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Background: The dilation of perivascular space (PVS) has been widely used to reflect

brain degeneration in clinical brain imaging studies. However, PVS characteristics exhibit

large differences in healthy subjects. Such variations need to be better addressed before

PVS can be used to reflect pathological changes. In the present study, we aim to

investigate the potential influence of several related factors on PVS dilation in healthy

elderly subjects.

Methods: One-hundred and three subjects (mean age = 59.5) were retrospectively

included from a prospectively collected community cohort. Multi-modal high-resolution

magnetic resonance imaging and cognitive assessments were performed on each

subject. Machine-learning based segmentation methods were employed to quantify

PVS volume and white matter hyperintensity (WMH) volume. Multiple regression analysis

was performed to reveal the influence of demographic factors, vascular risk factors,

intracranial volume (ICV), major brain artery diameters, and brain atrophy on PVS dilation.

Results: Multiple regression analysis showed that age was positively associated with

the basal ganglia (BG) (standardized beta = 0.227, p = 0.027) and deep white matter

(standardized beta = 0.220, p = 0.029) PVS volume. Hypertension was positively

associated with deep white matter PVS volume (standardized beta = 0.234, p = 0.017).

Furthermore, we found that ICV was strongly associated with the deep white matter PVS

volume (standardized beta = 0.354, p < 0.001) while the intracranial artery diameter

was negatively associated with the deep white matter PVS volume (standardized

beta = −0.213, p = 0.032).

Conclusions: Intracranial volume has significant influence on deep white matter PVS

volume. Future studies on PVS dilation should include ICV as an important covariate.
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INTRODUCTION

The perivascular space (PVS) is a major component of the brain
glymphatic system (Jessen et al., 2015). Cerebrospinal fluid (CSF)
can enter brain parenchyma through PVS, bring metabolic waste
out, and maintain brain tissue milieu. During brain aging, the
function of PVS may significantly decrease (Benveniste et al.,
2019; Francis et al., 2019) due to reduced aquaporin 4 (AQP4)
water channels, lower arterial pulsatility force, deposition of
amyloid beta (Aβ) proteins, etc. Impaired clearance from PVS
may cause aggregation of pathological molecules and further
leads to neurodegeneration (Weller et al., 2015).

As more and more evidence suggests the importance of
impaired glymphatic function in major brain diseases, it is
desirable to assess its function using in-vivo imaging methods
(Francis et al., 2019). While normal PVS are thin linear structures
that can hardly be displayed on clinical brain magnetic resonance
images, PVS can remarkably dilate under certain pathological
conditions, making it observable (Brown et al., 2018). The
potential of using dilated PVS as an imaging marker (Ramirez
et al., 2016) for glymphatic dysfunction has been continuously
explored. Indeed, PVS dilation has been found associated with
Alzheimer’s disease (Banerjee et al., 2017), cerebral small vessel
disease (Laveskog et al., 2018), stroke (Potter et al., 2015; Zhang
et al., 2016), systemic lupus (Miyata et al., 2017), multiple
sclerosis (Ge et al., 2005), etc.

To be noted, PVS characteristics exhibit large differences in
healthy subjects. Such variations need to be addressed before
PVS can be reliably used to reflect pathological changes. A few
community-based studies have revealed several determinants of
PVS dilation. In the Three-City study, Zhu et al. revealed that
PVS dilation was associated with age, hypertension, the volume
of white matter hyperintensities (WMH) and the presence of
lacunar infarcts (Zhu et al., 2010). Besides, men had severer
PVS dilation than women. In the Northern Manhattan Study
(NOMAS), age, hypertension, and carotid plaque were found
associated with PVS dilation (Gutierrez et al., 2013). In the
Kashima scan study (Yakushiji et al., 2014), PVS dilation in the
centrum semiovale (CSO) was associated with age, hypertension,
lacunar infarcts, and lobar microbleeds; while PVS in the basal
ganglia (BG) was associated with sex, hypertension, lacunar
infarcts, severer WMH, and subcortical micro-bleeds.

While these community studies generally showed that age,
hypertension, and cerebral vascular damages may contribute to
PVS dilation, the potential influence of some other factors still
remains unclear. In people with large head size, the volume of
PVS may be larger due to longer or thicker blood vessels. Because
arterial pulsation can drive glymphatic flow and hypertension is
associated with PVS dilation, the diameter of blood vessels may
also affect this process. Additionally, brain atrophy may create
extra space between vessel wall and parenchyma, resulting in
larger PVS. The influence of these factors on PVS dilation is
yet to be determined. Furthermore, most previous studies used
low-resolution clinical images and visual counting methods to
evaluate PVS dilation, which may bring bias into the results.

In the present study, we aim to investigate the potential
influence of demographic factors, vascular risk factors,

intracranial volume (ICV), major brain artery diameters, and
brain atrophy on PVS dilation. To achieve good accuracy and
stability, we adopted high-resolution multi-modal imaging
and machine-learning based segmentation methods, and
examined PVS dilation in normal healthy community subjects.
We expect similar findings regarding the association between age,
hypertension, and PVS dilation. Additionally, we hypothesize
that subjects with larger head size, smaller vascular diameters, or
more brain atrophy may have more severe PVS dilation.

MATERIALS AND METHODS

Subjects and Clinical Assessments
We searched our prospectively collected imaging database on
community subjects (age >50) and included 103 healthy elder
subjects. The exclusion criteria include: (1) history of stroke,
brain trauma, neurological or psychiatric diseases, nor systematic
diseases that could severely affect the brain; (2) metal-implants,
claustrophobia, or other inappropriate conditions for MR scans;
(3) existence of lacunas, microbleeds, and severe WMH (Fazekas
deep or periventricular score > 2), which may heavily influence
PVS dilation or bring bias into PVS assessment; (4) cognitive
impairment (MMSE < 24), which is likely the result of
Alzheimer’s or other specific pathologies. Therefore, this cohort
was likely to represent a “healthy aging” population, but not a
community population with “typical aging.”

All subjects went through a complete assessment of
neuropsychiatric conditions, and multi-sequence MRI scans.
Hypertension was defined as the presence of any of the following:
systolic blood pressure ≥140 mmHg or diastolic pressure ≥90
mmHg measured twice in quiet conditions or having self-
reported history of hypertension. Diabetes mellitus was defined
as the presence any of the following: fasting serum glucose >7.0
mmol/L or postprandial 2 h plasma glucose >11.1 mmol/L or
having previous history of diabetes. Hyperlipidemia was defined
as having elevated level of triglyceride, or total cholesterol, or
low-density lipoprotein.

MR Imaging Protocols
All the MR images were acquired using a United ImagingMR790
3.0T scanner. T1 weighted images were acquired with a 3D
fast spoiled gradient-echo sequence, the parameters were: TR
= 6.9ms, TE = 2.9ms, flip angle = 9◦, Inversion time =

1,000ms, field of view = 256 × 240mm, voxel size = 1 × 1
× 1mm, 208 sagittal slices. T2 weighted images were acquired
with a MATRIX (modulated flip angle technique in refocused
imaging with extended echo train) sequence, the parameters
were: TR = 3,000ms, TE = 405.46ms, echo train length =

180, field of view = 256 × 240mm, voxel size=0.8 × 0.8 ×

0.8mm, 208 sagittal slices. T2 FLAIR images were acquired with
inversion recovery MATRIX sequence, the parameters were: TR
= 6,500ms, TE= 432.48ms, echo train length= 220, bandwidth
= 600 Hz/pixel, field of view = 256 × 220mm, voxel size =

1 × 1 × 1mm, 170 sagittal slices. A 3D time-of-flight (TOF)
magnetic resonance angiography (MRA) sequence was used to
assess major brain arteries, the parameters were: TR = 19.1ms,
TE = 4.0ms, acquisition matrix = 368 × 240, Flip Angle = 16◦,
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voxel size = 0.3 × 0.3 × 0.5mm, Number of slices = 180.
Several other sequences were acquired, and the total scan time
was about 1 h.

PVS Segmentation
We used a deep-learning method to segment PVS. The method
was originally developed to segment PVS on isotropic T2
images acquired with 7T scanners, using a novel multi-channel
multi-scale fully convolutional network (Lian et al., 2018). To
implement this method on our data, 24 additional T2 images
acquired using the same protocol were introduced and PVS was
hand-depicted by two radiologists who discussed and decided the
standard together. These 24 T2 images and the corresponding
PVS masks were fed into the neural network to fine-tune the
network parameters.

Quality assessments were performed to ensure that the neural
network had adapted to our data, and PVS could be well-
segmented with good accuracy. Specifically, 10 subjects were
used to validate the segmentation. The average Dice similarity
coefficient, sensitivity, and positive predictive value were 0.71,
0.70, and 0.73, respectively. After validation, all the subjects’
PVS were segmented using this method. Finally, one experienced
neuroradiologist reviewed all the segmentation results (Figure 1)
and manually corrected the masks. For each subject, the PVS
mask was checked on axial, coronal, and sagittal planes to ensure
that PVS lines were correctly labeled. PVS running at oblique
directions and appearing as white dots on orthogonal planes were
not added back, because correctly labeling all the small white
dots in a slice-by-slice way in over a 100 subjects was almost
impossible. Wrongly segmented structures, such as sulcus and
WMH, were also corrected. In this way, it would usually take
about half an hour to correct one PVS mask.

A ventricle mask was created by dilating the standard brain’s
lateral ventricles (10mm out), which was then transformed to
each subject’s brain space. The BG mask was created by dilating
each subject’s deep-nucleus segmentation results, which was then
used for bgPVS extraction and volume calculation. The deep
white matter (DW) PVS volume was calculated in the whole
cerebrum after masking out the BG area.

WMH Segmentation
The WMH segmentation was performed using BIANCA (Brain
Intensity AbNormality Classification Algorithm (Griffanti et al.,
2016), https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA), which is a
fully automated, supervised method for WMH detection, based
on the k-nearest neighbor (k-NN) algorithm. As BIANCA can
be further trained to adapt to different populations, it has
higher flexibility and may achieve higher accuracy compared
to traditional segmentation methods. We also trained BIANCA
with 24 subjects’ T2 FLAIR images and depicted WMH masks.
To achieve high accuracy, training parameters were also fine-
tuned. The final model included intensity information from both
T1 images and T2 FLAIR images, as well as the MNI spatial
transformation information. We selected 2,000 training points
within the WMH area, and 10,000 training points from the
normal appearing white matter (NAWM) area. After generating
the WMH probability map, we created a mask by dilating

the CSF masks inward until reaching the white matter. The
mask was applied to the probability map and the results were
thresholded by 0.5 to derive the final WMHmask. In general, the
segmentation produced robust segmentation results (validated
on 10 subjects, DICE coefficient was 0.83). Though, visual
assessment and manual correction were still performed to ensure
accuracy by an experienced neuro-radiologist.

Artery Diameter Evaluation
The diameters of the intra carotid artery (ICA) and basilar artery
(BA) were measured on the axial slices of 3D-TOF MRA images
by a neuroradiologist. Specifically, the ICA was measured at the
vertical cavernous segment (Bouthillier et al., 1996; Baradaran
et al., 2017; Yeniceri et al., 2017). The BA was measured on
the slice at the middle of the pons (Ichikawa et al., 2009;
Uceyler et al., 2014). Artery diameters measured on the short axis
were used as to avoid oblique effect. Diameters of the bilateral
ICA were averaged for further analysis. To assess intra-observer
consistency, the neuro-radiologist repeated the procedure on 30
randomly selected cases after 1 month. The intraclass correlation
(ICC) index was used to evaluate consistency. Additionally, as
stenosis may significantly influence the result, we also checked
whether there was stenosis in major arteries. No apparent
stenosis was identified in ICA and BA in all subjects.

Statistical Analysis
As the volume of WMH and PVS were not normally distributed,
we performed log-transformation and used logWMH and
logPVS in the followed analyses. Firstly, simple linear regression
analyses were performed to evaluate the influence of each
factor on PVS volume, with bg/dwPVS volume set as the
dependent variable and each risk factor set as predictor
variable. Standardize beta was used to reflect their predictive
ability. Secondly, step-wise Akaike Information Criterion (AIC)
regressions were used to perform multiple regression analysis,
using the stepAIC function from the “MASS” R package.
Forward and backward selection were both performed to select
variables. Multi-collinearity analysis was performed using the
“VIF” R package. Standardize beta was used to demonstrate each
variable’s contribution.

RESULTS

The subjects’ characteristics can be seen in Table 1. The mean
age was 57.4, ranging from 50.2 to 75.6. There were 56
females (54.4%). The median WMH volume was 1.2ml (range:
0.7–1.6ml), and the median PVS volume was 2.6ml (range:
1.7–3.9ml). The ICCs demonstrated excellent intra-observer
consistency (left ICA ICC = 0.925; right ICA ICC = 0.967, BA
ICC= 0.948).

As shown in Table 2, Figures 2, 3, Univariate regression
analysis showed that age and hypertension were significantly
associated with bgPVS volume, while ICV was significantly
associated with dwPVS volume. The associations between dwPVS
and sex, logWMH, brain_ICV_ratio were marginally significant.

Multi-collinearity analysis showed low interaction among the
included variables (VIF: 1.05–2.66). Multiple regression analysis
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FIGURE 1 | Example images of PVS segmentation results. First row: PVS in the basal ganglia region; Second row: PVS in the deep white matter region. Red color

indicates segmented PVS.

showed that age and ICV were positively associated with dwPVS
volume (Table 3), while hyperlipidemia and ICA diameter were
negatively associated with dwPVS volume. On the other hand,
age and hypertension were positively associated with bgPVS
volume, while hyperlipidemia was negatively associated with
bgPVS volume (marginally significant).

To help interpreting ICA’s contribution, we performed
additional analyses and found significant correlation between
ICA diameter and ICV (Pearson’s r = 0.258, p = 0.008),
and significant correlation between ICA diameter and
WMH volume (Pearson’s r = 0.168, p = 0.003) after
controlling age, sex, and ICV. Furthermore, subjects with
hypertension had larger ICA diameters (mean = 3.882)
than those without hypertension (mean = 3.733mm,
p= 0.08).

DISCUSSION

In the present study, we investigated the influence of a variety
of risk factors on PVS dilation. We employed high-resolution
multi-modal imaging acquisition and machine-learning based
analytical methods, and confirmed previous findings that age
and hypertension were positively associated with PVS dilation.
Furthermore, we found that ICV was positively associated
dwPVS volume while ICA diameter was negatively associated
with dwPVS volume. These findings may help us better
understand themechanism of PVS dilation, and guide future PVS
studies by specifying confounding factors.

Age was found associated with both bgPVS and dwPVS, which
has been reported in previous studies, although the association
may vary due to sample characteristics and evaluation methods.
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TABLE 1 | Characteristics of the study participants.

Characteristics N = 103

Age, y, mean ± SD 57.4 ± 6.1

Women, n (%) 56 (54.4)

Education, y, mean ± SD 8.3 ± 3.3

Hypertension, n (%) 37 (35.9)

Hyperlipidemia, n (%) 19 (18.5)

Diabetes, n (%) 12 (11.7)

Smoker, n (%) 30 (29.1)

MMSE, mean ± SD 28.0 ± 2.5

PVS volume, ml, median (interquartile range) 2.6 (1.7–3.9)

WMH volume, ml, median (interquartile range) 1.2 (0.7–1.6)

ICA diameter, mm, mean ± SD 3.8 ± 0.4

BA diameter, mm, mean ± SD 2.7 ± 0.5

Intracranial volume, mL, mean ± SD 1,523.7 ± 1,480.0

Brain to ICV ratio, %, mean ± SD 73 ± 2.9

Ventricle to ICV ratio, %, mean ± SD 1.5 ± 0.6

PVS, perivascular space; WMH, white matter hyperintensity; ICA, intra-cerebral artery;

BA, basilar artery; ICV, intracranial volume.

TABLE 2 | Results of simple linear regression analyses.

Deep white matter PVS Basal ganglia PVS

β-Coefficient# p-Value β-Coefficient# p-Value

Age 0.120 0.229 0.224 0.023*

Sex 0.179 0.070 0.055 0.583

Education 0.040 0.692 −0.027 0.786

Hypertension 0.150 0.130 0.282 0.004*

Diabetes 0.116 0.243 −0.025 0.803

Hyperlipidemia −0.089 0.374 −0.102 0.303

Smoking 0.002 0.981 −0.058 0.558

ICA diameter −0.090 0.367 −0.006 0.951

BA diameter 0.046 0.645 0.033 0.737

WMH volume

(log-transformed)

0.178 0.072 0.122 0.224

Intracranial Volume 0.262 0.007* −0.004 0.967

Brain to ICV ratio −0.186 0.060 −0.089 0.374

#Standardized β; ICA, intra-cerebral artery; BA, basilar artery; WMH, white matter

hyperintensity; ICV, intracranial volume. Bold values and * indicate a p < 0.05.

For example, people older than 65 had more dilated PVS in BG
but not DW areas (Zhang et al., 2014). Age was associated with
BG but not DW PVS scores in the NOMAS study (Gutierrez
et al., 2013), and in the Rotterdam Study (Dubost et al., 2019).
On the other hand, some studies also suggest that BG & DW
PVS were both associated with age (Zhu et al., 2010). The
relationship between hypertension and PVS was also similar
to previous studies. More studies reported stronger association
between hypertension and bgPVS than dwPVS (Zhu et al., 2010;
Gutierrez et al., 2013; Martinez-Ramirez et al., 2013; Yakushiji
et al., 2014; Dubost et al., 2019), except for Zhang’s study (Zhang
et al., 2014). The difference between BG and DW PVS could be
due to their distinct anatomical structures, as well as factors such
as artery diameters and blood pressure (Brown et al., 2018).

As hypothesized, we found positive correlation between ICV
and dwPVS. Intracranial volume was the strongest predictor
in multiple regression analysis (beta = 0.354, p < 0.001).
Apparently, in people with large heads, longer or thicker
blood vessels (van der Zwan et al., 1993) are needed to
maintain brain blood supply, which allows more PVS dilation
during brain degeneration. However, such association has often
been neglected in previous studies. Although most previous
studies used low-resolution MR images and visual rating scores
instead of quantitative methods, ICV could still influence the
results, because a recent study showed that results derived
from automated segmentation or visual assessment were highly
correlated (Dubost et al., 2019).

Previously, several studies reported that males tend to have
more PVS dilation than females. For example, the Sunnybrook
Dementia Study found that men had severe dwPVS dilation than
women in both Alzheimer’s disease patients and normal controls
(Ramirez et al., 2015). Similarly, Zhang et al. found that men
had more PVS dilation in white matter and hippocampus (Zhang
et al., 2014). The Three-City study also found greater PVS dilation
in men relative to women, although it was bgPVS rather than
dwPVS that showed differences (Zhu et al., 2010). As the reason
for sex difference on PVS dilation was still unclear, Ramirez
et al. suggested that anatomical differences in PVS structures,
the potential effect of astrocytic response to inflammation and
hormonal interactions with the glymphatic systems might be the
contributing factors (Ramirez et al., 2016). In our study, although
we found that men had larger dwPVS volumes than women
in univariate analysis, the effect disappeared in multivariate
regression analysis. Considering that men usually have larger
head than women (in this study, men’s mean ICV: 1,620,657
mm3; women’s mean ICV: 1,442,351 mm3), we infer that the
difference of PVS volumes between men and women are likely
due to different head sizes. Therefore, when ICV was included
in multiple regression analysis, sex no longer made significant
contribution to PVS dilation.

We found negative association between ICA diameter and
dwPVS. Additionally, ICA diameter was associated with a variety
of physiological and pathological factors, including ICV, WMH
volume, and hypertension. Therefore, its association with PVS
volume is also a complicated issue. While larger head size,
higher age, and hypertension might all lead to larger ICA
diameter, controlling their effects during multiple regression
analysis yielded negative association between ICA diameter and
dwPVS. We speculate that this could be due to physiological
mechanisms. With the same head size, smaller artery diameters
may create larger pulsatility force that pushes through brain
parenchyma, thus generate more PVS. This inference need to be
tested in future studies.

The association between WMH and dwPVS, and the
association between brain_ICV_ratio and dwPVS were
marginally significant in univariate analysis. Indeed, it has
been demonstrated that various pathologies in cerebral small
vessel disease may contribute to PVS dilation (Zhu et al., 2010;
Gutierrez et al., 2013; Del Brutto and Mera, 2017), and ex-vacuo
dilatation secondary to the shrinkage of brain parenchyma may
create more PVS (Zhang et al., 2016). However, these correlations
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FIGURE 2 | Association between risk factors and the volume of bgPVS.

did not survive in multivariate analysis. This might be due to
population characteristics. Here we selected healthy elderly
subjects, who had very mild WMH (median WMH volume =

1.2mL, Fazekas deep white matter score or periventricular score
<2), and were relatively younger than other community studies
(mean age= 59.5, compared to 71.6 in NOMAS or 72.5 in Three-
city study). We also excluded those with cognitive impairment
to avoid possible influence from other pathological factors.
Therefore, the effect of vascular degeneration, brain atrophy, and
other pathological sources was mild, thus the influence of some
basic demographic factors could be highlighted.

In a recent study using brain MRI scans from the Rotterdam
Study, Florian et al. developed a new algorithm for automated
quantification of PVS (Dubost et al., 2019). They found that age,
sex, blood pressure, glucose, lacunar infarcts, cortical infarcts,
and white matter hyperintensity (WMH) were associated with
BG-PVS volume; on the other hand, sex, body mass index,
lacunar infarcts, ApoE4, and ICV were associated with CSO PVS
volume.While their study showed similar results with the present
one, they mainly focused on the development of segmentation

techniques and had not performed multiple regression analysis,
making it difficult to understand the true contribution of each
predictors and to interpret those findings.

The current study is subject to limitations. First, there are
many ways of measuring arterial diameters. Some researchers
measured on 3D volume-rendering images while others preferred
axial images, and the measurement locations also varied from
study to study. As each of the method has its own advantages
and disadvantages, there is still no consensus yet. Second, we had
not examined the influence of genetic mutation on PVS dilation,
which had been implicated in previous studies (Duperron et al.,
2018; Dubost et al., 2019). Third, the sample size was moderate
compared to some previous clinical studies. However, as healthy
subjects usually have less inter-subject variations and we adopted
quantitative methods, the results were relatively robust and
consistent with previous studies.

In conclusion, we acquired high-resolution brain images and
analyzed the association between a variety of risk factors and PVS
dilation in healthy elderly subjects. We confirmed the association
between age, hypertension, and PVS dilation. Additionally, we

Frontiers in Aging Neuroscience | www.frontiersin.org 6 March 2021 | Volume 13 | Article 624732

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Huang et al. Factors Associated With PVS Dilation

FIGURE 3 | Association between risk factors and the volume of dwPVS.

TABLE 3 | Results of multiple regression analyses.

β-Coefficient# p-Value

Deep white matter PVS, adjusted R2
= 0.123, p = 0.002

Age 0.220 0.029

ICV 0.354 <0.001

hyperlipidemia −0.215 0.033

ICA diameter −0.213 0.032

Basal ganglia PVS, adjusted R2
= 0.108, P = 0.002

Age 0.227 0.027

Hypertension 0.234 0.017

Hyperlipidemia −0.175 0.078

#Standardized β; PVS, perivascular space; ICV, intracranial volume; ICA,

intra-cerebral artery.

found significant association between ICV, ICA diameter, and
PVS volumes. We argue that that these factors need to be taken
into consideration in future clinical PVS studies.
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