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Cerebral white matter hyperintensities (WMHs) represent macrostructural brain damage

associated with various etiologies. However, the relative contributions of various

etiologies to WMH volume, as assessed via different neuroimaging measures, is not

well-understood. Here, we explored associations between three potential early markers

of white matter hyperintensity volume. Specifically, the unique variance in total and

regional WMH volumes accounted for by white matter microstructure, brain iron

concentration and cerebral blood flow (CBF) was assessed. Regional volumes explored

were periventricular and deep regions. Eighty healthy older adults (ages 60–86) were

scanned at 3 Tesla MRI using fluid-attenuated inversion recovery, diffusion tensor imaging

(DTI), multi-echo gradient-recalled echo and pseudo-continuous arterial spin labeling

sequences. In a stepwise regression model, DTI-based radial diffusivity accounted for

significant variance in total WMH volume (adjusted R2 change = 0.136). In contrast, iron

concentration (adjusted R2 change = 0.043) and CBF (adjusted R2 change = 0.027)

made more modest improvements to the variance accounted for in total WMH volume.

However, there was an interaction between iron concentration and location on WMH

volume such that iron concentration predicted deep (p = 0.034) but not periventricular

(p = 0.414) WMH volume. Our results suggest that WM microstructure may be a better

predictor of WMH volume than either brain iron or CBF but also draws attention to the

possibility that some early WMH markers may be location-specific.

Keywords: cerebral small vessel disease, DTI, white matter hyperintensities, cerebral perfusion, brain iron, QSM

INTRODUCTION

Cerebral white matter hyperintensities (WMHs) are diffuse regions of high signal intensity on
T2-weighted magnetic resonance imaging scans (MRI; Hachinski et al., 1987; Wardlaw et al.,
2015). The high signal intensity associated with WMHs reflect alterations in local tissue properties,
including increased water content and myelin rarefaction (Fazekas et al., 1993; Pantoni and Garcia,
1997). WMHs are very common in older adults, with prevalence rates of ∼60–80% in those above
65 years of age (de Leeuw et al., 2001; Wen and Sachdev, 2004). While non-specific in etiology,
WMHs are generally associated with cerebral small vessel disease (cSVD; Pantoni and Garcia, 1995;
Wardlaw et al., 2013a).
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WMHs are thought to reflect “macrostructural” damage
associated with moderate-to-advanced stages of cSVD (Debette
and Markus, 2010; Gouw et al., 2011; Wardlaw et al., 2015).
Consistent with this possibility, pathology studies suggest that
WMHs are associated with structural brain changes such
as gliosis, axonal degeneration, myelin loss and vacuolation
(Gouw et al., 2011; Valdés Hernández et al., 2015). Further,
a meta-analysis of 22 studies showed that WMHs were
associated with progressive cognitive impairment, a 2-fold
increase in the risk of dementia and a 3-fold increase in
stroke risk (Debette and Markus, 2010). In addition, WMHs are
associated with decreased physical ability (Sachdev et al., 2005),
depression (Taylor et al., 2003) and increased risk of mortality
(Debette and Markus, 2010).

A number of other MRI metrics have been suggested as
potentially earlier markers of WMH volume (Wardlaw et al.,
2013b; Smith and Beaudin, 2018). Identification of earlier
neuroimaging markers of WMH volume is an important goal
toward early identification of participants for enrollment in
cSVD clinical trials (Charidimou et al., 2016; Boulouis et al.,
2017). Ultimately, earlier markers of WMH will be defined
as those which predict subsequent changes in vascular-related
cognitive processes or WMH growth with high accuracy. Several
studies have shown that baseline DTI-based measures in normal-
appearing white matter (NAWM) predict WMH growth 1 to
2 years later (Maillard et al., 2014; Promjunyakul et al., 2018).
However, while longitudinal studies are the gold-standard, they
are also expensive and time-consuming. Results from cross-
sectional studies may prove useful in guiding the selection of
promising predictors of WMHs for use in future longitudinal
studies. A number of previous cross-sectional studies have
suggested significant relationships between either DTI metrics in
NAWM (Maillard et al., 2011; Pelletier et al., 2016; Promjunyakul
et al., 2016) or ASL (ten Dam et al., 2007; Brickman et al., 2009;
Bahrani et al., 2017) and WMH volume. More recently, several
studies have reported significant associations between brain iron
and WMH volume (Yan et al., 2013; Valdés Hernández et al.,
2016; Sun et al., 2017). However, no studies have considered these
predictors simultaneously. Doing so is critical to identify which
predictors account for themost unique variance inWMHvolume
after controlling for shared variance between predictors.

In addition to considering associations with total WMH
volume, WMHs are often studied based on their specific
location (Wardlaw et al., 2013a). In particular, specific regions
of periventricular (PV) and deep WMH volume are often
compared (Gouw et al., 2011; Griffanti et al., 2018). However, it
remains unclear whether PV and deep WMHs reflect different
pathologies (Gouw et al., 2011) or similar pathologies at different
stages of cSVD severity (Ryu et al., 2014). Exploring potential
interactions between predictors and WM location may help
address this question.

Abbreviations: cSVD, Cerebral Small Vessel Disease; MRI, Magnetic Resonance

Imaging; WMH,White Matter Hyperintensity; PV, Periventricular; DTI, Diffusion

Tensor Imaging; FA, Fractional Anisotropy; RD, Radial Diffusivity; CBF, Cerebral

Blood Flow; QSM, Quantitative Susceptibility Mapping; GM, Gray Matter.

TABLE 1 | Group demographics and Montreal Cognitive Assessment (MoCAa)

scores.

Mean (S.D.) N

Age (Years) 70.4 (5.6) 80

Sex Ratio (F:M) 48:32 80

Education (Years) 16.4 (2.4) 80

MoCAa 27.1 (2.5) 69

The table lists the mean (±sd) for age, the female/male ratio, and the mean (±sd) years

of education and MoCA scores.
aNasreddine et al., 2005.

Here, we explored the associations between several potential
early stage markers of WMH volume. White matter (WM)
microstructure, cerebral blood flow, and brain iron were used as
predictors of WMH volume. Of key relevance, comprehensive
models were used to assess the variance in WMH volume
associated with each individual predictor, after controlling for
variance associated with the other predictors to assess potential
additive and synergistic effects on WMH volume and location.
In addition, we explored whether each predictor contributed
preferentially to PV or deep WMH volume.

MATERIALS AND METHODS

Participants
Eighty healthy older adults (48 women, age range 60–86 years)
were recruited for the experiment. All participants provided
informed consent under a protocol approved by the Institutional
Review Board of the University of Kentucky. Participants were
recruited from an existing longitudinal cohort at the Sanders-
Brown Center on Aging (SBCoA) and the Lexington community.
Participants from the SBCoA were cognitively intact based
on clinical consensus diagnosis and scores from the Uniform
Data Set (UDS3) used by US ADRCs (Besser et al., 2018).
Participants recruited from the community did not complete
the UDS3 battery but were required to score 26 or more on
the Montreal Cognitive Assessment (MoCA; Nasreddine et al.,
2005) as a study inclusion criteria. Exclusion criteria were
significant head injury (defined as loss of consciousness for more
than 5min), heart disease, stroke, neurological or psychiatric
disorders, claustrophobia, pacemakers, the presence of metal
fragments or any metal implants that are incompatible with MRI,
diseases affecting the blood (anemia, kidney/heart disease etc.)
or significant brain abnormalities detected during imaging. One
participant was excluded from the sample due to the presence of
an old stroke within the right motor cortex that was not clinically
evident at study enrollment. Detailed characteristics of the final
group of participants are shown in Table 1.

Magnetic Resonance Imaging Protocol
Participants were screened to ensuremagnetic safety for scanning
within the Siemens Magnetom Prisma 3T (software version
E11C) with a 64-channel head coil at the University of Kentucky’s
Magnetic Resonance Imaging and Spectroscopy Center (MRISC).
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The following scans were acquired: (1) a 3D multi-echo, T1-
weighted Magnetization Prepared Rapid Gradient Echo (T1)
scan, (2) a 3D fluid-attenuated inversion recovery (FLAIR) scan,
(3) a diffusion tensor imaging (DTI) scan, (4) a 3D, multi-echo
gradient-recalled echo scan used for quantitative susceptibility
mapping (QSM), and (5) a pseudo-continuous arterial spin
labeling (PCASL) perfusion scan. Several other sequences were
collected during the scanning session related to other scientific
questions and are not discussed further here.

The T1 sequence covered the entire brain [1mm isotropic
voxels, 256 × 256 × 176mm acquisition matrix, repetition time
(TR) = 2,530 millisecond (ms), inversion time = 1,100ms,
flip angel (FA) = 7◦, scan duration = 5.88min] and had
four echoes [First echo time (TE1) =1.69ms, echo spacing
(1TE = 1.86ms)]. The 3D FLAIR sequence covered the entire
brain (1mm isotropic voxels, 256 × 256 × 176 acquisition
matrix, TR= 5,000ms, TE= 388ms, inversion time= 1,800ms,
scan duration = 6.45min). The DTI sequence was acquired
with 126 separate diffusion directions (2mm isotropic voxels, 81
slices, TR = 3,400ms, TE = 71ms, scan duration = 7.45min,
posterior-to-anterior phase encoding direction) and 4 b-values
(0 s/mm2, 500 s/mm2, 1,000 s/mm2 and 2,000 s/mm2). A short
(28 s) reverse phase-encoding direction scan was also obtained
with the same parameters as the main DTI scan and used to
correct for susceptibility-induced distortions in the main DTI
scan. The 3D spoiled gradient-recalled echo sequence was used
for QSM (1.2mm isotropic voxels, 144 slices, FA = 15◦, 24
millisecond TR, scan duration= 6.3min) with eight separate TEs
(TE1= 2.98ms, 1TE= 2.53ms). A 3DGRASE PCASL sequence
was used with 9 control-label pairs [3 segments (echo planar
imaging factor= 63, turbo factor= 14), 9 tagged and 9 untagged
volumes and 1M0 for calibration, 3.4× 3.4× 4.0mm voxels, 220
× 220 × 144mm acquisition matrix (36 slices), TR = 5,070ms,
TE = 31.4ms, FA = 120◦, labeling duration = 2,025ms, post-
labeling delay= 2,500ms, scan duration= 5.15 min].

WMH Analyses
WMH volumes were computed using a validated 4-tissue
segmentation method (DeCarli et al., 2013). Participants’ FLAIR
images were first registered to their own T1 [the four echoes
averaged into a root mean square (RMS) image] image using
FLIRT from FMRIB Software Library version 6.0.1 (FSL;
Jenkinson et al., 2012), corrected for inhomogeneities using
a previously published local histogram normalization (DeCarli
et al., 1996), and then non-linearly aligned to a standard atlas
(DeCarli et al., 2013). WMHs were estimated in standard space
using Bayesian probability based on histogram fitting and prior
probability maps. Voxels labeled as WMHs based on these maps
also must have exceeded 3.5 SDs above the mean WM signal
intensity. WMH volumes were calculated in participants’ native
FLAIR space after back-transformation and reported in cubic
millimeters. WMHs were visually validated to ensure quality.

Periventricular and Deep WMH ROIs
WMH volume was further subdivided into periventricular (PV)
and deep regions of interest (ROIs; Figure 1). PV WMHs were
defined as being located within ∼10mm of the ventricles and

deep WMHs were defined as those located outside this radius
(Griffanti et al., 2018). These ROIs were delineated using a
validated group mask of the lateral ventricles, the Automatic
Lateral Ventricle delIneatioN (ALVIN) mask, which was created
using data from 275 healthy adults (age range 18–94; Kempton
et al., 2011).

In order to accomplish this, each participant’s RMS T1
image was first skull-stripped and segmented using FreeSurfer
6.0 (Fischl et al., 2004). The resulting images were then
aligned to the participants’ FLAIR images using the analysis of
functional neuroimages (AFNI) and a local Pearson correlation
cost function. A binary mask was then created from these
FLAIR aligned T1 images for later use in masking deep WMHs
(described below). Subsequently, the aligned non-binarized T1
images were warped to MNI space using the MNI ICBM152
atlas (1mm, 6th generation; Grabner et al., 2006) and a non-
linear transformation. The inverse transformation matrix was
then applied to the ALVIN mask (which is in MNI space) to
bring it back to each participant’s native space, using AFNI and
a nearest neighbor interpolation method.

The ALVIN mask extends beyond the lateral ventricles into
brain parenchyma (∼7–11mm in most participants) to ensure
inclusion of the lateral ventricles across participants with varying
brain size. Typically, subsequent multiplication with a segmented
CSF image is then performed to exclude parenchyma from
the ventricular mask (Kempton et al., 2011). Here, rather
than performing this step, each participant’s WMH mask was
multiplied by their native-space ALVIN mask (Figure 1, top
panel, PV ROI) to produce PV WMH masks (Figure 2). Lastly,
deep ROIs were created by subtracting the participant’s native-
space ALVIN masks from their binarized FLAIR aligned T1
masks (Figure 1, bottom panel). Each participant’s deep ROI was
then multiplied by their WMH mask to produce deep WMH
masks (Figure 2).

QSM Analyses
QSM images were processed in MATLAB using the Morphology
Enabled Dipole Inversion toolbox (MEDI toolbox, release of
11/06/2017; Liu et al., 2012, 2013). This approach generates
QSM images by inverting an estimate of the magnetic field to
generate a distribution of local magnetic susceptibility used to
calculate values for the underlying anatomy. The anatomical
information required for MEDI was a (skull-stripped) magnitude
image obtained during the same scan. The following steps were
performed during MEDI: (1) non-linear fitting to the multi-echo
data was used to estimate the magnetic field inhomogeneity.
(2) Phase unwrapping using the magnitude image as a guide
(Liu et al., 2013). (3) Removal of the background field by
applying a projection onto the dipole field (Liu et al., 2011). (4)
The remaining field was inverted to calculate the quantitative
susceptibility map in parts per billion (PPB). (5) Local magnetic
susceptibility in CSF was used to scale the QSM maps for
susceptibility normalization such that positive values correspond
to local magnetic susceptibility greater than CSF while negative
values correspond to susceptibility less than CSF.

For the final step, ventricular reference masks were created
for each participant by first registering the RMS T1 scans to the
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FIGURE 1 | WMH Regional ROI Masks. PV (top: green) and deep (bottom: red) ROI masks are overlaid onto FLAIR images. These ROIs were defined by registering

the ALVIN mask to each participant’s native FLAIR space, with the area within the ALVIN mask defined as the PV ROI and the area outside defined as the deep ROI.

Although both ROIs include all tissues, not just WMHs, these ROIs were multiplied by the participants WMH mask resulting in only WMH volume in each region.

QSMmagnitude image. The aligned RMS T1 scan was then used
with ALVIN (Kempton et al., 2011) and SPM12 to create lateral
ventricle masks for each participant, which were eroded by one
voxel to prevent partial volume effects with surrounding gray
and white matter. These masks were resampled to the QSM voxel
resolution (1.2mm isotropic) and used in the MEDI toolbox as
the CSF reference mask (step 5).

Gray Matter QSM Measurement
Average GM QSM measures were calculated using FreeSurfer-
derived ROIs from the cortex and dorsal striatum (caudate and
putamen) as described in detail in our previous work (Zachariou
et al., 2020). Briefly, these regions were selected based on previous
literature indicating that iron in these areas increase with age
(Aquino et al., 2009; Acosta-Cabronero et al., 2016). First, each
participant’s RMS T1 image was skull-stripped and segmented
using FreeSurfer 6.0. Next, per participant cortical ROIs were
created by combining the relevant GM segmented neocortical
and allocortical (i.e., hippocampus) structures. Similarly, per
participant subcortical ROIs were created from the FreeSurfer
segmentations of the caudate and putamen.

The cortical and subcortical ROIs for each participant were
then registered to their QSM images in native space using the
following steps. First, each participant’s RMS T1 was registered
to the QSM magnitude image using the AFNI align_epi_anat.py
function and a local Pearson correlation cost function. The
resulting transformation matrices were then applied to each

participants’ cortical and subcortical ROIs using the AFNI
function 3dAllineate with a nearest neighbor interpolation
method. Finally, these ROIs were eroded by one voxel to prevent
partial volume effects and were resampled to the QSM voxel
resolution (1 to 1.2mm isotropic voxels).

Due to significantly higher iron concentrations (over 10 times
higher) in subcortical compared to cortical GM regions, per
participant mean QSM values were extracted separately from the
cortical and subcortical ROIs using fslstats. These values were
then converted into z-scores and the mean of these z-scores
across the 3 ROIs was used to create a single GM QSM measure
for each participant.

CBF Analyses
PCASL images were processed in FSL. First, all tagged/untagged
pairs were motion corrected to the M0 image using FSL
MCFLIRT. A perfusion image was subsequently calculated by
taking the mean difference between the tagged and untagged
pairs using asl_file in the BASIL toolbox (https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/BASIL), which also helps correct for partial volume
effects. Oxford_asl, which is also part of the BASIL toolbox, was
then used for per-voxel calibration (using theM0 image) resulting
in a calibrated map of tissue perfusion (ml/100 g/min).

Gray Matter CBF Measurement
Participants’ FreeSurfer GM ROIs were registered to their
PCASL images in native space using the following steps. Each
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FIGURE 2 | A Sample Segmented WMH Mask. In this axial FLAIR slice,

WMHs in a representative participant are color-coded according to being in

either PV (green) or deep (red) regions. WMH volume was extracted from each

region separately for every participant.

participant’s RMS T1 was aligned to their PCASL M0 image
using AFNI and a local Pearson correlation cost function. The
resulting transformation matrices were then applied to each
participants’ FreeSurfer GM ROIs using AFNI and a nearest
neighbor interpolation method. Lastly, these ROIs were eroded
by one voxel to prevent partial volume effects and were resampled
to the PCASL voxel resolution (1 to 3.4mm isotropic voxels).

Unlike with QSM,mean GMCBF signal was similar across the
caudate, putamen, and cortical ROIs. Therefore, these ROIs were
combined into a single ROI for our CBFmeasurement.MeanGM
CBF signal was then extracted from the combined ROI using FSL.

DTI Analyses
DTI was analyzed with FSL’s tract-based spatial statistics (TBSS)
pipeline (Smith et al., 2006), as described in detail in our previous
work (Brown et al., 2016, 2019). Briefly, each participant’s
diffusion data was corrected for susceptibility induced field
distortions using FSL’s topup (Andersson et al., 2003), skull-
stripped using BET (Smith, 2002), and non-linearly corrected for
eddy currents and participant motion simultaneously with eddy
(Andersson and Sotiropoulos, 2016). Greater than 2mm subject
motion per slice was used as a guideline for examination of
excessive motion, although no slices from any participants were
ultimately removed (minimal motion artifacts). The diffusion
tensor model and eigenvalues (λ1, λ2, λ3) were computed within
each voxel using DTIFIT, which were used to calculate fractional
anisotropy (FA) images. After the initial preprocessing step
(tbss_1_preproc), non-linear voxel-wise registration was used to

transform each participant’s FA image into MNI152 space, where
they were averaged to create a mean FA image (tbss_2_reg and
tbss_3_postreg). A common white matter tract skeleton was then
created using the mean FA image. All participants FA data was
then projected onto this skeleton which was thresholded at FA
> 0.2 (tbss_4_prestats) to correct partial volume effects that may
occur after warping across all participants. Radial diffusivity (RD)
images were likewise processed with the same templates and
transformations using tbss_non_FA.

DTI Masks of PV and Deep WM
The DTI ROI masks were generated from the JHU ICBM-
81 WM ROI atlas (Mori et al., 2008). Several DTI ROIs were
explored based on being major WM tracts with established
connections between specific gray matter regions, located within
either PV or deep WM regions and being well-aligned across
participants in our DTI data. The PV ROI mask included the
corpus callosum as it is the largest white matter structure in
the brain connecting homologous structures across hemispheres
(Fitsiori et al., 2011). Specific corpus callosum sub-sections were
selected for being major partitions of the corpus callosum and
well-aligned across participants (Splenium, Body, Tapetum). The
deep ROI mask included the superior longitudinal fasciculus
and external capsule which were chosen based on being major
primary association fiber tracts in deep WM, and containing
distant connections (connecting frontal and parietal regions
and basal ganglia/claustrum with cortical regions, respectively;
Mori et al., 2008). Furthermore, both tracts are believed to
connect to cortical areas associated with several cognitive
functions including language function, attention, and working
memory/executive function (Mori et al., 2008; Wang et al., 2016;
Nolze-Charron et al., 2020).

Mean FA and RD were extracted from each ROI tract,
for each participant, using fslmeants. Mean values were
computed across entire ROI WM tracts in order to provide
anatomically meaningful diffusion estimates (i.e., estimates of
tracts connecting specific gray matter regions). As a separate
estimate, mean values were also computed acrossWM tracts after
excluding values that overlapped with WMH voxels, resulting in
ROIs restricted to only normal appearing white matter (NAWM).
However, since the results were the same using each of these ROI
methods, we present results using FA and RD values extracted
from entire WM tracts to provide anatomically meaningful
results. Extracted values from the entire ROIs were then used to
create overall PV and deep FA and RD composite scores. These
unweighted composite scores were created for each participant
using the mean of the regional z-scored ROI tract values. This
resulted in four composite scores for each participant: a PV FA
composite score, a PV RD composite score, a deep FA composite
score, and a deep RD composite score.

Statistical Analyses
Statistical analyses were performed using SPSS (IBM, Chicago, IL,
USA, version 26), with results considered statistically significant
at p < 0.05. Data was considered a statistical outlier and
removed if it was >3 standard deviations from the mean. All
images for all participants were visually inspected for quality
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control. All predictors and dependent variables were tested
for the assumption of normality using the Shapiro-Wilk test.
Collinearity between predictors in all models was explored using
the variance inflation factor (VIF), with a value of 5 implemented
as a threshold value (Stine, 1995). CBF was z-scored across
participants in the analyses to match the scale of the QSM
and FA/DR composite scores. The coefficient of variation was
calculated for unstandardized FA/DR, QSM, and CBF values in
every ROI. This was done by dividing the standard deviation
across participants by themean signal across participants in every
ROI. We also report the mean coefficient of variation across
ROIs for FA/DR, QSM and CBF values. Finally, estimated total
intracranial volume (eTIV) provided by FreeSurfer was z-scored
across participants. This intracranial volume (ICV) measure was
used as a covariate in subsequent analyses.

We first explored whether FA or DR better predicted PV
and deep WMH volume (Section FA and RD as Predictors of
WMHVolume). Separate linear regression models were run with
FA and DR composite scores as the predictors and PV or deep
WMHvolume as the dependent variables. Age, sex, and ICVwere
included as covariates. The specific DTI metric, FA or RD, which
had the larger effect size when predicting PV and deep WMH
volume (partial r) was used in subsequent analyses.

Main effects of predictors on total WMH volume and
predictor × WMH location interactions were initially explored
using a general linear model repeated measures ANCOVA
(Sections Imaging Modality Main Effects on WMH Volume
and WMH Location Interactions and CBF Association With
WMH Volume in Partial Models). CBF, QSM, and FA/DR,
along with all possible interaction terms (CBF × QSM, QSM
× FA/DR, and CBF × FA/DR) were the predictors of interest,
with WMH volume as a 2-level dependent variable with PV
and deep volume (not z-scored) as the levels. Age, sex, and
ICV were included as covariates. For this analysis, white matter
tracts from both PV and deep DTI ROIs were combined into
a single FA/DR composite to reduce collinearity arising from
including two DTI composites. We report the main effects of all
predictors to examine effects on WMH volume more generally,
and predictor interactions with WMH location to assess if
any factors preferentially predict PV or deep WMH volume.
Significant predictor by location interactions were followed-
up with post-hoc analysis to identify relationships with WMH
volume in each specific location (Section RD, CBF, and QSM
Associations With Regional WMH Volumes). We were also
interested in whether the accuracy of any of our predictors (CBF,
QSM, or FA/DR) improves with increasing participant age. To
test this possibility, we included age × predictor interaction
terms in linear regression models predicting PV and deep WMH
volume (Section Age Moderation Analysis).

Stepwise linear regression was used to further explore how
much explained variance (R2) each predictor added regarding
WMH volume (Section Additive Effects of WMH Predictors
Using R2 Change). To accomplish this, we z-scored PV and
deep WMH volume (the dependent variables used in the main
ANCOVA model) across participants and then used the mean
of the z-scores as our dependent variable (composite WMH
volume). This was done to give equal weighting to WMH in both

locations; using the more traditional total WMH volume would
be largely driven by PVWMHvolume which in general has much
greater volume. The first step of the regression included only the
covariates (age, sex, ICV). At each step, we added in the most
significant predictor of WMH volume remaining as revealed by
the initial ANCOVA. Interactions were excluded as they were not
significant in the preceding analyses.

A retrospective power analysis was conducted to determine
if our null between factor interaction findings were the result
of insufficient power (Section Power Analysis). Post-hoc F-tests
parameters were selected using G∗power (version 3.1.9.2) with
effect size, total sample size, number of tested predictors and total
number of predictors specified. Cohen’s f2 was used as a guideline
for interpreting effect size.

RESULTS

Participant and Data Characteristics
Participants summary demographic information is presented in
Table 1. There were no outliers in any of the predictors (FA/DR
composites, QSM composite, and CBF measurement) and one
outlier in WMH data, which was excluded. Data from two other
participants, one with a failed WMH segmentation and another
with excessive motion in the QSM scan rendering it unusable,
were also excluded. All the WMH distributions were skewed
as is typical (PV; W statistic = 0.597; p < 0.001; Deep; W
statistic= 0.318; p < 0.001) and were log transformed. The QSM
composite and CBF measurement were normally distributed
(p = 0.725; p = 0.669), while the FA/DR composites were mildly
skewed but were not log transformed (W statistic = 0.924; p
< 0.001), as this is not typically done in the DTI literature.
Error residuals from all analyses were normally distributed
indicating that the assumption of normality was met. Variance
inflation factor for all predictors was <2 and tolerance was
>0.5 in all analyses. The mean coefficient of variation was
0.0601 for FA (Superior Longitudinal Fasciculus ROI = 0.0585,
External Capsule ROI = 0.0463, Body of Corpus Callosum
ROI = 0.0556, Splenium of Corpus Callosum ROI = 0.0332,
Tapetum of Corpus Callosum ROI = 0.107), and 0.0925 for
DR (superior longitudinal fasciculus ROI = 0.0645, external
capsule ROI = 0.0568, Body of Corpus Callosum ROI = 0.0955,
Splenium of Corpus Callosum ROI= 0.0707, Tapetum of Corpus
Callosum ROI = 0.175). The mean coefficient of variation was
0.362 for QSM (Caudate ROI = 0.395, Putamen ROI = 0.466,
Cortical ROI = 0.225). The coefficient of variation was 0.174 for
CBF (Gray Matter ROI= 0.174).

FA and RD as Predictors of WMH Volume
Participant’s DTI PV and deep composite scores (for FA and
RD) were computed by z-scoring individual participant’s mean
values in each tract in the mask and then calculating the mean of
those z-scores across tracts (Section DTI Masks of PV and Deep
WM). RD had a larger effect size than FA in a model predicting
PV WMH volume (RD partial r = 0.415, p < 0.001; FA partial
r = −0.379, p = 0.001) and deep WMH volume (RD partial
r= 0.323, p= 0.005; FA partial r=−0.141, p= 0.233). Therefore,
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TABLE 2 | Summary of main effects and interactions of predictors on WMH

volume and location.

WMH Volume Main Effects Location Interaction

Predictors F-value p-value F-value p-value

Age 0.658 0.420 0.302 0.584

Sex 1.161 0.285 2.250 0.138

ICV 3.032 0.086 0.103 0.750

CBF 3.530 0.065 0.029 0.866

QSM 5.107 0.027* 6.208 0.015*

RD 13.516 <0.001* 0.053 0.819

CBF × QSM 0.573 0.452 0.689 0.410

QSM ×RD 0.026 0.874 0.241 0.625

CBF × RD 0.018 0.894 0.127 0.723

The F- and p-values for the main effects of predictors on total WMH volume are on the

left, with the interaction effects of WMH location on the right. QSM and RD had robust

main effects, while CBF had a marginally significant main effect on total WMH volume.

Only QSM interacted with WMH location.

*p < 0.05.

RD was used as the DTI measure in PV and deep DTI ROIs in
subsequent models.

Imaging Modality Main Effects on WMH
Volume and WMH Location Interactions
The ANCOVA indicated a main effect of DTI-based RD
(F = 13.516, partial Eta = 0.412, p < 0.001) and QSM-based
iron concentration (F = 5.107, partial Eta = 0.268, p = 0.027)
on total WMH volume (Table 2). The main effect of CBF on
total WMH volume was marginally significant (F= 3.530, partial
Eta = −0.226, p = 0.065). There was a QSM × WMH location
interaction [explored in post-hoc analysis below (Section RD,
CBF, and QSM Associations with Regional WMH Volumes),
F = 6.208, partial Eta = 0.293, p = 0.015] such that QSM
positively predicted deep but not PV WMH volume, but no CBF
×WMH location (F= 0.029, p= 0.866) or RD×WMH location
interactions (F = 0.053, p = 0.819). There were no significant
interactions between predictors.

CBF Association With WMH Volume in
Partial Models
Our ANCOVA with all 3 contributing factors revealed that CBF
was only marginally significant in predicting total WMH volume.
However, several previous studies report associations between
CBF and total WMH volume. Therefore, we further explored
if CBF was significantly associated with total WMH volume in
partial models of the ANCOVAwith standard covariates age, sex,
and ICV included. The purpose of this analysis was to determine
which predictor may account for some of the variance in the
CBF-WMH relationship.

With CBF as the only predictor of interest, CBF negatively
predicted total WMH volume (F = 4.339, p = 0.041). CBF still
predicted total WMH volume when QSM (and CBF × QSM
interaction) was entered into the model but RD was omitted
(F = 4.745, p = 0.033), yet was only marginally significant when

TABLE 3 | Total explained variance (Adjusted R2 ) and explained variance

attributed to the newest added predictor (Adjusted R2 change) at each step of the

linear regression predicting composite WMH volume.

Regression Step

and Predictors

Adjusted R2 Adjusted R2 Change p-value

Step 1 0.200 0.200 <0.001*

Age – – 0.001*

Sex – – 0.417

ICV – – 0.025*

Step 2 0.336 0.136 <0.001*

RD – – <0.001*

Step 3 0.379 0.043 <0.001*

QSM – – 0.018*

Step 4 0.406 0.027 <0.001*

CBF – – 0.046*

Covariates alone predicted 20% of the variance. Including RD at step 2 increased the

adjusted R2 of the model to 0.336. After inclusion of QSM in step 3 and CBF in step 4,

the total variance explained in total WMH volume exceeded 40%. The p-values in bold

reflect the p-value of the model at the indicated step, whereas other p-values represent

the indicated variable when they were first entered into the model.

*p < 0.05.

TABLE 4 | Summary of main effects and interactions of predictors on WMH

volume in periventricular and deep regions.

WMH Location Periventricular Deep

Predictors Beta F-value p-value Beta F-value p-value

Age 0.016 3.453 0.065 0.008 0.341 0.529

Sex −0.278 6.657 0.009* −0.008 0.002 0.966

ICV 0.126 5.867 0.010* 0.118 1.848 0.170

CBF −0.132 8.387 0.011* −0.074 0.902 0.344

QSM 0.052 0.883 0.414 0.236 6.841 0.034*

RD 0.214 16.486 <0.001* 0.217 6.908 0.023*

CBF × QSM −0.047 0.814 0.482 −0.054 0.312 0.562

QSM × RD −0.028 0.125 0.755 0.062 0.339 0.593

CBF × RD 0.013 0.105 0.744 0.012 0.024 0.880

Displayed are unstandardized beta, F-and p-values for the main effects of all predictors,

and interaction effects in both PV (left) and deep (right) WMHmodels. QSM was positively

associated with deep but not PV WMH volume, while RD strongly predicted both. CBF

negatively predicted PV WMH volume. There were no interactions between predictors in

either model.

*p < 0.05.

RD was entered into the model but QSM was omitted (F= 3.777,
p= 0.056).

Additive Effects of WMH Predictors Using
R2 Change
In step 1, covariates alone accounted for 20% of the variance
in composite WMH volume (Adjusted R2 = 0.200; Table 3).
Including RD in the model increased the variance explained
to 33.6% (Adjusted R2 change = 0.136). Further additions of
QSM and CBF increased the variance explained to 37.9% at
step 3 (Adjusted R2 change = 0.043) and 40.6% (Adjusted R2

change= 0.027) at step 4, respectively.
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RD, CBF, and QSM Associations With
Regional WMH Volumes
Separate linear regressions were next used as a post-hoc analysis
for the initial ANCOVA to further explore the QSM × WMH
volume location interaction, using CBF and RD as covariates.
QSM positively predicted deep (bootstrapped Beta = 0.236,
partial r = 0.307, F = 6.841; p = 0.034, SE = 0.109, 95% BCa
CI = 0.032 to 0.388), but not PV WMH volume (bootstrapped
Beta= 0.052, partial r= 0.114, F= 0.883; p= 0.414, SE= 0.063,
95% BCa CI=−0.055 to 0.121; Table 4).

Age Moderation Analysis
Linear regression models were used to explore the possibility
of age × CBF, age × QSM, and age × DR interactions.
Results indicated that the interaction terms were not statistically
significant when predicting PV or deep WMH volume [age ×

CBF for PV (p= 0.986) and for deep (p= 0.628); age×QSM for
PV (p = 0.140) and for deep (p = 0.328); and age × DR for PV
(p= 0.270) and for deep (p= 0.778); Supplementary Table 1].

Power Analysis
If we assume that an interaction effect was present, this study
had over 99% power to detect an interaction with a large effect
(f2 = 0.35), 92% power to detect an interaction with a medium
effect (f2 = 0.15), and 23% power to detect an interaction with
a small effect (f2 = 0.15). The actual f2 for our most relevant
interaction term (QSM × RD) was very small (0.005). This may
suggest that the interactions in our models are not truly present;
alternatively, the effect may be so small that it would require
>1,500 participants to achieve 80% power.

DISCUSSION

We explored the main effects and interactions of DTI-based
radial diffusivity (RD), QSM-based brain iron concentration and
ASL-based cerebral blood flow (CBF) on WMH volume and
location. Results indicated that RD was the strongest predictor
of total WMH volume and was associated with WMH regardless
of location. In contrast, iron concentration was more strongly
associated with deep than periventricular (PV) WMH volume.
Finally, CBF did not account for any unique variance in WMH
volume or location after controlling for other predictors. Our
findings demonstrate the importance of considering multiple
predictors of WMHs simultaneously to identify the strongest
individual predictors, after controlling for shared variance
between predictors.

Additive Effects of Individual Predictors of
WMH Volume
The covariates and predictors (WM microstructure, brain iron
and CBF) explored in this study accounted for almost half
of the total variance in composite WMH volume (Table 3).
WM microstructure (assessed with RD) contributed the largest
percentage of unique variance accounted for in composite WMH
volume after accounting for covariates and other predictors,
suggesting that WM microstructure is the most robust predictor
of the three.While QSM andCBFwere also significant predictors,

each explained only modest percentages of WMH variance
after accounting for covariates and other predictors indicating
that a portion of their variance may be better explained by
WMmicrostructure.

RD Predicts Both PV and Deep WMH
Volume
DTI-based RD was strongly associated with WMH volume in
both PV and deep locations. Our findings are in-keeping with
results from previous cross-sectional studies suggesting that RD
(Pelletier et al., 2016) and other DTI-based metrics (Maillard
et al., 2011; Maniega et al., 2015; Promjunyakul et al., 2016)
appear to predict global WMH volume in both PV and deep
WM. However, we know of only one previous study using RD
as a WMH predictor that controlled for other neuroimaging
predictors (Promjunyakul et al., 2018). In that study, RD values
predicted new PV and deep WMH growth ∼1.5 years later
(Promjunyakul et al., 2018), and was a stronger WMH predictor
than CBF.

The present results add to the literature, indicating that RD is
associated with WMH volume in both PV and deep regions after
controlling for CBF and brain iron concentration. Higher RD is
associated with relatively lower myelination, axonal packing and
axonal density (Madden et al., 2009). Thus, lower myelination
and axonal packing/density appear to be associated with higher
WMH volume, both independently of other neuroimaging
metrics and across WM location.

Iron Concentration Is More Closely
Associated With Deep Than PV WMH
Volume
Non-heme brain iron concentration was quantified using QSM,
which has been validated against postmortem tissue iron
concentrations in both subcortical structures (Langkammer et al.,
2012; Sun et al., 2015) and cortical structures (Fukunaga et al.,
2010; Bulk et al., 2018). Our QSM ROI included both cortical
and subcortical structures. We observed a significant main effect
of cerebral iron concentration on total WMH volume after
controlling for WM microstructural properties and cerebral
blood flow. While non-heme iron is crucial for many cellular
processes, it is also is a potent oxidizer that can generate
reactive oxygen species (ROS), damaging neurons (Moos et al.,
2007; Ward et al., 2014). Increased unbound iron is thought to
contribute to demyelination resulting from free radical damage
affecting oligodendrocytes and myelin sheaths (Todorich et al.,
2009; Bartzokis, 2011). However, given that we controlled for
myelin damage in our models (DTI-based RD was used as a
covariate), the main effect of QSM on WMH we observed could
reflect additional damage to neuronal cell bodies and/or axons
(e.g., Wallerian degeneration).

One reason why iron was less predictive of totalWMHvolume
than RD relates to the interaction we observed between brain
iron and location on WMH volume. Specifically, brain iron
concentration was more predictive of deep WMH volume than
PV WMH volume. Several previous studies have had mixed
findings, with some indicating that iron is associated with total
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WMH volume (Yan et al., 2013; Valdés Hernández et al., 2016;
Sun et al., 2017), although others have not (Gattringer et al.,
2016). However, none of these studies accounted for CBF or
FA/RD in their models or explored potential iron by WMH
location interactions.

The interaction we observed between iron and location on
WMH volume likely relates to deep WM ROIs containing
more tracts with connections to iron-rich basal ganglia and
other subcortical structures in our study. In particular, the
deep ROI included the external capsule, a series of WM tracts
situated between the putamen and claustrum. The external
capsule includes extensive connections between the claustrum
and subcortical structures such as the basal ganglia and thalamus
(Smythies et al., 2013). In contrast, the PV WM ROI was
primarily composed of the body and splenium of the corpus
callosum, which connect homologous neocortical structures.

It is well-established that age-related cerebral iron
accumulation is seen predominantly in subcortical structures of
the basal ganglia (Zecca et al., 2004; Ward et al., 2014). Thus,
it is possible that high concentrations of iron in basal ganglia
structures may have contributed to Wallerian degeneration of
deep tracts such as the external capsule. However, it should be
noted that our analyses focused on major WM tracts. There are a
number of smaller WM tracts in the PV region with connections
to basal ganglia structures such as the lenticular fasciculus and
nigrostriatal tracts which were not included in our study due to
less optimal spatial alignment across participants.

CBF Does Not Predict WMH Volume After
Controlling for Other Factors
Our results showed that CBF was negatively associated with total
WMH volume when it was the only predictor of interest. This
is consistent with results from a number of studies reporting
a negative relationship between CBF and WMH volume (ten
Dam et al., 2007; Brickman et al., 2009; Bahrani et al., 2017).
However, our results indicated that CBF was only a marginally
significant predictor of total WMH volume after controlling for
other predictors (p = 0.065). In particular, we found that RD
accounted for some of the variance in the CBF-WMH volume
relationship (Section CBF Association With WMH Volume in
Partial Models), and better predicted WMH volume than CBF
in general (Table 2, section Additive Effects of WMH Predictors
Using R2 Change). One possible explanation for this is that CBF
only predicts total WMH volume when reduced blood flow is
pronounced enough to cause microstructural damage to myelin
and WM tracts.

Age Did Not Moderate Relationships
Between Predictors (CBF, QSM, DR) and
WMH Volume
It is possible that CBF, QSM, or DR could better predict WMH
volume at older age levels, as all these measures are known to
correlate with age (Acosta-Cabronero et al., 2016; Beck et al.,
2021; Juttukonda et al., 2021). We investigated this possibility
by exploring whether age moderated the strength of relationship
between any of our predictors and WMH volume. However,

we did not find any evidence of age moderation in this study
(Supplementary Table 1). As our study included mostly healthy
older adults, future studies could examine the possibility that
age may moderate the relationship between cSVD predictors and
WMH volume at more advanced neurodegenerative states, such
as those associated with mild cognitive impairment or dementia.

Study Strengths and Limitations
Strengths of our study include the consideration of multiple
predictors (WM microstructure, brain iron concentration and
CBF) of WMH volume, employing rigorous MRI analyses, a
moderately large sample size and wide age range of older adults.
Further, the integration of multiple WMH predictors in the
same model controls for shared covariance between predictors,
allowing identification of the best predictors through their
unique variance onWMH volume. An additional strength of our
study was consideration of interactions between predictors and
spatial location (i.e., PV and deep WMHs).

This study also has limitations that highlight the need for
additional follow-up studies. First, our cross-sectional study
cannot determine how predictors would be associated with
WMH growth. Future research with multiple time points is
needed to identify baseline predictors of longitudinal WMH
change. Second, as is true in most studies, ASL in our study had
poorer spatial resolution than either DTI or QSM. The mean
CBF signal used in our study consisted of a number of individual
gray matter ROIs, including subcortical structures such as the
caudate and putamen. Subcortical structures are surrounded by
white matter where ASL signal is reduced compared to gray
matter, and relatively large ASL voxels may have contributed to
greater partial volume effects and averaging of lower CBF signal.
For example, the putamen is bordered laterally by the external
capsule, a long, thin WM tract. FreeSurfer segmentation, which
we used, tends to overestimate the boundaries of the putamen
by including the external capsule (Dewey et al., 2010; Perlaki
et al., 2017). Although CBF did not predict total WMH volume
when other predictors were controlled in our study, it is possible
that CBF could contribute unique variance in total WMH
volume using more advanced ASL techniques that are currently
in development. Third, future studies should explore more
than one clinical subset of participants. Our study focused on
cognitively normal older adults and it is possible that our results
may not generalize to individuals with more advanced WMH
burden and cognitive impairment (Mild Cognitive Impairment
and Alzheimer’s Disease). Longitudinal follow-up is needed to
identify if synergistic interactions begin to emerge at the onset
of dementia.

This study employed a large-scale ROI approach to assess
effects of more global CBF/QSM/DR predictors on overall
measures of WMH volume (including total, PV and deep
regions). In previous work in this area, both large-scale ROI
approaches (ten Dam et al., 2007; Brickman et al., 2009;
Leritz et al., 2014; Pelletier et al., 2016; Wiseman et al.,
2018) and voxelwise or small ROI approaches (Maillard
et al., 2011, 2014; Promjunyakul et al., 2016, 2018) have
been employed. Each of these approaches have strengths and
limitations. For example, local/small ROI approaches have the
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potential to reveal fine-grained anatomical relationships but may
have limitations associated with imperfect registration between
imaging modalities. In contrast, large-scale ROI approaches such
as the one used here may “blur” some fine-grained anatomical
associations, but have the advantage of identifying network-level
associations. Finally, as with several previous studies (ten Dam
et al., 2007; Griffanti et al., 2018), this study focused on deep vs.
PV WMH regions. Future work should explore the possibility
that WMH predictors may have differential effects in additional
ROIs, such as in lobar ROIs.

CONCLUSION

WM microstructure is strongly associated with both total
and regional WMH volumes, even after controlling for other
predictors. Brain iron concentration is also a significant predictor
but adds only modest unique variance due to being selectively
associated with deep but not PV WMH volume. Future studies
should attempt to further clarify which predictors contribute
additional, unique variance inWMH volume after controlling for
WMmicrostructure and brain iron concentration.
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