGs
As single datasets and few samples may weaken the credibility
of the results, data integration is necessary to look for findings
supported by several pieces of evidence and investigate the
complex genetic mechanisms (Pineda et al., 2015). Therefore,
five brain tissue datasets (GSE33000, GSE36980, GSE48350,
GSE5281, and GSE122063) were selected to identify consensus
DEGs. We used the impute package to supplement missing data
(Troyanskaya et al., 2001). Then, the normalizeBetweenArrays
function in the limma package was used to normalize gene
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FIGURE 1 | Flowchart for bioinformatics analysis in this study. AD, Alzheimer’s disease; MCI, mild cognitive impairment; NDHCS, non-demented healthy control
subjects; AUC, area under the curve; GSEA, gene set enrichment analysis; GEO, Gene Expression Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes.

expression. Next, we performed the differential analysis in each
of the datasets. We screened DEGs by comparing AD tissues
to NDHCS tissues in the R computing environment using the
limma package (Ritchie et al., 2015). DEGs were determined
by | Log 2 FC| > 0, adjusted p-value < 0.05. Volcano
plots were generated using ggplot 2 in R. In order to obtain a
consensus of DEGs, Venn analysis was performed using Draw
Venn Diagram, a Web-based tool,2 to identify common DEGs
from the five datasets. The heatmap of the consensus DEGs
was drawn using the R pheatmap package. We performed the
batch correction, followed by normalization between arrays to
remove the heterogeneity among multiple microarray datasets
using sva and limma packages (Leek et al., 2012). Finally,
principal component analysis (PCA) was performed to compare
the difference of consensus DEGs between AD and NDHCS
groups in different brain regions.

GO Enrichment and KEGG Pathway
Analysis of the DEGs
GO enrichment analyses were performed in R using the function
of clusterProfiler14. Metascape3 was used to perform the KEGG
pathway analysis. Functional and pathway enrichment analyses
were conducted separately for upregulated and downregulated
genes. In this analysis, a p-value < 0.05 was considered significant
for the screening of significant GO terms and KEGG pathways.
Furthermore, we performed the differential analysis separately in
10 brain regions. DEGs were determined by | Log 2 FC| > 0,
adjusted p-value < 0.05. The top 100 upregulated DEGs and
top 100 downregulated DEGs of each brain region were used
for GO enrichment analyses. Finally, we take the intersection of

2http://bioinformatics.psb.ugent.be/webtools/Venn/
3http://metascape.org

pathways of each brain region to identify common and specific
dysregulated pathways.

PPI Network Construction, Hub Gene
Selection, and Hub Gene Expression in
Different Braak Stages of AD
To further explore the interactions among DEGs, PPI network
analysis was performed using the online database STRING with
an interaction score of 0.4 as the threshold. Next, we utilized
Cytoscape (version 3.7.1) to construct and visualize the main
regulatory network. We used cytoHubba, a plugin of Cytoscape,
to select the hub genes in the PPI network. Five methods
(degree, maximum neighborhood component (MNC), radiality
centrality, stress centrality, closeness centrality) were used to
sequence and evaluate central genes (Chin et al., 2014). The five
ranked methods selected the top 20 hub genes. Venn analysis
was performed to identify central genes by overlapping the top
20 genes. Finally, we validate hub gene expressions in different
Braak stages using the HPC and superior frontal cortex (SPF)
samples in the dataset GSE48350. Overall differences between
groups were tested with the Kruskal—Wallis (K-W) test, and
differences between groups were compared by the Wilcox test.
The boxplot was drawn by R package ggplot 2. The top 10 hub
genes were also further evaluated based on the difference in the
gene expression of GSE48350.

Identification of Potential Biomarkers of
AD Using LASSO Logistic Regression
The LASSO, a penalized shrunken regression method, has a
strong predictive value and low correlation and is applied to
select the best features for high-dimensional data. The samples
from five brain tissue datasets were randomly assigned to the
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FIGURE 2 | Identification of DEGs between AD and NDHCS samples. (A) The volcano plot of the genes in the five datasets. (B) Venn diagram analysis of common
downregulated DEGs and common upregulated DEGs. AD, Alzheimer’s disease; NDHCS, non-demented healthy control subjects.

training set (30%) and validation set (70%). The expression
profiles of consensus DEGs were extracted and fit into LASSO
logistic regression by the glmnet package. In order to evaluate
the ability of the LASSO model to identify AD, receiver operating
characteristic (ROC) analysis was completed using the package
of pROC in the validation set and combined set (Robin et al.,
2011). The area under the curve (AUC) was calculated, and AUC
values close to 1 (AUC > 0.7) refer to good classifier models. We
also investigated the diagnosis effect of the top 10 hub genes in
the combined set.

Evaluate the Diagnosis Model in
Peripheral Blood Datasets
As it is hard to obtain brain tissues for diagnosis in clinical
practice, we attempted to enroll independent peripheral blood

datasets to evaluate the clinical utility of our diagnosis model. We
performed ROC analyses in GSE4226 and GSE97760 to examine
the ability to differentiate AD from NDHCS. The datasets
GSE63060 and GSE63061 were used to verify the accuracy of the
model to differentiate MCI and AD from NDHCS. ROC curves
were plotted using the “pROC” package.

GSEA and Independent Validation
Analysis
GSEA was performed to identify biological process (BP) GO
terms of the top 10 hub genes that may be correlated to
AD in GSE48350 datasets. We performed GSEA using the R
package clusterProfiler for analysis. The c5.bp.v 7.0.symbols.gmt
datasets in the MsigDB V 6.2 database4 were used as reference

4http://software.broadinstitute.org/gsea/msigdb/
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FIGURE 3 | The GO analysis and KEGG pathway analysis of upregulated and downregulated DEGs. (A) The GO analysis of common upregulated DEGs. (B) The
GO analysis of common downregulated DEGs. (C) The KEGG pathway analysis of common upregulated DEGs. (D) The KEGG pathway analysis of common
downregulated DEGs.

gene sets, and those with an adjusted p-value < 0.05 after
1,000 permutations were considered significantly enriched gene
sets (Subramanian et al., 2005). We determined the key genes
by overlapping the hub genes selected from the PPI network
and potential diagnosis genes identified from the LASSO
regression model. Next, we enrolled another independent dataset
(GSE106241) and compared the expression level of key genes
in different Braak stages using the K-W test. Moreover, we
investigated their associations with β-secretase activity and Aβ

42 levels in AD samples from GSE106241 using the Spearman
correlation analysis. p-values less than 0.05 (p < 0.05) were
considered significant. The violin plots and correlation analysis
in this section were all generated in R 3.6.3.

RESULTS

Identification of Consensus DEGs
Five microarray datasets, including GSE33000, GSE36980,
GSE48350, GSE5281, and GSE122063, were downloaded from
the National Center of Biotechnology Information-GEO (NCBI-
GEO). Details of the five datasets are presented in Table 1.
A total of 1,060 samples (495 NDHCS subjects and 565 AD
patients) were available for DEG analysis, including microarray
data from 10 brain regions: the EC, FC, HPC, medial temporal
gyrus, PCGY, posterior cingulate, PFC, primary visual cortex,

SFC, and TC. After background correction and normalization,
we used the limma package to identify DEGs between NDHCS
and AD samples of GEO data. Gene difference analysis found that
there were 19,206 DEGs in GSE33000, 3,220 DEGs in GSE36980,
8,134 DEGs in GSE48350, 7,587 DEGs in GSE5281, and 12,207
DEGs in GSE122063 compared with AD patients and NDHCS
(Supplementary Table 1). Volcano plots in Figure 2A show
the number of DEGs identified from each of the five datasets.
Subsequently, we intersected these DEGs from the five datasets
and finally identified 608 common DEGs, of which 179 DEGs
were upregulated and 429 DEGs were downregulated (Figure 2B
and Supplementary Table 1). To compare the DEGs between
the AD and NDHCS groups, the heatmap showed the expression
of common DEGs from five datasets (Supplementary Figure 1).
PCA revealed that the expression of common DEGs differed
significantly between NDHCS and AD samples in each brain
region, indicating that the DEGs we found were common core
genes in AD (Supplementary Figure 2).

GO Enrichment and KEGG Pathway
Analysis of the DEGs
We performed GO term, KEGG pathway, and functional
enrichment analyses to explore the potential biological
functions of the common DEGs. The GO annotation results
include BP, molecular function (MF), and cellular component
(CC). The results revealed that the BP primarily associated

Frontiers in Aging Neuroscience | www.frontiersin.org 6 June 2021 | Volume 13 | Article 602781

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-602781 June 8, 2021 Time: 16:50 # 7

Yu et al. Diagnosis Biomarkers and Alzheimer’s Disease

FIGURE 4 | PPI network and hub gene selection. (A) The top 50 hub genes in the PPI network of the upregulated and downregulated DEGs according to node
degree. (B) Hub genes were identified by overlapping the first 20 genes in the five classification methods of cytoHubba.

with the upregulated genes, including the regulation of the
nuclear-transcribed mRNA catabolic process, bleb assembly,
detoxification of copper ion, stress response to copper ion,
detoxification of inorganic compound, and stress response to
metal ion. For CC enrichment analysis, the results showed that
upregulated genes significantly took part in the focal adhesion,
cell—substrate adherens junction, cell—substrate junction, and
cell—cell junction. For MF analysis, upregulated genes are mainly
enriched in cell adhesion molecule binding, cadherin binding,
molecular adaptor activity, and transcription corepressor activity
(Figure 3A). For downregulated genes, regulation of membrane
potential, modulation of chemical synaptic transmission,
regulation of transsynaptic signaling, and neurotransmitter

transport were dominant BPs. For CC enrichment analysis,
downregulated genes mainly take part in presynapse, synaptic
membrane, axon part, and glutamatergic synapse. In the
enrichment analysis of MF, the downregulated genes mainly
revolved in active transmembrane transporter activity, P—P-
bond-hydrolysis-driven transmembrane transporter activity, and
primary active transmembrane transporter activity (Figure 3B).
The KEGG pathway analysis showed that the upregulated genes
were significantly enriched in the Hippo signaling pathway,
regulation of actin cytoskeleton, adherens junction, mineral
absorption, MAPK signaling pathway, and TGF-beta signaling
pathway, while the downregulated DEGs were mainly enriched
in the synaptic vesicle cycle, citrate cycle (TCA cycle), Parkinson’s
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FIGURE 5 | Hub gene expression in different Braak stages of AD. The upper, middle, and lower horizontal lines of the box represent the upper, median, and lower
quartiles, respectively. Overall differences between groups were tested with the K-W test. Asterisks indicate significant vs. Braak 0 groups; *p < 0.05; **p < 0.01;
***p < 0.001 (dataset GSE48350; n = 91 for NDHCS; n = 2 for Braak stages I and II; n = 15 for Braak stages III and IV; n = 21 for Braak stages V and VI). AD,
Alzheimer’s disease; NDHCS, non-demented healthy control subjects; HPC, hippocampus; PFC, prefrontal cortex.

disease, lysosome, MAPK signaling pathway, and cholinergic
synapse. The KEGG pathway enrichment analysis results are
illustrated in Figures 3C,D. The complete results of GO and
KEGG analyses can be found in Supplementary Table 2.

Specific Dysregulated Pathways for
Each Brain Region
We performed GO enrichment analyses using the top 100
upregulated DEGs and top 100 downregulated DEGs of each

brain region. Then we identified the specific dysregulated
pathways of each brain region. There were two specific pathways
in the EC and the PCGY, 20 pathways in the FC, 12 pathways
in the HPC, 145 pathways in the medial temporal gyrus, 38
pathways in the posterior cingulate, 47 pathways in the primary
visual cortex, four pathways in the TC, and 58 pathways in the
PFC (Supplementary Table 2). There was no specific pathway
in the SFC. The HPC was associated with the neuron projection
organization. The medial temporal gyrus was associated with
neuron projection maintenance, neurotransmitter receptor
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FIGURE 6 | Gene selection through the LASSO model. (A) Tenfold cross-validation for tuning parameter (lambda) selection in the LASSO regression model. The
vertical lines were drawn at the optimal values by the minimum criteria and the 1 – SE criteria. (B) The LASSO coefficient profiles of the 608 DEGs. (C) ROC curve
analysis of the validation dataset and combined dataset.

transport to the plasma membrane, neurotransmitter receptor
transport to the postsynaptic membrane, and response to Aβ. The
dysregulated genes in the posterior cingulate were significantly
enriched in pathways, including the branching morphogenesis
of a nerve, glutamate metabolic process, positive regulation
of synaptic transmission, and glutamatergic pathway. In the
primary visual cortex, the dysregulated genes were involved
in neuromuscular synaptic transmission, neuroinflammatory
response, and cell aging. The neurotransmitter reuptake was
associated with TC. Peripheral nervous system development and
nerve development were significantly enriched pathways in PFC.

PPI Network Construction, Hub Gene
Selection, and Hub Gene Expression in
Different Braak Stages of AD
The upregulated and downregulated DEGs were uploaded into
the online tool STRING5 to gain PPI information separately.
Based on the degree of connectivity, we constructed the PPI
network and selected the top 50 hub genes, and the result was
visualized by Cytoscape (Figure 4A). Next, we used cytoHubba
to choose hub genes. According to the five classification methods
in cytoHubba, we selected the top 20 hub genes, as shown
in Supplementary Table 3. Finally, six upregulated and 12
downregulated central genes were identified by overlapping the
first 20 genes (Figure 4B and Supplementary Table 3). Then,
we used samples in the dataset GSE48350 to explore whether the

5http://string-db.org

expression levels of these central genes varied in different Braak
stages in the HPC and SPF (Supplementary Table 4). We found
that five hub genes were upregulated and 11 hub genes were
downregulated as AD progressed (p < 0.05). Predominantly,
SMAD 4 and YAP 1 were significantly upregulated in Braak
III and IV and Braak V and VI compared with Braak 0.
Brain-derived neurotrophic factor (BDNF), PSMD14, SLC32A1,
SNAP25, and SYP were identified to be downregulated in Braak
III and IV and Braak V and VI compared with Braak 0 (Figure 5).

Identification of Potential Biomarkers of
AD Using LASSO Logistic Regression
To identify potential biomarkers for AD, we extracted the
expression profile of the DEGs and fit them into LASSO logistic
regression. We separated all samples (565 AD samples and 495
NDHCS) into training and validation cohorts (Supplementary
Table 5). Thirty-five potential predictors in the training cohort
were identified and were features with nonzero coefficients in the
LASSO logistic regression model (Figures 6A,B and Table 2).
Next, we evaluated the ability of the LASSO regression model
in differentiating between AD and NDHCS, suggesting that the
AUC of the 35-gene-based model was 0.992 in the validation set
and 0.985 in the combined set (Figure 6C). The results indicate
that our 35-gene-based diagnosis model can correctly classify
AD samples and NDHCS in brain tissues. The diagnosis effect
of the top 10 hub genes was also investigated and presented
in Supplementary Figure 3. Only BDNF had the ability to
differentiate AD from NDHCS (AUC = 0.703).
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TABLE 2 | The list of 35 potential biomarkers of AD using LASSO logistic
regression.

UniProt ID Protein name Gene name

P21291 Cysteine- and glycine-rich protein 1 CSRP1

Q01628 Interferon-induced transmembrane protein 3 IFITM3

P13640 Metallothionein–1 G MT1G

P04732 Metallothionein–I E MT1E

Q9Y2D9 Zinc finger protein 652 ZNF652

Q7Z3K3 Pogo transposable element with ZNF domain POGZ

Q9GZV5 WW domain-containing transcription regulator
protein 1

WWTR1

Q9NZH0 G-protein-coupled receptor family C group 5
member B

GPRC5B

P23949 mRNA decay activator protein ZFP36L2 ZFP36L2

Q9BX66 Sorbin and SH3 domain-containing protein 1 SORBS1

Q8N8S7 Protein enabled homolog ENAH

Q68DX3 FERM and PDZ domain-containing protein 2 FRMPD2

P61278 Somatostatin SST

P23560 Brain-derived neurotrophic factor BDNF

Q8N4V2 Synaptic vesicle 2-related protein SVOP

Q8N967 Leucine-rich repeat and transmembrane
domain-containing protein 2

LRTM2

Q99259 Glutamate decarboxylase 1 GAD1

Q16566 Calcium/calmodulin-dependent protein kinase type
IV

CAMK4

O95206 Protocadherin-8 PCDH8

P61088 Ubiquitin-conjugating enzyme E2 N UBE2N

O43768 Alpha-endosulfine ENSA

Q9UIL1 Short coiled-coil protein SCOC

Q13530 Serine incorporator 3 SERINC3

Q9Y5V3 Melanoma-associated antigen D 1 MAGED1

Q96F83 Clathrin-binding box of aftiphilin-containing protein
1

C14orf79

P80723 Brain acid soluble protein 1 BASP1

Q15904 V-type proton ATPase subunit S1, V-ATPase
subunit S 1

ATP6AP1

O95197 Reticulon-3 RTN3

Q96CW1 AP-2 complex subunit mu AP2M1

P17643 5,6-Dihydroxyindole-2-carboxylic acid oxidase TYRP1

P50613 Cyclin-dependent kinase 7 CDK7

Q8N100 Protein atonal homolog 7 ATOH7

Q9Y6G3 39S ribosomal protein L 42, mitochondrial, L 42 mt,
MRP-L 42

MRPL42

O00744 Protein Wnt-10 b WNT10B

P84074 Neuron-specific calcium-binding protein hippocalcin HPCA

Evaluation of the Diagnosis Model in
Peripheral Blood Datasets
To further discover whether this model is worth using in clinical
practice, we test our diagnosis model on four independent
peripheral blood datasets (Supplementary Table 5). In the
GSE4226, composed of peripheral blood mononuclear cells, only
16 genes of the 35-gene-based model were covered. The ROC
analysis was also conducted based on the 16 genes, and the
AUC was 0.871 (Figure 7A). We applied the 35-gene-based
model to GSE97760, which included patients with advanced

AD and NDHCS and showed the perfect discrimination ability
(Figure 7B, AUC = 1.000). We also found that our diagnosis
model had the ability to differentiate MCI and AD from NDHCS
in the blood datasets. In GSE63060 (30 genes of the 35-gene-
based model were covered), the AUC for differentiating MCI and
NDHCS is 0.922, and the AUC for AD and NDHCS is 0.837
(Figure 7C). In GSE63061 (28 genes of the 35-gene-based model
were covered), AUC for MCI and NDHCS is 0.763, and AUC for
AD and NDHCS is 0.802 (Figure 7D). Conclusively, the results
indicate that our 35-gene-based diagnosis model can classify AD
and MCI from NDHCS in peripheral blood.

GSEA and Independent Validation
Analysis
To gain new insights into the biological functions of the
top 10 genes, we performed GSEA to identify the potential
BPs between AD and NDHCS subjects. As indicated in
Figures 8A,B, the BDNF was associated with cognition,
HPC development, neuron death, regulation of neuronal
synaptic plasticity, regulation of neurotransmitter levels, and
transport. BPs such as neuroblast proliferation, neuroepithelial
cell differentiation, neurotransmitter biosynthetic process and
metabolic process, neuroinflammatory response, and regulation
of neuroinflammatory response were associated with WW
domain-containing transcription regulator protein 1 (WWTR1).
The rest of the top 10 hub genes were also involved in several
neuron-related pathways, including axon development (SMAD4,
SLC32A1, and YAP1), neuron death (SNAP25 and ATP5B), and
synapse organization (SMAD4 and SLC32A1). The results are
shown in Supplementary Figure 4.

BDNF and WWTR1 were identified as key genes by
overlapping the 18 hub genes in the PPI network and 35
potential predictors selected from the LASSO regression model.
To confirm the result, we enrolled another independent dataset
(GSE106241) to conduct validation analysis (Supplementary
Table 5). As shown in Figures 8C,D, BDNF and WWTR1
showed significant differences among the different Braak stages
(p = 0.001 and 0.041, respectively). Moreover, we found
that BDNF was negatively associated with Aβ 42 levels and
β-secretase activity (R = –0.35 and R = –0.42, respectively,
Figures 8E,F). WWTR1 was positively associated with Aβ 42
levels and β-secretase activity (R = 0.36 and R = 0.61, respectively,
Figures 8G,H). This result further proves that the two genes are
essential and involved in the pathology of AD.

DISCUSSION

Bioinformatics analysis has developed rapidly and applied
to many diseases in recent decades, revealing the complex
pathogenesis and identifying new biomarkers for diagnosis
and treatment (Ali et al., 2018). Nevertheless, integrated
bioinformatics analysis has not yet been systematically used in
AD. Previous researches were usually based on single datasets
and few samples that may weaken the credibility of the results.
However, our current study has recruited five open public
datasets for DEGs to significantly improve the number of samples
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FIGURE 7 | ROC curve analysis in blood datasets. (A) ROC curves of peripheral blood mononuclear cell data from GSE4226. (B) ROC curves of peripheral blood
data from GSE97760. (C) ROC curve analysis of GSE63060. (D) ROC curve analysis of GSE63061. AD, Alzheimer’s disease; MCI, mild cognitive impairment;
NDHCS, non-demented healthy control subjects; AUC, area under the curve.

(495 NDHCS vs. 656 AD samples). Thus, our study provides
more credible and trustworthy results. We performed a series of
integrative analyses based on DEGs, including GO and KEGG
enrichment analyses, a constructed PPI network, LASSO logistic
regression, and GSEA. In this way, we provide valuable clues for
investigating the molecular mechanisms underlying the initiation
and development of AD.

The KEGG pathway enrichment analysis showed significant
enrichment in pathways including the Hippo signaling pathway,
the TGF-beta signaling pathway, the MAPK signaling pathway,
the synaptic vesicle cycle, lysosome, and the cholinergic synapse.
A recent study confirmed that the Hippo pathway is associated
with the pathogenesis of AD. The precursor of Aβ can
promote the nuclear translocation of FOXO 3a by inducing
MST1-dependent phosphorylation of Foxo 3a. The MST-Foxo
pathway, which is considered a branch of the Hippo pathway,
activates a proapoptotic member of the Bcl-2 family and triggers
an intrinsic apoptotic pathway, resulting in neuronal death
(Wang and Wang, 2016). Regarding the TGF-beta signaling
pathway, previous studies showed that the expression of TGF-β 1
and TGF-β 2 increased in the brains of patients with AD

(Zetterberg et al., 2004). Given the current evidence of microglial
dysfunction in neurodegeneration, we speculate that changes
in brain TGF-β signaling in AD could alter microglial state
and trigger their pathogenic functions (Salter and Stevens,
2017). It is well documented that lysosomal dysfunction is
a prominent feature in AD brains, resulting in a failure to
clear accumulated protein aggregates and contributes to the
process of the pathogenesis of AD (Fraldi et al., 2016). Similarly,
the MAPK signal pathways are activated in vulnerable brain
regions of AD patients and are involved in the progress of
AD (Zhu et al., 2002; Guillot et al., 2016). Therefore, the
MAPKs have been proposed as therapeutic targets for AD.
Previous studies also confirm that cholinergic transmission
impairments are correlated with the neuropathological stage
of AD (Amberla et al., 1993). A decrease in the cholinergic
activity and disruption of synaptic function contribute to
memory impairment (Sayer et al., 2004). Furthermore, the
GO analysis indicated that the DEGs are involved in a
wide range of BPs and have different MFs. We also found
several specific dysregulated pathways in each brain region.
Our results indicated that the changes in BPs, CCs, MFs,
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FIGURE 8 | GSEA based on GSE48350 and independent validation analysis based on GSE106241. (A) BDNF. (B) WWTR1. (C) BDNF expression levels in the
Braak stages 0–6. (D) WWTR1 expression levels in Braak stages 0–6. (E) Correlation between BDNF and Aβ 42 levels. (F) Correlation between BDNF and
β-secretase activity. (G) Correlation between WWTR1 and Aβ 42 levels. (H) Correlation between WWTR1 and β-secretase activity. p-values < 0.05 were considered
to be statistically significant.

and pathways might play critically important roles in the
pathogenesis of AD.

We identified 18 hub genes by overlapping five sequencing
methods in cytoHubba, of which 16 hub genes were significantly
dysregulated as AD progressed. Some of these genes have been
previously reported to be associated with AD. For example,
the reduction of SNAP25 causes postsynaptic loss and learning
and memory impairment (Ren et al., 2018). A recent study
has demonstrated that SNAP25 is an effective biomarker for
predicting AD 5–7 years before cognitive impairment (Jia et al.,
2020). SYP can affect the synaptic structure and neurotransmitter
release to regulate synaptic plasticity (Zhu et al., 2019). The
dysfunction of ATP5B is associated with neurofibrillary tangle
burden in the AD brain and with cognition (Wang et al., 2017).

The decrease of BDNF correlates with the neuropathological
stage of AD (Laske et al., 2006). Further studies are required to
investigate their features, functions, and mechanisms.

In the present study, we constructed a 35 gene-based LASSO
model, which can accurately predict AD in both validation and
combined brain tissue datasets. Among the 35 genes, previous
studies have reported that the expressions of IFITM3 (Correani
et al., 2017), SORBS1 (Blalock et al., 2004), ENAH (de Oliveira-
Júnior et al., 2015), SST (Solarski et al., 2018), ENSA (Boettcher
et al., 2008), C14orf40 (Chung et al., 2018), BASP1 (Zhou et al.,
2020), RTN3 (Zou et al., 2018), CDK7 (Zhu et al., 2000), and
HPCA (Jiang et al., 2016) were associated with AD or have
functions in neural tissue, indicating possible therapeutic targets.
For example, IFITM3 is a reliable biomarker of the inflammatory
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microglial phenotype in AD damaged tissues (Correani et al.,
2017), and the expression of SORBS1 is higher, while the
expression of ENSA is lower in the brain of patients with AD
(Blalock et al., 2004; Boettcher et al., 2008). SST interferes with
Aβ fibrillization and promotes the formation of Aβ assemblies
(Solarski et al., 2018). However, the molecular mechanism of
these 35 genes contributing to AD pathogenesis is still poorly
understood, and further exploration of potential mechanisms
may be valuable.

To assess and confirm its clinical application value, we
validated our gene signature on peripheral blood. According to
ROC curves, the 35-gene-based model is able to distinguish MCI
and AD samples from NDHCS samples in the blood. Especially in
GSE97760, the model shows the perfect ability to select advanced
AD patients (AUC = 1.000). Our results indicate that this
diagnosis model could be beneficial for clinical applications. It
is known that the blood—brain barrier (BBB) controls substance
exchange strictly between the brain and blood. However, studies
indicate that the breakdown of BBB could enhance the movement
of proteins between the brain and blood in either direction
(Zipser et al., 2007). Thus, some proteins in the blood might be
associated with AD pathology. Recent studies have also adopted
the strategy to integrate brain and blood datasets to identify
potential AD biomarkers (Yao et al., 2018; Zhu et al., 2020).
Our results shed new light on diagnosis biomarker identification.
Further large-sample studies with a different analysis in the blood
are required to confirm our results.

This study detected two key genes, BDNF and WWTR1,
as potential biomarkers for clinical diagnosis and therapeutic
monitoring in AD. Both of them have been identified as hub
genes in the PPI network and varied significantly in the different
neuropathological stages of AD. They were also selected as
potential diagnostic biomarkers from LASSO logistic regression.
GSEA suggests that the BDNF and WWTR1 could function as
key players in a broad array of essential signaling pathways.
Moreover, an independent validation showed that BDNF and
WWTR1 are associated with the Braak stage, Aβ 42 levels, and
β-secretase activity.

BDNF, located on chromosome 11 p 14, is reported to play
an essential role in regulating neurodevelopment, promoting
neuronal survival, and supporting basal forebrain cholinergic
projections to the HPC and neocortex (Marmigère et al., 2003;
Huang et al., 2007). Previous studies indicate that BDNF
depletion led to an increase in cortical amyloid plaque numbers
and size (Braun et al., 2017). It has also been reported that the
expression of BDNF decreased in the brain tissue of patients
with AD (Connor and Dragunow, 1998; Fields et al., 2014).
This is consistent with our results that BDNF is negatively
correlated with the Braak stage, and GSEA suggested that it
is involved in HPC development, cognition, neuron death,
and neurotransmitter regulation. Thus, the downregulation of

BDNF may play a crucial role in the pathogenesis of AD.
WWTR1 is another potential diagnosis biomarker and may
contribute to the development of AD. Functional enrichment
analysis showed that WWTR1 was significantly involved in the
neuroinflammatory response and neurotransmitter biosynthetic
and metabolic pathways. Previous research indicates that
WWTR1 is playing a crucial role in the Hippo and TGF-beta
pathways, which is associated with the progress of AD (Lei
et al., 2008; Deiana et al., 2018). However, the mechanisms
of WWTR1 and AD remain undefined. More research is
needed to elucidate the functions and underlying mechanisms
of WWTR1 and AD. Although we enrolled an additional dataset
for external validation, high-quality validation experiments are
still required to prove the value of BDNF and WWTR1
in AD pathology.

CONCLUSION

In conclusion, we identified 608 consensus DEGs, several
dysregulated pathways, and 16 hub genes associated with AD
progress by a series of bioinformatics analyses. The diagnostic
model of 35 genes was constructed, which has a high AUC
value in not only brain tissue but also peripheral blood. BDNF
and WWTR1 were identified as candidate genes for future
molecular studies. Our current study deepens our understanding
of underlying molecular mechanisms in AD and provides new
potential diagnostic and therapeutic biomarkers.
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