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Individuals with Mild Cognitive Impairment (MCI) are at an elevated risk of dementia
and exhibit deficits in cognition and cortical gray matter (GM) volume, thickness, and
microstructure. Meanwhile, exercise training appears to preserve brain function and
macrostructure may help delay or prevent the onset of dementia in individuals with
MCI. Yet, our understanding of the neurophysiological effects of exercise training in
individuals with MCI remains limited. Recent work suggests that the measures of
gray matter microstructure using diffusion imaging may be sensitive to early cognitive
and neurophysiological changes in the aging brain. Therefore, this study is aimed
to determine the effects of exercise training in cognition and cortical gray matter
microstructure in individuals with MCI vs. cognitively healthy older adults. Fifteen MCI
participants and 17 cognitively intact controls (HC) volunteered for a 12-week supervised
walking intervention. Following the intervention, MCI and HC saw improvements in
cardiorespiratory fitness, performance on Trial 1 of the Rey Auditory Verbal Learning
Test (RAVLT), a measure of verbal memory, and the Controlled Oral Word Association
Test (COWAT), a measure of verbal fluency. After controlling for age, a voxel-wise
analysis of cortical gray matter diffusivity showed individuals with MCI exhibited greater
increases in mean diffusivity (MD) in the left insular cortex than HC. This increase in
MD was positively associated with improvements in COWAT performance. Additionally,
after controlling for age, the voxel-wise analysis indicated a main effect of Time with
both groups experiencing an increase in left insular and left and right cerebellar MD.
Increases in left insular diffusivity were similarly found to be positively associated with
improvements in COWAT performance in both groups, while increases in cerebellar MD
were related to gains in episodic memory performance. These findings suggest that
exercise training may be related to improvements in neural circuits that govern verbal
fluency performance in older adults through the microstructural remodeling of cortical
gray matter. Furthermore, changes in left insular cortex microstructure may be particularly
relevant to improvements in verbal fluency among individuals diagnosed with MCI.
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INTRODUCTION

Mild Cognitive Impairment (MCI) prevalences in adults above
age of 65 years is between 10% and 20% (Langa and Levine, 2014).
MCI is a transient state between normal aging and dementia,
which generally progresses to dementia at an annual rate
between 5% and 20% (Langa and Levine, 2014; Jongsiriyanyong
and Limpawattana, 2018). Individuals with MCI experience
measurable deficits in functional and cognitive domains such as
language, attention, reasoning, executive function, and memory
performance (Saunders and Summers, 2010; Teng et al., 2013;
Lindbergh et al., 2016; Ding et al., 2019). While the cause
of MCI remains uncertain, growing evidence suggests that
MCI is associated with volumetric loss, vascular pathology,
neuroinflammation, and synaptic dysfunction, particularly in the
temporal, prefrontal, and insular cortex (Fan et al., 2008; Scheff
et al., 2011; Popa-Wagner et al., 2015). Despite this, some people
with MCI remain cognitively stable and can even experience
improvements in cognitive performance (Kaduszkiewicz et al.,
2014). Thus, while there are currently no known treatments for
dementia, MCI presents a potential opportunity to implement
non-pharmacological interventions that may slow or prevent
neurological deterioration and functional decline.

Identifying effective non-pharmacological interventions
require the use of measures sensitive to underlying
neurophysiological changes that precede gross structural
and functional decline. To this end, volumetric measurements
are sensitive to changes in the size of cortical and subcortical
gray matter and are used extensively to track cognitive decline
in aging and dementia. Yet, these macrostructural measures
are often not sensitive to early neurophysiological changes in
tissue microstructure that are thought to precede volumetric
tissue changes. Meanwhile, advancements in diffusion-weighted
imaging, now allow researchers to ask questions regarding
the composition and microarchitecture of underlying brain
tissue (Le Bihan, 2003, 2014; Hansen et al., 2013; Weston et al.,
2015; Assaf, 2019). Diffusion imaging probes at microstructural
integrity by quantifying the diffusion of water molecules within
a voxel, which is used to infer the underlying tissue’s functional
and structural properties (Le Bihan, 2003, 2014; Walhovd et al.,
2014). Although diffusion imaging has traditionally been used
to examine white matter tract structure and integrity, recent
studies have been focused on quantifying diffusivity within the
gray matter itself (Walhovd et al., 2014; Assaf, 2019). The most
common measure of local tissue diffusivity within gray matter
is mean diffusivity (MD), a measure of the average diffusion
properties within each voxel’s underlying tissue (Basser et al.,
1994; Pierpaoli et al., 1996).

Gray matter MD is associated with alterations in synaptic,
glial, and dendritic density and activity, such as swelling,
arborization, and synaptic pruning (Blumenfeld-Katzir et al.,
2011; Le Bihan, 2012; Sagi et al., 2012; Crombe et al., 2018; Stolp
et al., 2018). Additionally, previous work suggests that cortical
and subcortical gray matter diffusivity are stronger predictors
of cognitive performance than volumetric measures across the
lifespan (Kantarci et al., 2005; Jeon et al., 2012; Hong et al., 2013;
Pereira et al., 2014; Weston et al., 2015; Callow et al., 2020).

In the context of development, gray matter MD is generally
negatively associated with age and better cognitive performance
and is thought to represent increasedmyelination and axonal and
neural density (Mah et al., 2017; Fjell et al., 2019; Callow et al.,
2020). Meanwhile, in older adults, age and disease progression
are usually positively associated with gray matter MD, which is
believed to result from a general decline in dendritic and synaptic
density (Ray et al., 2006; Pereira et al., 2014; Weston et al., 2015;
Salminen et al., 2016; O’Shea et al., 2016; Langnes et al., 2019).

A recent report suggests that 50% of dementia cases could
be prevented or delayed by reducing or eliminating risk
factors through lifestyle behaviors, such as increased physical
activity (Barnes and Yaffe, 2011; Kuehn, 2020). Despite a
lack of pharmacological solutions for dementia, a growing
body of longitudinal research suggests that individuals with
MCI who are more physically active are at a reduced
risk of cognitive decline and dementia progression (Blondell
et al., 2014). Additionally, there is evidence to suggest
that exercise training provides global cognitive benefits for
older adults with MCI (Song et al., 2018). Meanwhile,
several neuroimaging studies suggest that in conjunction
with cognitive improvements, aerobic exercise training and
higher cardiorespiratory fitness in individuals with MCI are
associated with improvements in neural efficiency (Smith et al.,
2013), enhanced functional connectivity (Chirles et al., 2017;
Won et al., 2021), preservation of cortical thickness (Reiter
et al., 2015), reductions in resting cerebral perfusion (Alfini
et al., 2019), and protection of white matter tract integrity
(Tarumi et al., 2020).

Few exercise intervention neuroimaging studies have been
conducted in people with MCI, and no studies to date have
been characterized the effects of exercise training on gray matter
microstructure. Only two studies have been evaluated how
cardiorespiratory fitness and exercise training are related to gray
matter microstructure in healthy older adults. These studies are
focused found hippocampal MD was negatively associated with
cardiorespiratory fitness in those 80 years or older (Tian et al.,
2014) and that 6-months of aerobic exercise training led to a
reduction in hippocampal gray matter MD (Kleemeyer et al.,
2016). However, both studies were limited to testing cognitively
healthy older adults, and neither measured MD changes in
cortical gray matter regions other than the hippocampus.
Therefore, the goal of the current study is to determine
how an exercise training intervention may differentially affect
cortical and subcortical gray matter diffusivity in individuals
diagnosed with MCI relative to cognitively healthy controls
(HC). Previous work suggested that individuals with MCI had
higher cortical diffusivity and experience differential benefits
from exercise training than healthy controls (Smith et al.,
2013; Chirles et al., 2017; Alfini et al., 2019). Given this, we
hypothesized that individuals with MCI would exhibit higher
gray matter diffusivity at baseline and a greater change in gray
matter MD following the exercise intervention. To test these
hypotheses, we assessed the effects of a 12-week supervised
walking intervention on whole-brain gray matter MD in older
adults classified as cognitively healthy vs. those diagnosed
with MCI.
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MATERIALS AND METHODS

Subjects
This study was completed in accordance with the Helsinki
Declaration and was approved by the Institutional Review
Board of the Medical College of Wisconsin. Community-
dwelling older adults between the ages of 60 years and
88 years were recruited from the surrounding area through
study fliers, physician referrals, and in-person informational
sessions at retirement communities and recreation centers.
Interested participants underwent telephone screening to
determine eligibility. All qualified participants provided written
informed consent, received physician approval to participate in
an exercise intervention, and underwent neurological assessment
to confirm eligibility.

Eligibility and Exclusion Criteria
A complete list of exclusionary criteria and prohibited
medications can be found in our previous study (Smith
et al., 2013). In short, participants were excluded if they engaged
in moderate intensity physical activity more than 3 days per week
within the past 6 months, had a history of neurological illnesses
or untreated DSM-IV Axis I psychiatric illness (including
major depression), had a medical illness that could potentially
influence brain function, impaired activities of daily living, or
any MRI contraindications.

Neuropsychological Testing
A comprehensive neuropsychological test battery was
conducted before and after the exercise intervention,
followed by an exercise stress test and MRI scan on a
different day. The neuropsychological test battery evaluated
several aspects of cognition, and a full report can be found
in our previous study (Smith et al., 2013). The battery
included the Geriatric Depression Scale, Mattis Dementia
Rating Scale 2 (DRS-2), Rey Auditory Verbal Learning Test
(RAVLT), phonemic Controlled Oral Word Association
Test (COWAT), semantic animal fluency test, and the Clock
Drawing Test. Alternate test forms were used for each time
point when possible, including for the RAVLT and DRS-
2. MCI diagnosis was based on the criteria set forth by
NIH-Alzheimer’s Association workgroup on the diagnosis
of MCI due to Alzheimer’s (AD; Albert et al., 2011), and
was defined by: (1) subjective concerns regarding change in
cognition; (2) impairment in one or more cognitive domains;
(3) preservation of independence in activities of daily living; and
(4) not demented.

Cardiorespiratory Fitness Testing
Extensive details on the cardiorespiratory fitness testing
procedure can be found in our previously published study
(Smith et al., 2013). In short, prior to and following the exercise
intervention, participants completed a submaximal exercise
test on a motorized treadmill (General Electric, Milwaukee,
WI, USA) using a modified Balke-Ware protocol following the
American College of Sports Medicine guidelines. Exercise testing
was terminated at 85% of age predicted maximal heart rate

(220-age) and VO2peakwas estimated from the highest relative
VO2 obtained (ACSM, 2006).

Exercise Intervention
After baseline testing, all participants completed a 12-week
walking exercise intervention that included four 30-min sessions
of moderate-intensity treadmill walking per week. These sessions
were performed at local recreation centers and consisted of small
groups that were supervised by certified exercise trainers. All
exercise training sessions began and ended with a 10-min light
walking warm-up and cool-down. The exercise session intensity
increased progressively to a heart rate reserve of 50–60% by
the fifth week, at which point intensity was maintained for
the rest of the intervention. During the exercise sessions, heart
rate (Polar monitor) and ratings of perceived exertion (RPE;
6–20 scale; Borg, 1982) were measured to track training intensity
and customize progressions of treadmill speed and grade for each
participant to promote aerobic fitness improvements.

MRI Acquisition
All MRI data was acquired using a 3.0 Tesla GE (Waukesha,
WI) MR scanner. A high resolution T1-weighted anatomical
brain image was acquired using a 3D Spoiled Gradient Recalled
at steady state using the following sequence parameters,
matrix = 256 × 224, field-of-view (FOV) = 240 mm, pixel
size = 1 × 1 mm2, slices = 144, slice thickness = 1.0 mm,
repetition time (TR) = 9.6 ms, echo time (TE) = 3.9 ms,
inversion time (TI) = 450 ms, flip angle = 12◦. Diffusion images
were acquired using a Dual Spin Echo with 19 non-collinear
diffusion-weighted acquisitions with b = 900 s/mm2 and a
single T2-weighted b = 0 s/mm2 acquisition (b0 image)
(FOV = 240 mm, voxel size = 0.9375 × 0.9375 × 3 mm3;
TR/TE = 11,000/84 ms, matrix = 128 × 128, flip angle = 90◦,
and a bandwidth of 1,221 Hz/Px comprising 96 3-mm-
thick slices).

Anatomical Image Preprocessing
Anatomic image processing was performed with the
FreeSurfer image analysis suite1 (version 6.0). Initially,
the cross-sectional ‘‘recon-all’’ processing stream was
implemented to perform initial intensity normalization,
motion correction, and computation of the transformation
to standard space, followed by non-brain tissue removal,
cortical reconstruction, and volumetric segmentation of
cortical and subcortical structures. Freesurfer’s longitudinal
stream was then employed to reduce variability and improve
skull stripping and segmentation performance across time
points (Reuter et al., 2012). All reconstructed data were
visually checked for skull removal and segmentation
accuracy. No manual intervention with the MRI data
was needed.

Diffusion-Weighted Image Preprocessing
Diffusion-weighted images were processed using
MRtrix3 commands or MRtrix3 scripts (Tournier et al., 2019)
that link the FMRIB Software Library (FSL v6.0.1; Image

1http://surfer.nmr.mgh.harvard.edu/
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Analysis Group, FMRIB, Oxford, UK2; Smith et al., 2004).
First, physiological noise due to the thermal motion of water
molecules was removed (Veraart et al., 2016), followed by
the removal of Gibbs ringing artifacts (Kellner et al., 2016),
and then brain extraction using the dwi2 mask command.
A recently developed distortion correction and intensity-
based registration method (Synb0) was used to correct
b0 inhomogeneities (Schilling et al., 2020). This method
uses a deep learning synthesis approach where an undistorted
b0 image is synthesized from a distorted b0 and a T1 image to
provide FSL’s Topup command with the information necessary
to correct the distorted diffusion data. This method performs
robust distortion correction similar to the state-of-the-art
techniques that require blip-up blip-down acquisitions (Schilling
et al., 2020). With the results from Topup, eddy current
correction was then performed (Andersson and Sotiropoulos,
2016), followed by bias field correction (Tustison et al.,
2014). Finally, the dwi2 tensor command was used to fit a
diffusion tensor model to each brain voxel, as well as FA and
MD values.

Gray Matter Voxel-Wise Analysis
Gray matter voxel-wise analysis was performed in MNI space.
First, MD images were nonlinearly transformed into MNI space
in a two-step process using Advanced Normalization Tools
(ANTS; Avants et al., 2008). For each registration, a linear
rigid registration was applied first, followed by a diffeomorphic
transformation using the Symmetric Normalization (SyN). The
first step consisted of registering the b0 image to its respective
T1 scan and then registering the T1 scan to MNI space.
These two estimated registration maps were combined, and
MD images were transformed into MNI space. Transformed
MD images were concatenated into a single 4D image, and
spatial smoothing with a 6-mm FWHM Gaussian kernel
was applied.

To restrict the analysis to gray matter (GM) voxels and
reduce the likelihood of partial volume effects, global GM
and cerebrospinal fluid (CSF) masks were created. The GM
mask was constructed by processing each T1 image with
FSL’s FAST segmentation tool (Smith, 2002), which obtained
binary segmentation images of GM, CSF, and white matter
(WM). The GM image was warped into MNI space using
the previously calculated T1 to MNI space registration maps.
With each GM image in MNI space, a global GM mask
was then created by restricting the mask to voxels in
which at least 90% of subjects’ GM masks were included.
As discussed in Henf et al. (2018), when examining GM
MD in older adults or individuals with neurodegenerative
disease, it is essential to consider partial volume effects that
might arise from CSF contamination (Henf et al., 2018).
To control for CSF contamination in the GM mask, a free
water CSF-like mask was created using MRtrix3 Tissue3, a
fork of MRtrix3 (Tournier et al., 2019). MRtrix3 Tissue is a
method that allows 3-tissue constrained spherical deconvolution

2http://www.fmrib.ox.ac.uk/fsl/
3https://3tissue.github.io

results from single-shell diffusion data. The three tissue
compartments determine the contribution of free water CSF-
like, WM-like, and GM-like signal within each voxel and
has been shown to exhibit high reliability, particularly for
estimating the contribution of free water CSF-like diffusion
(intraclass correlation above 0.95; Newman et al., 2020). The
three tissue compartment response functions were created
and estimated for each diffusion scan, and a study wide
response function for each tissue type was created. Three
tissue compartment images were computed for each diffusion
scan using the study wide response function. These three
tissue compartment images were then normalized to sum
to 1 on a voxel-wise basis to provide a three-tissue signal
fraction map (providing the percent of GM-like, CSF-like,
and WM-like signal in each voxel). As previously suggested
(Newman et al., 2020), each subject’s CSF mask was then
thresholded to only include voxels considered to have 50%
or more CSF-like signal. All subjects’ CSF masks were then
warped into MNI space using the same warp used on the
MD images. Once the CSF images were in MNI space, a
global CSF mask was created by including all voxels in
which 10% or more of the subjects had identified a voxel
as CSF in their individual mask. The final global GM mask
was established by removing any voxels that overlapped with
the global CSF mask and was then used for the following
voxel-wise analysis.

Statistical Analysis
For all analyses, significance was determined using a two-tailed
alpha< 0.05. First, all between-group differences in demographic
characteristics were compared using independent sample
t-tests for continuous variables and chi-squared tests for
categorical variables. A repeated-measures analysis of variance
was then used to test for exercise-induced aerobic fitness
and neurophysiological performance changes. A voxel-wise
analysis using the global GM mask, and age as a covariate,
was performed using AFNI’s linear mixed-effects modeling
program 3dLME to determine within and between-group
differences over time. The 3dLME program was used due
to its flexibility and ability to compute repeated measures
analysis. Using effective smoothness (ACF estimates) and first-
order nearest neighbor clustering, we controlled for multiple
comparisons and reduced the risk of Type-I errors (Cox
et al., 2017). A family-wise error (FWE) corrected significance
threshold was set at p < 0.05 (voxel-level p < 0.05, cluster-level
α = 0.05), which maintained clusters ≥936 contiguous voxels.
All significant clusters were anatomically identified with FSL’s
atlasquery function using the MNI Structural Atlas, which
gives the probability of a voxel or cluster being a member
of a labeled region within an atlas. As a follow-up analysis,
partial correlation analysis was employed in JASP [JASP Team
(2020), Version 0.13.14] to determine the association between
changes in MD scores from pre- and post-exercise training and
changes in cognitive performance, controlling for age. Cognitive
performance scores found to have a significant main effect of

4http://jasp-stats.org/
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Time or Group × Time interaction effect were included in
this analysis.

RESULTS

Participants
Detailed information about study recruitment can be found in
our previously published work (Smith et al., 2013). In short,
407 individuals responded to study advertisements, of which
39 started the exercise program and 35 older adults (17 MCI and
18 HC; aged 61–88) completed the walking intervention. Three
participants were excluded from further analysis due to missing
a diffusion imaging scan at either of the two testing time points
(15 MCI and 17 HC). At baseline, those diagnosed with MCI and
HC were not significantly different in age, sex, education, APOE
genotype status, functional abilities, or cardiorespiratory fitness.
However, despite overall low depression scores (within normal
limits), individuals with MCI had higher depression scores
(t(26) = 2.9, p = 0.007; Table 1), which is commonly reported
in MCI (Shahnawaz et al., 2013). Adherence to the exercise
protocol was high ( 96%), and throughout the intervention,
HR and RPE did not significantly differ between groups (see
Smith et al., 2013).

Exercise Intervention Efficacy and
Neuropsychological Performance
At baseline, the MCI group had worse performance than the
HC group on all neuropsychological tests other than RAVLT
Trial 1. After the exercise intervention, both groups had a
significant improvement in VO2peak, F(1,26) = 6.03, p = 0.021,
RAVLT Trial 1, F(1,30) = 16.83, p = 0.007 and the COWAT,
F(1,30) = 6.23, p = 0.018. A significant Group × Time interaction
was also found for COWAT, F(1,30) = 5.99, p = 0.020, with
MCI exhibiting greater COWAT performance improvements
than HC. There were no additional main effects of Time or
Group × Time interactions for any other neuropsychological
tests (see Table 2).

Voxel-Wise Analysis of Group × Time
Interaction on Gray Matter Diffusivity
The Group × Time voxel-wise analysis resulted in a single
significant cluster identified as predominantly the left insular
cortex (42.2%; Figure 1A). Adjusting for age, a significant Group
× Time interaction, F(1,28) = 29.00, p < 0.001 was found for MD
in this left insular cluster. Specifically, individuals with MCI had
a significantly greater increase in left insular MD following the
exercise intervention compared to HC (Figure 1B).

Voxel-Wise Analysis of Main Effects of
Time and Group on Gray Matter Diffusivity
A detailed account of the age-adjusted main effect of Group and
Time clusters can be found in Table 3. The initial main effect
of Time voxel-wise analysis, resulted in three significant clusters
located in the left (F(1,28) = 10.98, p = 0.002) and right anterior
and adjacent cerebellar lobule (F(1,28) = 11.88, p = 0.002) and left
insular cortex (F(1,28) = 22.35, p < 0.001; see Figure 2). In each
cluster, MD was greater following the intervention. Meanwhile,
the main effect of Group voxel-wise analysis resulted in three
significant clusters located in the right (F(1,28) = 12.48, p = 0.001)
and left insular (F(1,28) = 10.74, p = 0.003) and the right temporal
lobe (F(1,28) = 22.6, p < 0.001), see Figure 2. In all three clusters,
those with MCI had higher MD than HC.

Association Between Changes in MD and
Cognitive Performance
Changes in MD values were extracted from the left insular
interaction cluster and the left insular and right and left
cerebellum main effect clusters, as defined by the age adjusted
voxel-wise analysis, for both MCI and HC. Partial correlations
suggested a significant positive relationship between increases in
MD within the left insular interaction cluster and improvements
in COWAT performance (r = 0.46, p = 0.007), but not
changes in RAVLT-T1 performance (r = 0.22, p = 0.218), see
Figure 3. Similarly, the increase in MD from the main effect
of time left insular cluster was similarly positively associated
with COWAT performance (r = 0.41, p = 0.02), but not

TABLE 1 | Baseline demographic information.

Total sample MCI HC Group differences
(n = 32) (n = 15) (n = 17) p-value

Mean (SD) Mean (SD) Mean (SD)

Demographics
Age (years) 78.4 (6.8) 80.5 (5.6) 76.5 (7.0) 0.10
Female (n, %) 23 (71.9%) 9 (60.0%) 14 (82.4%) 0.16
Education (years) 16.0 (2.6) 15.6 (3.1) 16.5 (1.9) 0.25
APOE-ε4 Carriers 12 5 5 0.81

Cardiorespiratory fitness
Baseline VO2peak (ml/kg/min) 19.9 (3.9) 19.5 (5.2) 19.1 (6.6) 0.33

Depression
Baseline GDS 4.8 (3.3) 5.3 (4.5) 3.2 (2.0) 0.007

Cognition
Baseline DRS-2 134.1 (11.2) 128.8 (13.3) 140.5 (2.5) 0.002

Activities of Daily Living
Baseline Lawton IADL 4.7 (0.5) 4.7 (0.5) 4.7 (0.5) 0.87

Notes: MCI, Mild Cognitive Impairment; HC, Healthy Control; APOE-ε4, apolipoprotein E epsilon 4 allele; VO2peak, peak rate of oxygen consumption in millimeters per kilogram per
minute (ml/kg/min); GDS, Geriatric Depression Scale; DRS-2, Mattis Dementia Rating Scale-2; IADL, Instrumental Activities of Daily Living. Bold indicates p < 0.05.

Frontiers in Aging Neuroscience | www.frontiersin.org 5 April 2021 | Volume 13 | Article 645258

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Callow et al. Exercise-Related Changes in Microstructure

TABLE 2 | Cardiorespiratory fitness and neuropsychological performance data.

Total sample (n = 32) MCI (n = 15) HC (n = 17) Time Group × Time

Before After Before After Before After

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) p-value (η2
p) p-value (η2

p)

Cardiorespiratory fitness
VO2 peak (ml/kg/min) 19.1 (5.8) 21.0 (3.8) 18.7 (3.8) 21.0 (3.2) 19.4 (7.3) 21.1 (4.4) 0.021 (0.19) 0.730 (0.01)
Cognitive
RAVLT-Trial 1 4.7 (2.1) 5.7 (1.8) 4.4 (1.8) 5.9 (1.6) 4.9 (2.4) 5.5 (2.0) 0.007 (0.22) 0.228 (0.05)
RAVLT-Trial 1-5 42.8 (13.8) 45.3 (13.8) 38.7 (11.6) 42.9 (11.8) 46.4 (15.0) 47.5 (15.4) 0.122 (0.10) 0.287 (0.04)
RAVLT IR 8.8 (4.1) 8.4 (4.3) 6.8 (3.7) 7.5 (4.3) 9.9 (4.5) 10.1 (3.6) 0.272 (0.04) 0.520 (0.01)
RAVLT DR 8.4 (4.5) 8.3 (4.6) 6.8 (4.1) 9.5 (4.6) 6.9 (4.4) 9.7 (4.5) 0.818 (0.01) 0.917 (0.01)
Clock drawing 1.6 (1.1) 1.4 (0.8) 2.3 (1.1) 2.0 (0.8) 1.6 (1.1) 1.4 (0.8) 0.093 (0.09) 0.914 (0.01)
COWAT 36.3 (12.0) 39.1 (13.7) 34.1 (11.2) 40.0 (14.5) 38.3 (12.8) 38.4 (13.4) 0.018 (0.17) 0.020 (0.17)
Animal fluency 16.9 (6.7) 17.0 (8.0) 14.8 (6.5) 14.1 (8.3) 18.8 (6.5) 19.5 (7.1) 0.987 (0.01) 0.411 (0.02)

MCI, Mild Cognitive Impairment; HC, Healthy Control; RAVLT, Rey Auditory Verbal Learning Test; Trial 1, Trial 1–5; IR, Immediate Recall; DR, Delayed Recall; COWAT, Controlled Oral
Word Association Test; VO2 peak, peak rate of oxygen consumption; p-values and effect size (η2

p ) reflect the Time and Group × Time effects from repeated measures ANOVA; Bold
indicates p < 0.05.

TABLE 3 | Significant mean diffusivity values for the Group, Time, and Group × Time voxel-wise analysis clusters.

Cluster Cluster region Peak location Volume MCI (n = 15) HC (n = 17)

x y z (voxels) Before After Before After

Group × Time Interaction
1 Left Insula 35.0 5.0 2.0 1,588 1.33 (0.18) 1.45 (0.21) 1.21 (0.11) 1.20 (0.14)

Time Main Effect
2 Left Cerebellum 21.0 50.0 −18.0 2,184 1.10 (0.17) 1.34 (0.43) 1.06 (0.15) 1.12 (0.18)
3 Left Insula 35.0 −5.0 1.0 2,127 1.34 (0.18) 1.46 (0.21) 1.20 (0.13) 1.21 (0.15)
4 Right Cerebellum −23.0 54.0 −18.0 1,199 1.68 (0.19) 1.40 (0.41) 1.10 (0.15) 1.17 (0.16)

Group Main Effect
5 Right Temporal Lobe −55.0 0.0 −13.0 1,976 1.30 (0.12) 1.31 (0.14) 1.14 (0.09) 1.12 (0.10)
6 Right Insula −38.0 −2.0 5.0 1,525 1.37 (0.14) 1.44 (0.25) 1.21 (0.15) 1.19 (0.10)
7 Left Insula 32.0 −3.0 8.0 1,159 1.27 (0.18) 1.36 (0.19) 1.12 (0.12) 1.11 (0.16)

Notes. Mean and standard deviations of raw mean diffusivity values extracted from significant family-wise error corrected Group, Time, and Group × Time clusters. Clusters produced
using AFNI’s 3dLME procedure for a voxel-wise analysis, after adjusting for age. Regions are defined by the highest probability using the MNI Structural Atlas.

FIGURE 1 | A significant family-wise error corrected interactive effect of Group × Time on mean diffusivity (MD) in the left insular cortex. (A) Sagittal, coronal, and
axial view of the significant interaction cluster and the location of peak difference in MNI space using radiological convention. (B) Mean and standard deviations of
raw MD values extracted from the significant interactioncluster, not controlling for age.

RAVLT-T1 performance (r = 0.30, p = 0.09). Furthermore,
training induced increases in MD values in both the left (r = 0.41,
p = 0.019; see Figure 3) and right cerebellum (r = 0.36,
p = 0.046) were associated with improvements in RAVLT-T1
performance, but not COWAT performance (r = 0.21, p = 0.243;
r = 0.27, p = 0.14).

DISCUSSION

We found that a 12-week walking intervention significantly
improved aerobic capacity (cardiorespiratory fitness), phonemic
verbal fluency (measured by the COWAT), and immediate
verbal recall performance (measured by the RAVLT-T1). We
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FIGURE 2 | A map of the significant family-wise error (FWE) and age-corrected voxel-wise analysis of the (A) main effect of Group and (B) main effect of Time.
Extracted values in the bar graph are raw diffusion values and not adjusted for age. p-values are the result of running these raw diffusion values through a similar
linear mixed effects model, in which age was controlled for.

also found that a 12-week walking intervention led to a
significant interaction effect with gray matter MD values of the
left insular, finding individuals diagnosed with MCI exhibited
greater increases in MD than HC. Additionally, we found
exercise training was associated with increases in MD in the
left insular cortex and right and left cerebellum for both MCI
and HC. Further analysis revealed that these exercises training-
related increase in left insular MD were significantly associated
with verbal fluency improvements. In contrast, the increases in
anterior and adjacent cerebellar MD were related to gains in
RAVLT-T1 performance. Finally, we found MCI had greater
cortical MD in the right temporal lobe and right and left insular
compared to HC.

Group Differences in Cortical Gray Matter
Diffusivity
In the current study, individuals with MCI exhibited greater
baseline MD values than HC in the left and right insular and
right medial temporal lobe. This is consistent with previous
work, showing individuals with MCI and AD generally exhibit
higher cortical and subcortical gray matter MD at baseline than
healthy controls in regions such as the hippocampus, entorhinal
cortex, parietal cortex, precuneus, insula, frontal cortex, and
temporal cortex (Müller et al., 2005; Ray et al., 2006; Rose
et al., 2008; Scola et al., 2010; Weston et al., 2015, 2020; Lee
et al., 2020; Torso et al., 2020). However, the differences in
cortical gray matter MD appear to be less pronounced in less
severely impaired individuals (Scola et al., 2010; Lee et al., 2020;

Weston et al., 2020). Furthermore, some previous studies failed
to control for partial volume effects due to CSF contamination,
which is essential to control for in populations where there
is potential for significant neurodegeneration and volume loss
(Henf et al., 2018). We report higher cortical MD in the MCI
group after controlling for CSF, free water contamination, and
partial volume effects. These results are consistent with the
general literature however, the more limited extent of our
reported effects may be due to more strict processing steps
and may also be due to most of our MCI participants being
recently diagnosed and therefore, likely earlier in the disease
course trajectory.

Many studies reporting elevated cortical MD, find these
effects occur independently of the cortical thickness or
volumetric changes in gray matter (Weston et al., 2015, 2020;
Lee et al., 2020). While both gray matter microstructure and
macrostructure are associated with age, they are generally
unrelated when controlling for age, suggesting the two measures
are sensitive to different underlying neurophysiological changes
that may occur at different stages of aging and dementia
progression (Zhao et al., 2019). For example, higher gray
matter MD is believed to represent a breakdown in the
microstructural barriers to diffusion, which is predicted to
precede volumetric changes (Ly et al., 2014; Weston et al.,
2015). Specifically, this reduction in microstructural barriers
is believed to result from a loss of synapses and neurons,
shrinkage of larger neurons, and increases in glial activity
and neuroinflammation (Weston et al., 2015; Stolp et al.,
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FIGURE 3 | Change in gray matter (GM) diffusivity was positively associated with improved verbal fluency and episodic memory performance. (A) Residualized
change in verbal fluency (COWAT, Controlled Oral Word Association Test) scores were significantly related to residualized change in left insular MD values, controlling
for age. (B) Residualized change in rey auditory verbal learning test (RAVLT) Trial 1 scores were significantly related to residualized change in left cerebellar MD
values, controlling for age. The two groups are healthy controls (HC; black symbols) and those diagnosed with Mild Cognitive Impairment (MCI; gray symbols). Gray
shaded region represents 95% confidence interval.

2018; Lafrenaye and Simard, 2019; Zhao et al., 2019). Our
findings of higher cortical gray matter MD and poorer cognitive
performance in individuals with MCI are consistent with the
evidence that MCI is a transitory state that involves distinct
neurophysiological differences in brain function and structure
compared to healthy older adults (Langa and Levine, 2014;
Jongsiriyanyong and Limpawattana, 2018). Nevertheless, the
timing and direction of changes in MD, and the mechanisms
that determine these changes, may or may not always reflect
a pathological process, and are not yet completely understood

(Fortea et al., 2010; Ryan et al., 2013; Weston et al.,
2015).

Exercise Training Induced Changes in
Cortical Gray Matter Diffusivity
Notably, following the exercise intervention, the participants
diagnosed with MCI exhibited increased MD within the
left insular cortex, which was associated with verbal fluency
improvements. While higher gray matter MD generally
associated with cognitive decline and thought to indicate

Frontiers in Aging Neuroscience | www.frontiersin.org 8 April 2021 | Volume 13 | Article 645258

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Callow et al. Exercise-Related Changes in Microstructure

disease progression, a recent large cross-sectional study in
younger adults found that higher cortical MD in several regions,
including the left insular, was associated with better empathizing
and cooperativeness (Takeuchi et al., 2019). Additionally,
several studies focusing on familial AD found that just prior
to symptom onset, MD was reduced in various cortical and
subcortical gray matter regions, such as the precuneus, insula,
parietotemporal area, thalamus, putamen, and caudate (Fortea
et al., 2010; Ryan et al., 2013). It was hypothesized that in
the early presymptomatic stages of AD, water molecules
normally diffuse through cellular barriers, as seen in healthy
individuals. However, leading up to disease progression and
symptom onset, diffusion becomes restricted (lower MD)
due to cellular hypertrophy and inflammation in response to
amyloid deposition. Finally, during the symptomatic phase,
progressive cellular atrophy results in the breakdown of cellular
barriers and a subsequent large increase in MD (Weston et al.,
2015). Although our finding of exercise training-induced
increases in left insular MD in the MCI individuals could
indicate negative neurophysiological changes, these changes
were associated with improvements in verbal fluency and
marginally associated with verbal memory recall improvements.
Therefore, it is more likely that exercise training-induced
increases in MD within the insula could indicate improvements
in underlying cellular integrity and reduced inflammation and
cellular swelling. For example, in our recent article (Alfini
et al., 2019), we found in this cohort that exercise training
reduced left insular cerebral blood flow in individuals with
MCI, but not healthy controls and that this change was also
associated with improvements in verbal fluency. Reductions in
hyperperfusion from exercise are hypothesized to result from
the normalization of blood flow and oxygen availability due
to cerebrovascular growth (Pereira et al., 2007; Alfini et al.,
2019), leading to lower inflammation and improve cellular
integrity (Wierenga et al., 2014). However, we controlled
for the fast free water compartment in our analysis, which
absorbs a large portion of perfusion effects and thus, helps
limit contamination in the diffusion signal from CSF and
the intravoxel incoherent motion of blood due to differences
in capillary perfusion (Rydhög et al., 2017; Newman et al.,
2020). As an additional check, we also found no association
between the subsample of perfusion values and MD values
or between change in perfusion and change in MD values
extracted from the left insular interaction cluster. Therefore,
while it is unlikely that increases in left insular MD result
from alterations in perfusion specifically, it is possible both
measures are sensitive to similar or synergistic underlying
compensatory neurophysiological mechanisms that elicit the
reported improved verbal fluency.

Additionally, we found that both HC and MCI exhibited
increased MD within a slightly overlapping section of the left
insular cortex and the left and right anterior and adjacent
cerebellar lobule. Interestingly, the left insular cortex changes
showed a consistent association with verbal fluency performance.
In contrast, changes in the left and right anterior and adjacent
cerebellar MD were associated with immediate verbal recall
performance. Previous work has found that anterior cerebellar

volume is positively associated with immediate and delayed
verbal recall (Kansal et al., 2017) and is heavily involved in
working memory in general (Desmond and Fiez, 1998; Ashida
et al., 2019). Additionally, a meta-analysis found that the
adjacent cerebellum is involved in verbal working memory
and executive function (Stoodley and Schmahmann, 2009).
Furthermore, recent work suggests that cerebellar deterioration
and volume loss are associated with cognitive decline in
individuals with MCI (Lin et al., 2020). In this same cohort,
we have also recently shown that exercise training increased
cerebellar connectivity in the HC (Won et al., 2021). Thus,
these increases in cerebellar MD, which are associated with
improvements in immediate verbal recall, may indicate some
form of structural remodeling that could be consistent with
improved neural efficiency and connectivity in the region. It is
important to note that due to the nature of this study, it is not
possible to determine if these effects are the result of protective
or compensatory mechanisms.

The scaffolding theory of aging and cognition (STAC)
suggests that compensatory brain processes are responsible for
maintaining cognitive performance despite the accumulation of
neural challenges (Park and Reuter-Lorenz, 2009). These same
authors later revised the STAC theory (STAC-r) to account
for factors, such as physical activity, that contribute to the
rate of change in cognitive function (Reuter-Lorenz and Park,
2014; Cabeza et al., 2018). Previous work indicates that in
healthy individuals and those with MCI, over-activation and
altered connectivity patterns in various cortical and subcortical
regions, including the insula, is associated with poorer cognitive
performance (Yassa et al., 2011; Smith et al., 2013; Chand
et al., 2017; Liu et al., 2018). Exercise training appears to
reduce this hyperactivity and help regulate insular connectivity
in individuals with MCI (Smith et al., 2013; Chirles et al.,
2017). Therefore, it is possible that exercise training may
help enhance neural efficiency through synaptic and dendritic
pruning (Brockett et al., 2015). In fact, recent work suggests that
in healthy aging glia remain dynamic and active in pruning and
refining synaptic processes (Mostany et al., 2013; Hong et al.,
2016), while it is not until the more advanced stages of disease
progression that widespread microglial related loss of synapses
occurs (Rajendran and Paolicelli, 2018). Given we found changes
in diffusivity in both the MCI and HC group, it is possible that
increases in cortical MD and cognitive performance following
the exercise intervention could be due to increased glial related
synaptic pruning to improve neural efficiency and connectivity.
This increased level of glial activity and reduced synaptic and
dendritic density might thus result in the higher MD and better
cognitive performance observed (Le Bihan, 2012, 2014; Smith
et al., 2013; Tsurugizawa et al., 2013; Hong et al., 2016; Chirles
et al., 2017). However, given the lack of specificity of measures of
cortical MD, additional animal and human studies are needed
to determine the specific mechanisms that might have caused
these changes.

Potential Mechanisms
Interpreting the changes in gray matter MD remains challenging
due to the isotropic nature of the underlying tissue. However,
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animal work suggests that wheel running can upregulate
various neurotrophic factors such as brain-derived neurotrophic
factor (BDNF), insulin-like growth factor (IGF-1), and vascular
endothelial growth factors (VEGF), which in turn promote
angiogenesis, synaptogenesis, and neurogenesis (Pereira et al.,
2007; Voss et al., 2013; Duzel et al., 2016; Maass et al.,
2016; Stillman et al., 2020). However, most of this animal
work has focused on the effects of exercise training on the
hippocampus. Yet, some animal work suggests that wheel
running may have more widespread benefits associated with
enhanced synaptic, dendritic, and astrocytic measures in various
cortical brain regions associated with cognitive improvements,
such as the hippocampus, prefrontal, perirhinal, and the
orbitofrontal cortex (Brockett et al., 2015). Furthermore, a
recent meta-analysis of randomized controlled exercise training
studies in older adults suggests that exercise protects various
cognitive domains that are not specific to the hippocampus
and that these benefits were consistent for both healthy
older adults and those with MCI (Northey et al., 2018).
Nevertheless, while exercise training appears to protect brain
structure and function in healthy individuals and those with
MCI, there remains little evidence for how exercise training
affects neurophysiology in individuals with MCI. In this same
cohort, we have previously reported improvements in cognition
and preservation of cortical thickness (Reiter et al., 2015),
reduced cerebral blood flow (Alfini et al., 2019), and alterations
in functional connectivity (Chirles et al., 2017) and neural
efficiency (Smith et al., 2013). These findings suggest that
exercise training elicits neurophysiological changes in both MCI
and healthy older adults’ cortex and that exercise may afford
these cognitive benefits through various, potentially synergistic
mechanisms. Our finding of increased gray matter MD was
associated with improved verbal fluency and immediate verbal
recall performance. Thus, these changes could be related to
structural remodeling, normalization of cerebrovasculature and
inflammation, and pruning of unnecessary synaptic connections,
which may lead to enhanced efficiency and the reported
preservation of cognition. However, future studies will need to
include a non-exercising control group and observe the effects
of exercise training on gray matter MD and cognition over
a greater period and conduct follow-ups to determine how
these cortical microstructure changes may relate to underlying
neurophysiology and disease progression.

Strengths and Limitations
The following study makes several contributions to the current
literature. Our research suggests that a supervised walking
intervention can improve cardiorespiratory fitness, verbal
fluency, and verbal memory in healthy individuals and those
with MCI. Furthermore, we found increased left insular and
cerebellar MD in both MCI and HC, with greater increases
in left insular MD in the MCI group. These exercise-induced
increases in cortical MDwere also associated with improvements
in verbal fluency and immediate verbal recall performance.
While individuals diagnosed with MCI are at a critical stage
of cognitive decline, less is known about how exercise training
may impact neural network integrity in MCI compared to

the well-document effects of exercise training in healthy older
adults. Additionally, we used diffusion imaging of cortical gray
matter, an imaging metric that has not previously been used
in the exercise neuroscience literature, and that may be an
earlier andmore sensitive measure of underlying microstructural
integrity than standard volumetric measures. Finally, we utilized
a well-validated battery of neuropsychological assessments to
determine associations between exercise training-related changes
in gray matter diffusivity and changes in cognition.

Although this article makes several unique contributions to
the existing literature, it does have limitations. The most obvious
limitation is the lack of a non-exercising control group. Given
the high fidelity of our exercise intervention (96% adherence
and significant improvement in aerobic capacity), it is unlikely
that the passage of time or non-specific intervention effects
(e.g., social interaction) are responsible for these findings.
Nevertheless, it is impossible to rule out these possibilities
and thus, caution must be taken in the interpretation of these
findings until they are replicated in a randomized controlled
clinical trial. It is also important to note that while MD
is sensitive to various underlying neurophysiological changes
in gray matter tissue, it is not specific to any of them.
Additionally, older single-shell diffusion imaging protocols and
diffusion tensor models, such as the method we employed, are
generally more susceptible to partial volume effects. However,
we used the most current and advanced analysis pipelines to
achieve strict tissue segmentation and free water elimination,
which restricted the analysis to gray matter and reduce the
impact of CSF partial volume effects. Nevertheless, diffusion
imaging pulse sequences that incorporate multiple b-values
should be included in future studies. These measures are
more sensitive and specific to underlying neurophysiological
changes in gray matter tissue. Our study sample was also
primarily Caucasian and well-educated, and thus, caution is
warranted when attempting to infer these findings to the
broader population.

CONCLUSION AND FUTURE DIRECTION

In conclusion, a single-arm 12-week walking intervention
significantly improved cardiorespiratory fitness, verbal fluency,
and episodic memory performance in individuals with MCI and
HC. Furthermore, left insular MD increased in both groups,
but to a greater extent in the MCI participants, and the overall
increase in left insular MD was associated with improvements in
verbal fluency in both groups. The specificity of the associations
between changes in cerebellar MD and improvements in Trial
1 learning on the RAVLT further suggest that the salubrious
effects of exercise training may simultaneously impact multiple
neural networks. These findings provide additional evidence that
exercise training may help to preserve cognition in individuals
with MCI, and new evidence for the possibility that these
effects are associated with remodeling of the cortical gray matter
microstructure. Future research is needed to determine the
mediating effects of cortical gray matter MD on the relationship
between exercise and cognitive performance in HC and those
with MCI.
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