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Electroencephalogram (EEG) power reductions in the aging brain have been described by

numerous previous studies. However, the underlying mechanism for the observed brain

signal power reduction remains unclear. One possible cause for reduced EEG signals

in elderly subjects might be the increased distance from the primary neural electrical

currents on the cortex to the scalp electrodes as the result of cortical atrophies. While

brain shrinkage itself reflects age-related neurological changes, the effects of changes in

the distribution of electrical conductivity are often not distinguished from altered neural

activity when interpreting EEG power reductions. To address this ambiguity, we employed

EEG forward models to investigate whether brain shrinkage is a major factor for the signal

attenuation in the aging brain. We simulated brain shrinkage in spherical and realistic

brain models and found that changes in the conductor geometry cannot fully account

for the EEG power reductions even when the brain was shrunk to unrealistic sizes. Our

results quantify the extent of power reductions from brain shrinkage and pave the way

for more accurate inferences about deficient neural activity and circuit integrity based on

EEG power reductions in the aging population.

Keywords: brain simulation model, cortical atrophy, Boundary Element Method, aging, EEG forward model

1. INTRODUCTION

Decreases in scalp EEG amplitude have been described previously in normal aging (Polich, 1997)
and in patients suffering from the Alzheimer’s disease (AD) (Ehle and Johnson, 1977; Babiloni
et al., 2006). These amplitude changes, often quantified as reductions in EEG power, have been
interpreted to reflect disruptions in cortical activity, particularly in the alpha frequency band
(Vlahou et al., 2014). The levels of power reductions can be quite large, even in putative normal
aging. For example, a recent study examining EEG power during anesthesia showed that elderly
subjects over the age of 80 can have age-related power reductions of up to 15 dB in the alpha (8–12
Hz) band compared to younger adults below the age of 30, corresponding to a ∼6-fold change in
amplitude (Purdon et al., 2015). Group comparisons of resting state alpha oscillations have shown
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power reductions up to 20 dB between healthy elderly and
younger subjects (Breslau et al., 1989; Scally et al., 2018), with
changes of a similar magnitude reported for P300 event-related
potential responses (Polich, 1997). Relative to younger adults,
power reductions between 3 and 5 dB have been observed
in sleep EEG recordings in middle aged adults (Dijk et al.,
1989; Carrier et al., 2001; Landolt and Borbély, 2001), which
are further reduced by ∼5 dB in elderly subjects above the
age of 80 (Djonlagic et al., 2021). Significant changes in EEG
signal amplitude are also common in neurological diseases.
One study estimated power reductions in resting state alpha
oscillations to be ∼6 dB when comparing normal aging with
mild cognitive impairment patients, which increased to ∼10 dB
for AD patients (Babiloni et al., 2013). Over the past decade,
efforts have been made to derive aging and disease biomarkers
from the EEG (Moretti et al., 2011; Babiloni et al., 2013; Miranda
et al., 2019). This approach is appealing not only because of the
empirical relationship between EEG amplitude and disease state,
but also because the EEG contains information about underlying
brain circuit dynamics and topography that might relate to
disease mechanisms.

The striking reductions in EEG power during aging and AD
could be explained by a number of factors. One interpretation
would be that decreases in EEG power reflect underlying
reductions in cortical current amplitudes due to reduced synaptic
density, activity, synchronization, or some combination therein
(Ishii et al., 2017). On the other hand, significant cortical atrophy
can occur during aging, AD, and other age-related neurological
diseases (Salat et al., 2004; Dickerson et al., 2009; Fjell et al.,
2009; Thambisetty et al., 2010). Cortical atrophy is accompanied
by reduced brain volume and an expansion in cerebrospinal
fluid (CSF) volume to fill the space between the pia mater and
the arachnoid mater. The CSF has a higher conductivity than
both the brain and the skull, and it acts as a current shunt
resulting in the attenuation of the electric potentials on the scalp,
measured with EEG. Age-related EEG power reductions might
therefore arise from additional attenuation of scalp potentials due
to enlarged CSF space (Barzegaran et al., 2019).

It is important to gauge how much EEG power reductions
can be attributed to purely anatomical changes of the conductor
geometry, since the remaining power reductions would more
accurately reflect neurological changes during aging. This
distinction is also relevant when studying early AD patients, in
whom both cortical atrophy and disrupted neural currents are
present with much greater severity than those in normal aging.
Given the growing interest in using EEG power reductions as
potential biomarkers of aging and AD pathology (Moretti, 2016;
Cassani et al., 2018; Toural et al., 2020; Turner et al., 2020; Paitel
et al., 2021), a better understanding of the influence of altered
conductor geometry is essential to interpret decreases in EEG
power as evidence for neuronal changes during aging and disease.

In this study, we usedMRI-based four-layer conductormodels
to quantify the extent to which EEG signal power reductions can
be attributed to age-related brain structural changes. Specifically,
our goal was to investigate whether increased distance between
an atrophied cortical surface and scalp electrodes could explain
the level of EEG signal attenuation experimentally observed

in the aging population. We simulated this cortical shrinkage
to compute resultant EEG signal changes, employing both
spherical and realistic MRI-based brain models. The sensitivity
of EEG signal amplitudes to varying tissue conductivities was
also analyzed using these models. We found that physiologically
plausible levels of cortical shrinkage mimicking the extremes
of age-related diseases can only account for a modest fraction
of the reduction in EEG power observed in previous studies.
These results delineate the magnitude of signal attenuation due
to cortical shrinkage and enable more accurate interpretations of
age-related EEG power reductions.

2. MATERIALS AND METHODS

2.1. Subject Data
Structural MRI scans were collected from one healthy young
subject at Athinoula A. Martinos Center for Biomedical Imaging,
Massachusetts General Hospital. The subject gave written
informed consent, and the study protocol was approved by the
Massachusetts General Hospital Human Research Committee.
Brain structural anatomical details were obtained from a
T1-weighted multi-echo sequence (MEMPRAGE, TR/TE/TI =
2,530/1.64/1,200 ms, 7◦ flip angle, 1.0 × 1.0 × 1.0 mm3 voxel
resolution) and a fast low-angle shot gradient echo sequence
(FLASH, TR/TE = 20/1.85 ms, 5◦ flip angle, 1.3 mm sagittal
slice thickness, 1.3 × 1.0 mm2 in-plane resolution) using a
12-channel RF receive coil array on a 3T Siemens TrioTM MR
scanner. An equidistant 128-channel montage (WaveguardTM,
ANT Neuro, The Netherlands) was used for EEG electrode
placement, and electrode positions were digitized using the
Polhemus FastSCAN II laser scanner, aligned to the subject’s
structural MRI based on fiducial points (nasion and preauricular
points) using the iterative closest point algorithm, and projected
onto the scalp surface.

2.2. EEG Forward Models
We used forward models to quantify changes in the EEG
signal that would occur under varying levels of cortical
shrinkage. A forward model maps the cortical currents to electric
potentials on scalp, measured in EEG (Sarvas, 1987; Mosher
et al., 1999). Following well-established methods developed
for EEG/MEG source localization and brain stimulation, we
represented cortical currents as distributed current dipoles
normal to the cortical mantle (Dale and Sereno, 1993) and
calculated the corresponding scalp surface potentials using the
Boundary Element Method (BEM) (De Munck, 1992; Gramfort
et al., 2014). BEM formulates the bioelectric volume conduction
problem using well-known surface integral equations that are
solved in discretized form using triangulated boundary surfaces
(Geselowitz, 1970; Horacek, 1973; Hamalainen and Sarvas, 1989).
Many BEM modeling problems require only three layers: the
skin, the skull, and the brain. In this work, an additional CSF layer
was incorporated to capture the effect of altered conductivity
distribution due to an expanded CSF compartment during aging.

We constructed both spherical and realistic MRI-based
EEG volume conductor models. Current dipoles were fixed
with orientations normal to the cortical surface, motivated
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FIGURE 1 | Visualization of cortical current dipole sources and tissue compartment BEM surfaces.

by the understanding that the primary currents producing
the EEG signals are believed to come from pyramidal cells
aligned perpendicularly to the cortical surface (He et al., 2018).
Four-layer spherical volume conductor models were built using
the MNE-Python software (Gramfort et al., 2013) evaluated with
spherical harmonic expansion (Berg and Scherg, 1994). Since
scalp potentials in spherical models are solved with closed-form
expressions, these models provide theoretical verification and
generalization of the results in realistic models based on the
single MRI scan. The layers are constituted of skin, skull,
CSF, and brain with relative outer radii of 1.0, 0.90, 0.83, and
0.78. These radii were empirically derived from distances on
the subject’s T1 structural scan, using the average of distances
measured in Freeview from the origin of the scan acquisition
to the most anterior, posterior, and superior points of respective
tissue types. A total of 2562 source dipoles were positioned on
a sphere just beneath the brain sphere (0.99 times the brain
radius). Based on existing literature describing the range of
electrical conductivities for different head tissues (Mahdavi et al.,
2018; Saturnino et al., 2019), conductivity values of 0.3, 0.006,
1.5, and 0.3 S/m were assigned to skin, skull, CSF, and brain
tissues, respectively.

In the four-layer MRI-based realistic volume conductor
models, we computed the electromagnetic field using the BEM
solutions to approximate boundary surface potentials. Tissue
segmentation and mesh construction of boundary surfaces
were initialized by running two SimNIBS processing pipelines
using default settings: (1) “mri2mesh” based on a FreeSurfer
6.0 reconstruction (Windhoff et al., 2013), and (2) “headreco”
based on the CAT12 and SPM12 toolboxes (Nielsen et al.,
2018). FLASH images were used in place of the T2-weighted

images that are typically used in the SimNIBS pipeline to
improve tissue segmentation. The initial pial surface output of
“mri2mesh” was corrected for “over-grabbing” of skull regions
on the brainmask as often described in FreeSurfer quality
control pipelines (http://freesurfer.net/fswiki), and “mri2mesh”
was repeated with this corrected pial surface to provide an
improved, updated tissue segmentation.

The gray matter/white matter boundary surface from
“mri2mesh” was used to construct the source space in MNE-
Python using a total of 20484 current dipole sources spanning
the cortical surface. The pial, cerebellum, and inner skull
(CSF) surfaces were obtained from “mri2mesh.” For the outer
skull surface, CAT12 within the “headreco” pipeline provided
more accurate segmentation of bone structures compared
to “mri2mesh.” However, “headreco” outlined facial bone
structures that were too detailed than appropriate for BEM
solutions. Therefore, we constructed a hybrid outer skull
surface combining the superior and posterior quadrants obtained
with “headreco” and the anterior-inferior (facial) quadrant
obtained using “mri2mesh” (see Supplementary Material for
more details). Finally, the skin surface was extracted using
the FreeSurfer watershed algorithm, which produced smoother
surface estimates more appropriate for BEM modeling than
“mri2mesh” or “headreco.” Figure 1 shows the final BEM
surfaces. Additional details about the forward model, including
smoothing parameters and vertex numbers, are included in the
Supplementary Material. We assigned skin, skull, CSF, and brain
tissues with conductivity values of 0.3, 0.006, 1.5, and 0.3 S/m,
respectively, just as in the spherical models. The compartments
inside the cerebellum and pial surfaces were both labeled as
brain tissue.
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Forward model gain matrices for the realistic models were
obtained by solving the four-layer BEM problem. A direct
non-iterative solver can be applied to the standard BEM
formulation although this limits the resolution of the volume
conductor model. Approaches utilizing the Fast Multipole
Method (FMM) acceleration have been developed (Kybic
et al., 2005) for high-resolution models but iterative numerical
solvers are needed (Makarov et al., 2021). Here, the standard
BEM formulation allows modeling CSF with adequate spatial
resolution, and we selected a validated and efficient linear
collocation BEM solver using the isolated source approach
(Stenroos and Nummenmaa, 2016).

2.3. Simulation of Cortical Shrinkage
We simulated the overall structural effect of brain atrophy
by shrinking the radius of the brain while maintaining the
dimensions of the other tissue layers, i.e., skull and scalp. This
“brain shrinkage” moves cortical dipoles away from the scalp
and expands the CSF layer, in a manner analogous to age-related
brain atrophy. This whole-brain shrinkage was implemented by
reducing the distance from each source to the median centroid of
all source dipoles by varying percentages of 0-30% in increments
of 5% in both the spherical and realistic MRI-based models.
We maintained the same number of dipoles across all levels of
shrinking. For the spherical models, due to symmetry, only a
single electrode was needed to characterize power reductions
measured on the scalp (Figure 2A). To simulate the EEG signal
changes, a patch of 20 source dipoles (∼3.5 cm2) closest to
the scalp EEG electrode was activated, while keeping the other
sources silent. Each dipole in the active patch was assumed
to have the same amplitude. The power reduction for each
shrinkage value was calculated directly from the forward model
gain matrices (see Supplementary Material for details).

In the realistic models, simulated shrinkage affected different
cortical regions slightly differently due to anatomical variations
and non-spherical geometry. The pial surface and the dipole
locations were shrunk over the same range of percentages, 0-30%
in 5% increments, to model the expansion of the CSF layer under
cortical atrophy (Figure 2B). We estimated the corresponding
average CSF thickness for each shrinkage value by computing the
mean nodal projection distance from the CSF surface vertices to
the pial/cerebellum surfaces (0%= 2.9mm, 5%= 5.8mm, 10%=

8.9 mm, 15%= 12.0 mm, 20%= 15.3 mm, 25%= 18.6 mm, 30%
= 22.0 mm). CSF thickness can be estimated to be between 3-6
mm in normal aging (Pfefferbaum, 1990; Salat et al., 2004), while
severe AD patients have been reported to have CSF thicknesses of
up to 10mm (Ancora et al., 2018). Thus, cortical shrinkage values
of up to 10% (8.9mm) are within a physiologically plausible
range, but global shrinkage above 10% would be implausible.
Power reductions were computed at each of 128 electrodes
to adequately sample EEG signals across the whole scalp.
Similar to the approach for the spherical models, for each EEG
electrode position, we activated the top 20 source dipoles with
the highest squared gain magnitudes and estimated the power
reduction over a local neighborhood of 4 to 7 electrodes. This
procedure was repeated for each electrode position to estimate
the average overall power reduction. We show a 2D topological

plot of the electrode montage and neighboring electrodes
in the Supplementary Material (Supplementary Figure 1). All
active dipoles were assumed to have the same amplitude.
Therefore, power reductions were calculated directly from the
forward model gain matrices (see Supplementary Material for
details). The final power reduction for each shrinkage value
was represented using the mean and standard deviation of dB
differences across all 128 electrodes.

2.4. Conductivity Analyses
As described earlier, we set the tissue conductivities in ourmodels
to values at the midpoints of the published ranges. However,
multiple studies have highlighted how uncertainties in skull
and CSF conductivities can impact on the accuracy of forward
models (Gençer and Acar, 2004; Stenroos and Nummenmaa,
2016; Saturnino et al., 2019; Vorwerk et al., 2019; Koulouri and
Rimpilainen, 2020). In addition, several studies have noted that
tissue conductivities can change with advancing age (Wendel
et al., 2010; Moskalenko et al., 2011; Mohammed et al., 2017;
Thomas et al., 2018). To better understand the sensitivity of EEG
power reductions to variations in CSF and skull conductivities,
we repeated the cortical shrinkage simulations employing the
full ranges of reported CSF and skull conductivity values (CSF:
1.2–1.8 S/m in 100 steps, skull: 0.003–0.015 S/m in 100 steps).
The conductivities were varied in a spherical model with a fixed
shrinkage percentage of 10%, which corresponds to a mean
CSF thickness of 8.9 mm in the realistic models, approximating
the largest physiologically plausible shrinkage encountered in
aging. Spherical models instead of realistic models were used
for this analysis to increase generalizability of the results and to
decrease computation time in sampling the conductivity space
with high resolution.

3. RESULTS

3.1. Cortical Shrinkage in Spherical Models
Figure 3A shows the EEG power reductions observed in
spherical models at different levels of cortical shrinkage. At
the unrealistically high 30% level of shrinkage, we observed a
power reduction of less than 10 dB compared to the original
spherical volume conductor model. At more physiologically
plausible shrinkage values of 5 and 10%, simulated power
reductions were 2.5 and 4.4 dB, respectively. In Figure 3A, we
also illustrate the difference in the lead field matrix (LFM)
absolute gain for a given electrode at 30% shrinkage compared
to no shrinkage. The highest attenuation of measured source
activity occurred directly below the measured electrode, as
one would predict from principles of volume conduction. This
observation corroborates our decision to activate the 20 dipole
sources nearest to the electrode (see Supplementary Figure 2),
since doing so provides an approximate upper bound on the
power reductions that could be expected from a given level
of shrinkage.

3.2. Cortical Shrinkage in Realistic Models
Figure 3B shows the EEG power reductions (mean and standard
deviation) across different levels of brain shrinkage, averaged
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FIGURE 2 | (A) Illustration of cortical shrinkage simulations in the spherical models through 0–30% shrinkage values. Brighter color and larger dot sizes correspond to

larger gain values in the forward model gain matrices. Dipole orientations are kept the same during cortical shrinking and normal to the underlying surfaces.

(B) Cortical shrinkage simulations in the realistic BEM models through 0–30% shrinkage values. CSF volumes are shown in gray, which expand with increased cortical

shrinking; pial surfaces are in blue; cerebellum surfaces are in red; and cortical current dipole sources are shown in yellow. Estimates of CSF thickness in the current

models are: 0% = 2.9 mm, 5% = 5.8 mm, 10% = 8.9 mm, 15% = 12.0 mm, 20% = 15.3 mm, 25% = 18.6 mm, 30% = 22.0 mm.

across all active source patches and electrode positions. Power
reduction values in these realistic models were similar to those
observed under the spherical models. At the highest level of
shrinkage (30%, mean CSF thickness = 22.0 mm) simulations
produced less than 10-dB power reductions compared to the
intact model with no shrinkage. Meanwhile, at physiologically
plausible 5% and 10% levels of shrinkage, we obtained power
reductions of 2.1 dB (std = 0.9) and 3.7 dB (std = 1.1),
respectively. In Figure 3B, we plot the difference in the LFM
absolute gain for a frontal electrode at 30% shrinkage compared
to no shrinkage. Similar to the spherical models, gain magnitudes
decreased with increasing distance from the electrode, albeit
with variations that reflect the changing dipole orientations
along cortical folds. Since the quasistatic approximation of

Maxwell’s equations applies in EEG at physiological frequencies
<100 Hz, the shrinkage-dependent attenuation we calculate here
is frequency independent in the frequency range of interest
(Supplementary Figure 3).

3.3. Sensitivity of EEG Attenuation to
Tissue Conductivity Values
Figure 3C shows, for a fixed cortical shrinkage of 10%,
how the EEG attenuation changes as a function of varying
CSF and skull conductivities. This analysis shows that
changes in conductivity across wide ranges can alter the
EEG attenuation by at most 0.5 dB. EEG signal attenuation
is therefore relatively insensitive to uncertainties in tissue
conductivity. This result is compatible with previous findings
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FIGURE 3 | (A) Power reductions in the spherical models. Bottom left corner

shows absolute gain differences in the forward models between intact source

space (gray) with the 30% shrunk source space (colored). Cooler color and

larger dot sizes represent greater gain differences. LFM = lead field matrix =

forward model gain matrix. (B) Power reductions in the realistic BEM models.

Bottom left corner shows absolute gain difference between intact (gray) and

30% shrunk (colored) source spaces. Error bars correspond to standard

deviations. (C) Variations of power reductions in a 100 pixel x 100 pixel grid as

CSF conductivity varies between 1.2 and 1.8 S/m and skull conductivity varies

between 0.003 and 0.015 S/m.

of the sensitivity of EEG amplitudes to tissue conductivities
(Stenroos and Nummenmaa, 2016), as the power reduction

quantified here in the dB scale takes the ratio between
shrinkage values, which normalizes out absolute changes
on EEG amplitudes.

4. DISCUSSION

In this study we analyzed the extent to which age-dependent EEG
signal power reductions could be attributed to structural changes
in the brain. Using both spherical and realistic MRI-based
forward models, we found that physiologically plausible levels
of cortical atrophy produced only modest decreases in EEG
power, which are small compared to those seen in aging and age-
related dementia (Babiloni et al., 2013; Purdon et al., 2015). In
addition, the EEG attenuation was insensitive to uncertainties
in CSF and skull tissue conductivity values. These results
show that although brain structural changes can reduce the
size of the EEG signal via altered conductor geometry during
volume conduction, the structural changes cannot account
for the full extent of EEG signal decreases reported during
aging and dementia. It follows that the remaining reduction
in EEG power would be primarily attributable to underlying
neurophysiological changes.

A critical component of our approach was to use four-layer
BEM forward models to provide anatomically accurate
simulations of shrinking cerebral volume that could incorporate
the corresponding increase in CSF volume. This approach
requires accurate extraction of tissue boundary meshes from
MRI scans. We devised a novel workflow combining three
different MRI mesh-extraction pipelines in FreeSurfer, SimNIBS,
and MNE-Python to take advantage of the best properties of
these respective methods. We also analyzed four-layer spherical
models and observed EEG power reductions that were highly
comparable to those observed using the realistic models.
Corroborating results from the spherical and realistic models
together provided consistent estimates of EEG power reductions
from structural brain atrophy in aging. Potential age-related
changes in the skull and skin thickness were not evaluated in this
study after careful consideration. The skull thickness does not
change appreciably with advancing age beyond early adulthood
except in cases of specific pathology (Albert et al., 2007). The
skin thickness can change in varying ways during aging: it
can increase as a result of obesity, or become thinner during
cachexia, both of which are common during aging. Thus we
deemed the known age-related decrease in cerebral volume and
the accompanying increase in CSF thickness as the most relevant
variables in our models.

Our simulations modeled cerebral atrophy as a “shrinkage”
in the brain parenchymal volume while holding other tissue
boundaries constant. This simulation procedure captures three
different effects of real brain atrophy. First, a primary effect of
the shrinkage was to increase the thickness of the CSF layer.
As shown in Figure 4, this expanded CSF space attenuates
the EEG signal in two ways: first by increasing the CSF
radial resistance and reducing currents in the interior-exterior
direction (in Red), and second by decreasing CSF tangential
resistance to shunt currents away from the scalp electrodes
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FIGURE 4 | Equivalent circuit diagram illustrating changes to CSF resistance

during cortical shrinkage: as the CSF layer expands, there is increased CSF

resistance (red resistors) in the radial direction (red arrow) leading to decreased

current conducting toward the scalp electrode (red boxes). At the same time,

there is decreased CSF resistance (green resistor) in the tangential direction

(green arrow) leading to increased current shunting away from the scalp

electrode and flowing back to cortical current dipoles.

(in Green). Second, cortical source dipoles were pulled away
from the scalp electrodes, increasing the distance of volume
conduction and consequently signal attenuation. Third, as the
pia mater was shrunk along with the cortex, the distance from
the cortical gray/white matter boundary surface to the pial
surface also decreased, capturing cortical thinning in brain
atrophy. The reduced distance from current dipoles to the
closest boundary surface (brain/CSF) also contributed to greater
cancellation of electrical signals from the source. This effect
can be explained using a secondary electric field created by
charge accumulation along the boundary surface (Geselowitz,
1967). All three effects above are purely due to alterations of
the conductor geometry, given that we maintained the same
dipole strength across shrinkage percentages. Crucially, the BEM
models incorporate these effects at once, allowing us to model
the overall EEG power reductions from structural changes of

brain atrophy concisely represented by a single parameter of
CSF thickness.

In our simulations, the CSF layer expanded by more than
three-fold from a starting point of 2.9 mm average thickness
at 0% shrinkage, to 5.8 and 8.9 mm at 5 and 10% shrinkage,
respectively. The latter value is comparable to the CSF thicknesses
observed in severe AD (Ancora et al., 2018). Despite these
large changes in CSF thickness, the EEG signal attenuation was
modest: 2.1 dB for 5% shrinkage and 3.7 dB for 10% shrinkage
in the realistic models. Larger, physiologically implausible levels
of shrinkage were required to reduce EEG power to levels
approaching the ∼10 dB decrements observed in aging and
age-related neurological disease.

An important caveat of the simulation analyses is that
the inter-subject variability of anatomical details including
the extent of cortical atrophy is not modeled. Our approach
combines simulated shrinkage using realistic models based on
a single MRI and generalizable spherical models with results
that are highly consistent. Power reductions are quantified
in this study similar to a longitudinal study design, while
empirically observed age-related EEG power changes are cross-
sectional comparisons with individual differences contributing
to the level of power reductions observed. Additional factors
such as cortical folding and scalp location when measuring
EEG signals can also influence the absolute scales of power
reductions (Supplementary Figure 3). Our simulations activated
the top 20 dipoles with the highest signal strength to
quantify a relative upper bound on power reductions. In
addition, spherical models provide theoretical estimates on
power reductions expected to result from shrinkage. Hence,
our results could be interpreted to represent average changes
we would expect to see when comparing groups of aging or
dementia patients with younger adults. Comparisons of any two
particular brains could differ from these results due to inter-
subject variability. Future studies could address the question
of inter-subject variability by analyzing imaging datasets of
aging and AD subjects using the BEM modeling approach
presented here.

Aside from the modest influence on volume conduction
investigated here, age-related decreases in EEG power can also
reflect an overall reduction in the size of cerebral currents.
This could occur through a variety of mechanisms, including
reductions in post-synaptic current amplitude, neuronal density,
and/or neuronal synchrony, all of which have significant
functional and pathophysiologic implications. Overall, head
anatomy varies substantially between individuals and across age
ranges. Realistic MRI-based forward models could be employed
to gauge the individualized impact of structural changes
on scalp EEG signals, to facilitate accurate interpretations
of experimental findings of EEG power reductions, and to
maximize the diagnostic precision of EEG-based biomarkers
for age-related neurological disorders. Our results suggest
that while structural changes due to brain atrophy play
a role, age-dependent attenuation of the EEG signal more
likely reflects underlying functional and neurophysiological
changes that are fundamental characteristics of aging and age-
related disease.
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