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Hypothesis-driven studies have demonstrated that sex moderates many of the

relationships between brain health and cardiometabolic disease, which impacts risk for

later-life cognitive decline. In the present study, we sought to further our understanding

of the associations between multiple markers of brain integrity and cardiovascular risk

in a midlife sample of 266 individuals by using network analysis, a technique specifically

designed to examine complex associations among multiple systems at once. Separate

network models were constructed for male and female participants to investigate sex

differences in the biomarkers of interest, selected based on evidence linking them

with risk for late-life cognitive decline: all components of metabolic syndrome (obesity,

hypertension, dyslipidemia, and hyperglycemia); neuroimaging-derived brain-predicted

ageminus chronological age; ratio of white matter hyperintensities to whole brain volume;

seed-based resting state functional connectivity in the Default Mode Network, and

ratios of N-acetyl aspartate, glutamate and myo-inositol to creatine, measured through

proton magnetic resonance spectroscopy. Males had a sparse network (87.2% edges

= 0) relative to females (69.2% edges = 0), indicating fewer relationships between

measures of cardiometabolic risk and brain integrity. The edges in the female network

provide meaningful information about potential mechanisms between brain integrity

and cardiometabolic health. Additionally, Apolipoprotein ǫ4 (ApoE ǫ4) status and waist

circumference emerged as central nodes in the female model. Our study demonstrates

that network analysis is a promising technique for examining relationships between risk

factors for cognitive decline in a midlife population and that investigating sex differences

may help optimize risk prediction and tailor individualized treatments in the future.

Keywords: sex differences, metabolic syndrome, network model, white matter hyper intensities, brain-predicted

age, functional connectivity, APOE, magnetic resonance spectroscopy

INTRODUCTION

Sex has emerged as a moderator in many associations between brain health and cardiometabolic
dysfunction. More specifically, sex appears to moderate associations between cognition and
aortic stiffness (Sabra et al., 2020), between risk of dementia and plasma lipid and lipropoteins
(Ancelin et al., 2013; Gilsanz et al., 2017), and between white matter hyperintensities and adiposity
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(Alqarni et al., 2021). Additionally, there are pronounced sex
differences in cardiovascular aging, particularly in the structures
and function of the vasculature (Merz and Cheng, 2016). For
example, type 2 diabetes and elevated systolic blood pressure may
result in slightly higher risk for cardiovascular disease for women
(Wei et al., 2017) and greater cardiovascular burden for aging
women than men (Huebschmann et al., 2019). There are also sex
differences in important brain biomarkers, such as connectivity
(Gong et al., 2011; Zhang et al., 2018) and age-related atrophy
(Xu et al., 2000). In later life, women demonstrate higher
rates of Alzheimer’s Disease (AD), even when controlling for
survivorship effects (Zhao et al., 2016; Andrew and Tierney, 2018;
Beam et al., 2018; Buckley et al., 2019). Since cardioprotective
effects of estrogen that provide advantage to women (Stanhewicz
et al., 2018; Peters et al., 2019; Rodgers et al., 2019) end at
menopause and later life cognitive declines may originate at
midlife or earlier (Rodrigue et al., 2013; Irwin et al., 2018), age 40–
60 is an opportune period for investigating relationships between
brain and metabolic variables for males and females separately.

Growing evidence for the causal influence of multiple
variables on biological systems has increased the need for
new statistical techniques that can provide greater insight
into complex relationships at once. Network analysis has been
primarily applied to psychiatric comorbidity (Borsboom and
Cramer, 2013), and the use in biological models is relatively
novel. This technique provides a visual depiction of the complex
associations among symptoms, which can be understood as
partial correlations. Network analysis also allows identification
of “central” symptoms, defined by strong correlations with a
large number of other symptoms. The theory is that, similar
to a domino effect, the presence of a central symptom is likely
to have greater influence over the entire network of symptoms
due to its high degree of interconnectedness (van Borkulo
et al., 2015; Beard et al., 2016). In respect to networks with
biological variables, centrality of a node in a network may
convey that a variable has an impact on other variables or
may drive relationships between variables. For the purposes of
research in risk for cognitive decline, centrality can help untangle
which metabolic risk factors have the greatest influence on brain
integrity for males vs. females.

Through two separate exploratory network analyses for males
and females, we sought to understand sex differences in the
relationships between brain integrity and metabolic risk. Our
variables of interest, markers of brain integrity, age, genetic
status and the components of metabolic syndrome, were selected
based on evidence linking them to late-life cognitive decline.
We hypothesized that there would be sex differences in these
networks, but we did not form specific hypotheses about
relationships between variables, other than anticipating that
higher levels of metabolic risk factors would be more likely to
relate to poorer brain integrity for both males and females.

MATERIALS AND METHODS

Variables of Interest
Metabolic Syndrome Components
Metabolic Syndrome (MetS) and its five key components have
been established as a cluster of risk factors for cardiovascular

disease, which include: abdominal obesity, high triglyceride
concentrations, low high-density lipoprotein (HDL) cholesterol,
above normal blood pressure (prehypertension), and above
normal blood sugar (prediabetes) (Eckel et al., 2005). MetS
diagnosis is indicated by meeting criteria for 3 or more
components based on the Alberti et al. (2009) consensus criteria
to determine cut offs for each MetS category: fasting glucose
≥100 mg/dL or treatment for hyperglycemia, triglycerides ≥150
mg/dL, HDL-cholesterol ≤40 mg/dL in males and ≤50 mg/dL
in females or treatment for dyslipidemia, systolic blood pressure
≥130 mmHg or diastolic ≥85 mmHg or antihypertensive
medication, and waist circumference ≥102 cm for men and
≥88 cm for women. MetS category variables were coded as yes or
no to indicate whether or not an individual met criteria for each
variable of interest. MetS diagnosis and key components have
been associated with negative cognitive consequences (Skoog
et al., 1996; Waldstein et al., 2004; Yaffe et al., 2004; Kivipelto
et al., 2005; Whitmer et al., 2005; Segura et al., 2009; Arvanitakis
et al., 2010; Falkowski et al., 2014; Foret et al., 2020b). Sex
differences have been observed in MetS, such as differences in
prevalence and age at incidence (Regitz-Zagrosek et al., 2007;
Yang and Kozloski, 2011) and clustering of risk factors (Kuk and
Ardern, 2010).

Brain-Predicted Age Difference (Brain-PAD)
Machine-learning methods that measure biological aging can aid
in early detection of brain vulnerability (Cole et al., 2019) and
serve as important predictors of mortality (Horvath, 2013; Putin
et al., 2016; Cole et al., 2018). One such method, neuroimaging-
derived ‘brain age’, estimates an individual’s biological age based
on gray and white matter volumes (Cole, 2017; Cole and Franke,
2017). By subtracting chronological age from brain age (brain-
PAD), it is possible to estimate which individuals might have
poorer brain health in terms of volumetric loss, which may relate
to risk for neurocognitive decline. For example, in a sample of
individuals with Down’s Syndrome, elevated brain-PAD has been
linked to amyloid deposition and cognitive decline (Cole et al.,
2019). We calculated the brain-PAD of individuals in our dataset
to determine which individuals might have “older” brains than
their chronological age, such that a higher, positive brain-PAD
would reflect higher levels of atrophy.

White Matter Hyperintensities (WMH)
WMH are areas of hyperintense signal on MRI indicative of
lesions in the deep white matter, produced through chronic
hypoperfusion and disruption of the blood-brain barrier (van
Swieten et al., 1991; Pantoni and Garcia, 1997; Debette and
Markus, 2010; Topakian et al., 2010). WMH are commonly
observed in aging populations but have been associated with
vascular and metabolic risk even after correcting for age
(Launer, 2003; Yoshita et al., 2006; Birdsill et al., 2014). Specific
components of MetS have been associated with WMH and
research has suggested white matter lesions as the mechanism
behind cognitive decline in populations with MetS (Alfaro et al.,
2016). Relationships between WMH and cardiometabolic risk
at midlife have been observed in both cross-sectional (Pasha
et al., 2017) and longitudinal follow-up studies (Aljondi et al.,
2020). Additionally, relationships betweenWMH, cardiovascular
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risk factors, and later life cognitive decline are marked by sex
differences (Pasha et al., 2018b; Burke et al., 2019; Alqarni et al.,
2021).

Rs-fcMRI
Resting state functional connectivity MRI (rs-fcMRI) identifies
temporal correlation of brain regions through low frequency
background fluctuations in neuronal activity measured by the
blood oxygen level dependent (BOLD) signal during a period
of rest (Biswal et al., 1995; Fox and Greicius, 2010). rs-fcMRI
is one way to examine early brain vulnerability, particularly
through examining one of the most widely-studied networks in
this context, the Default Mode Network (DMN). The primary
nodes of the DMN are the dorsal and ventral medial prefrontal
cortices (dMPFC and vMPFC) and the posterior cingulate cortex
(PCC) (Greicius et al., 2003). Both the MPFC and PCC have
relationships to age-related brain pathologies (Zhou et al., 2008,
2016; Zhang et al., 2010). Dyssynchrony in the DMN is thought
to occur before clinical manifestation of the disease and changes
in structure (Habib et al., 2017) and may be one of the earliest
markers for late-life cognitive decline. Additionally, differential
relationships between DMN connectivity and executive function
have been examined in middle-aged adults with varying numbers
of MetS components (Foret et al., 2020a). While sex differences
have been observed in task-based functional connectivity at
midlife (Jacobs et al., 2017), relationships between sex and DMN
dyssychrony requires further investigation.

Magnetic Resonance Spectroscopy (1H MRS)
Proton Magnetic Resonance Spectroscopy allows for detection
of cerebral metabolites. 1H MRS may have greater sensitivity to
tissue vulnerability than MRI and thus is appropriate for early,
pre-clinical changes in midlife brain metabolism (Barker et al.,
1994). Three metabolites were selected for their significance in
neurobiological models of aging: N-acetyl aspartate (NAA), a
metabolite that is highly concentrated in neurons and considered
a marker of neuronal health (Danielsen and Ross, 1999; Haley
et al., 2010b; Gonzales et al., 2013); glutamate, an excitatory
neurotransmitter implicated in synaptic plasticity (Danielsen and
Ross, 1999) and metabolic health (Haley et al., 2010a, 2012; Magi
et al., 2019); and myo-inositol (mI), an organic osmolyte and
substrate for the synthesis of the secondary messenger, inositol
triphosphate, which has been elevated in beta amyloid positive
individuals and associated with decreased DMN connectivity
independent of amyloid accumulation (Voevodskaya et al., 2016,
2019). Significant sex differences have been observed in cerebral
metabolites, particularly in concentrations of NAA and mI, as
early as childhood and adolescence (Cichocka et al., 2018).

Apolipoprotein E (ApoE)
The allele frequency of ApoE ǫ4 (ǫ4) in the ApoE genotype
has been consistently associated with increased risk for AD
(Roses and Saunders, 1994; Green et al., 2009) and other forms
of neurocognitive decline (Rohn, 2014; Mukerji et al., 2016).
Disruptions in neuronal metabolism due to ApoE’s role in
cholesterol transport are cited as the mechanism behind this
association (Lahoz et al., 2001; Eichner et al., 2002). Young

healthy ǫ4 carriers have distinct patterns of activity in the DMN
(Filippini et al., 2009). Additionally, research has shown that the
effect of ǫ4 status on Alzheimer’s risk may be stronger for female
than male carriers (Sampedro et al., 2015; Riedel et al., 2016).

Age
Many of the above risk factors and markers of neuropathology
have the strongest relationships with cognitive decline as
individuals age (Hädel et al., 2013; Vidal-Piñeiro et al., 2014;
Makkar et al., 2020). However, the impact of age at midlife on
the relationships between metabolic health and brain integrity
is not fully understood. Including this variable in the model
could provide further information about the importance of age
in these relationships.

Participants
Four hundred nine adults between the ages of 40 and 61 were
recruited for the study through local newspaper advertisements
and flyers. Among them, 274 individuals were enrolled, and
metabolic, demographic and imaging data were available on
266 participants. Exclusion criteria were history of neurological
disease, major psychiatric illness, history of substance abuse, or
MRI contraindication.

When grouping by sex, there were no significant differences
between groups in age [t(264) = −0.19, p = 0.850], education
[t(258) = 1.41, p = 0.160], or ApoE status (χ2(1, N = 244) <

0.001, p = 1). Males had significantly higher levels of mI [t(201)
= 2.85, p < 0.01], waist circumference [t(259) = 3.38, p < 0.001],
triglycerides [t(239) = 2.25, p = 0.025] and glucose [t(260) =

3.13, p < 0.01] while females had significantly higher functional
connectivity [t(204) = −2.38, p = 0.018] and HDL-cholesterol
[t(254) = −7.08, p < 0.001]. Only 12 female participants were
actively taking hormone replacement therapies (HRT), whichwas
not a sufficient sample size to include HRT as a covariate in our
analyses. Participant characteristics are provided in Table 1.

Procedures
The Institutional Review Board at the University of Texas at
Austin approved all study procedures. Written informed consent
before enrolling in the study was provided by participants.
Medical history was collected through self-report questionnaires
and participants underwent a neuropsychological evaluation,
brain imaging and a general health assessment. Assessments and
imaging were completed in separate visits and most participants
completed the study in 1 month.

Neuropsychological Assessment
Participants completed a neuropsychological battery consisting
of tests of memory, verbal fluency and executive function.
Raw scores from a neuropsychological battery were converted
to sample-based z scores. Scores from the Mini-Mental Status
Exam (MMSE; Kurlowicz and Wallace, 1999); the California
Verbal Learning Test-2nd Edition, short delay free recall, long
delay free recall and recognition discriminability conditions
(CVLT-II; Delis et al., 2000); Digit Span forward and backward
conditions total score from the Weschler Adult Intelligence
Scale—Fourth Edition (WAIS-IV) (Lichtenberger and Kaufman,
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TABLE 1 | Selected participant characteristics (n = 266).

Participant characteristics Male Female

N Mean ± SD N Mean ± SD t p

Age, y 121 49 ± 6 145 49 ± 6 −0.19 0.850

Education, y 118 16 ± 3 142 16 ± 2 1.41 0.160

MMSE 116 29 ± 2 133 29 ± 2 −0.16 0.874

ApoE ǫ4, (yes/no) 118 103/15 126 109/17 χ
2

< 0.001 1

Neuroimaging Measures

WMH/TIV 78 0.002 ± 0.002 82 0.002 ± 0.003 0.71 0.476

brain–PAD, years 92 −4.8 ± 6.7 110 −6.3 ± 6.8 1.49 0.137

NAA/Cre 90 1.34 ± 0.24 117 1.35 ± 0.22 −0.08 0.936

Glutamate/Cre 88 1.25 ± 0.15 115 1.23 ± 0.11 1.45 0.149

mI/Cre 88 0.77 ± 0.09 115 0.73 ± 0.08 2.85 0.005

DMPFCxPCC 88 0.18 ± 0.30 118 0.28 ± 0.28 −2.38 0.018

Metabolic Measures

Systolic blood pressure, mmHg 118 138 ± 22 144 136 ± 22 0.66 0.508

Waist circumference, cm 118 101 ± 15 143 94 ± 16 −3.51 <0.001

HDL–cholesterol, mg/dL 117 42 ± 15 139 56 ± 16 2.97 0.003

Triglyceride, mg/dL 109 128 ± 68 133 109 ± 63 2.25 0.025

Blood glucose, mg/dL 118 104 ± 32 142 94 ± 22 3.50 <0.001

Physical activity, hours/week 117 1.66 ± 2.15 140 1.42 ± 1.60 1.02 0.311

Mets Criteria

Systolic blood pressure, (yes/no) 118 16%/84% 144 13%/87%

Waist circumference, (yes/no) 118 47%/53% 143 69%/31%

HDL-cholesterol, (yes/no) 117 50%/50% 139 32%/68%

Triglyceride, (yes/no) 109 47%/53% 133 27%/73%

Blood glucose, (yes/no) 118 43%/57% 142 23%/77%

Brain-PAD, Brain predicted age difference; DMNPFCxPCC, Resting State Functional Connectivity in the Default Mode Network; NAA, N-Acetylaspartate; mI, Myo-inositol; Cre, Creatine;

WMH/TIV, White Matter Hyperintensities adjusted for total intracranial volume; Physical Activity sum of hours moderate.

2012); Controlled Oral Word Fluency total score (Ruff et al.,
1996); Stroop Color and Word Test, third condition (Jensen and
Rohwer, 1966); and inverted scores from the Trail Making Test
(Bowie and Harvey, 2006), conditions A and B were combined
into an average overall current cognitive test performance score,
to limit the number of comparisons.

Health Assessment
Blood samples were collected after 8 h of fasting using
venipuncture of the antecubital vein and resting blood pressure
was measured with a semiautomated device following 15min of
rest (VP-1000, Omron Healthcare, Bannockburn, IL). A non-
elastic tape measure was used for waist and hip circumference.
Blood concentrations of glucose, triglycerides, total cholesterol
and HDL-cholesterol were measured using a standard enzymatic
technique. Participants were asked to report hours per week of
low, moderate (e.g., fast walking, tennis, easy bicycling, easy
swimming) or vigorous (e.g., running, jogging, hockey, vigorous
swimming) physical activity which exceeded 15min intervals,
based on the classifications used by the Godin leisure-time
physical activity questionnaire (Godin and Shephard, 1985).
Hours of moderate and vigorous physical activity were summed

to derive a total measure of weekly physical activity (Pasha et al.,
2018a).

Saliva samples were collected using the Oragene Discover
(OGR-500) kit and stored at room temperature prior to analysis.
The prepIT·L2P kit from DNAgenotek was used for DNA
extraction using 500 µL of saliva. Samples were stored at
−40◦C prior to genotyping. ApoE-Fwd4 and ApoE-snapR
primers were used for polymerase chain reaction amplification,
which was performed with 10 ng of DNA and 10 pMol
primer. Amplification protocol was as follows: 95◦C for 15min,
35 cycles of (95◦C 30 s, 65◦C 30 s, 72◦C 30 s) and hold
at 4◦C.

ApoE genotyping was conducted using PCR amplification
and Sanger sequencing (Sanger et al., 1977) with Variant
Reporter Software from Life Technologies (Thermo Fisher
Scientific). Sequence data was obtained with KB basecaller
and chromatograms were analyzed via visual inspection for
the rs429358C>T and rs7412C>T SNPs. Participants were
categorized according to allele type. Due to sample size, ApoE
ǫ4 hetero- and homozygous individuals were combined together
(nmale = 15; nfemale = 17), and compared with all ApoE ǫ4
non-carriers (nmale = 103; nfemale = 109).
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MRI Data
Structural MRI
Structural images were collected, registered, and normalized
to MNI space. The entire brain was included in structural
images and were collected in the sagittal plane using a
high-resolution magnetization prepared rapid gradient echo
(MPRAGE) sequence (256 × 256 matrix, flip angle = 7◦, FOV
= 24× 24 cm2, 1mm slice thickness, 0 gap).

Brain-predicted age was estimated using themachine-learning
framework (Gaussian Process) devised by Cole (2017) and
Cole et al. (2017) and trained on data available via public
repositories from 2001 healthy individuals ages 18–90. brain-
PAD was calculated by subtracting chronological age from brain-
predicted age.

WMH volume was quantified by Lesion Segmentation Tool
version 1.2.3 (http://www.applied-statistics.de/lst.html), which is
an automated algorithm implemented in SPM8 (http://www.fil.
ion.ucl.ac.uk/spm/software/spm8/). As previously described by
Pasha et al. (2017), voxels were assigned to tissue probability
maps and given a probability of being a white matter lesion
based on spatial and intensity probabilities from T1 images
and hyperintensity outliers on T2 FLAIR images. An initial
threshold of 0.30 was applied to a conservative lesion belief
map to create lesion seeds. A growth algorithm then grew
these seeds toward a liberal lesion belief map and a final
threshold of 0.99 was applied to the resulting lesion belief
map to remove any voxels with a lower probability of being
a lesion. Total volume of WMH was divided by intracranial
volume, obtained through Freesurfer (https://surfer.nmr.mgh.
harvard.edu/) which was then multiplied by 100 to provide
a percent.

Resting State fMRI
Participants were instructed to fixate on a crosshair for 6min
of continuous rs-fMRI collection while keeping their eyes open.
A whole brain echo-planar imaging (EPI) sequence with the
following parameters was used: TR = 3,000ms, TE = 30ms,
FOV = 24 × 24 cm2, 64 × 64 matrix, 42 axial slices, 3mm
slice thickness, 0.3mm gap. MRI data were processed using
default preprocessing pipeline of the Conn toolbox for MatLab
(Whitfield-Gabrieli and Nieto-Castanon, 2012) implemented
with SPM12 for ROI-to-ROI analysis, using the methods
described by Foret et al. (2020a). Artifact Detection Tools
was used for outlier detection (ART; https://www.nitrc.org/
projects/artifact_detect) with default thresholds (z = 9 for global
signal; 2mm motion) and first level within-subject analysis
utilized the general linear model consisting of realignment and
scrubbing with a band-pass filter was set to [0.008 0.09] Hz.
Denoising was performed and linear and quadratic effects of
white matter and CSF BOLD time series, all first-level covariates,
and rest were included as covariates. Connectivity matrices
constructed between the source Posterior Cingulate Cortex
(PCC) and region of interest, in this case Medial Prefrontal
Cortex (MPFC), for each subject. Multivariate analysis was
performed to determine the difference between PCC and DMN
connectivity across subjects.

Magnetic-Resonance Spectroscopy
Point-RESolved Spectroscopy (PRESS) sequence (svs_se_30)
to obtain cerebral metabolite ratios for 1H-MRS data. The
following parameters were used: TE/TR = 30/3,000ms, 80
excitations, 2,000 Hx spectral width, volume ∼6 cm3 in the
occipitoparietal gray matter including the posterior cingulate
gyrus (Kaur et al., 2017). Metabolic changes in the posterior
cingulate gyrus have been implicated in early stages of dementia
(Herholz et al., 2002). A digital archive was saved and reviewed
to maintain consistency of voxel placement. Concentrations of
glutamate, mI and NAA were reported as ratios relative to
creatine (Cre), a marker of energy metabolism, the most stable
metabolite for use as an internal reference (Kantarci et al., 2000;
Ross and Sachdev, 2004). The commercially available software,
LCModel, was used to separate the metabolite resonance from
the macromolecule background.

Statistical Analyses
Network Analyses
Network analyses were estimated in JASP (JASP Team, 2020),
which is based on the bootnet package in R (R Core Team;
version 3.2.3) package qgraph (Version 1.3.3; Epskamp et al.,
2012). In network analysis terminology, observed variables
are referred to as nodes and relationships between observed
variables as edges. Our analysis used a regularized estimation
method, Extended Bayesian Information Criterion Graphical
Least Absolute Shrinkage and Selection Operator (EBICglasso),
which estimates partial correlations between variables and
shrinks absolute weights to zero (Foygel and Drton, 2010).
This method is appropriate for estimating networks when
binary variables are included (van Borkulo et al., 2014). Tuning
parameters were set to 0.5 and missing values were excluded
pairwise from analyses to preserve as much of the sample as
possible. A power analysis was performed using the netPower
package in R (https://github.com/mihaiconstantin/netpaw) and
revealed that, for the smallest number of individuals in a single
correlation (n = 78 males with WMH volume), sensitivity
is estimated at ∼91.6% and specificity at 81.8% with <20%
probability of a type I error and <10% probability of a type
II error. This method estimates 100 different network models
with varying degrees of sparsity. The starting value of the
hyperparameter y was set to 0.5 (Foygel and Drton, 2010). We
used normalized estimation of centrality measures to calculate
which nodes are most central to the network (Opsahl et al.,
2010). Measures of centrality for each node included betweenness
(which nodes serve as bridges between other nodes in the
network), closeness (relative closeness of a node to all other nodes
in a network) and strength (how many direct connections a node
has with other nodes).

Network graphs, also produced in JASP, are based on the R
package (R Core Team; version 3.2.3) qgraph (Version 1.3.3;
Epskamp et al., 2012). Positioning of the nodes was done
using the Fruchterman-Reingold algorithm, which uses pseudo-
random numbers to organize the network based on the strength
of connections between nodes (Friedman et al., 2008, 2014;
Epskamp et al., 2012, 2018).
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Follow-Up Linear Regression Analyses
A central aim of this paper was to examine how network analysis
might enhance our understanding of vulnerability to later-
life cognitive decline. Thus, we conducted follow-up analyses
examining the ability of the strongest nodes in the network,
selected based on the methods described above where “strong”
nodes were those with strength centrality measures more than 1
SD above the mean, to account for variance in current cognitive
performance. Four separate linear analyses were conducted in
JASP (JASP Team, 2020).

RESULTS

Descriptive statistical analyses (Table 1) revealed a cognitively
normal middle-aged sample. As discussed in the previous
section, males and females significantly differed in levels of mI
as well as measures of waist circumference, HDL-cholesterol,
triglycerides, blood glucose levels and functional connectivity.
Sex differences in MetS variables are expected as the Alberti
et al. (2009) criteria utilizes different cutoffs for HDL-cholesterol,
blood pressure, and waist circumference. We have included
frequencies of male and female participants meeting MetS
criteria for each component in addition to the average blood
pressure, blood glucose, waist circumference, triglyceride and
HDL-cholesterol levels in the sample. Approximately 69% of
females met criteria for elevated waist circumference vs. 47% of
males, 27%met criteria for elevated triglycerides vs. 47% of males
and frequencies of hypertension were similar between male and
female participants. Figure 1 represents the network for males
and Figure 2 represents the network for females.

MALE NETWORK

For males,∼87.2% of edges were set to zero. Centrality measures
are provided in Table 2 and Figure 3. Visual examination of the
graph revealed that the strongest edges were between the MetS
components, particularly between plasma triglyceride levels and
HDL-cholesterol as well as triglycerides and waist circumference.
There was also a strong edge between levels of NAA and
glutamate. According to the graph, there is a negative association
between age and ApoE status for males, indicating that male ǫ4
carriers in our sample are younger overall. Nodes with measures
of strength more than 1 SD above the mean for males were
triglyceride levels and waist circumference, indicating that these
variables might hold more information for connecting with the
wider network. Measures of closeness revealed that nodes for
males were not close to any other nodes in the network, which
is typical of a sparsely connected network. For males, HDL-
cholesterol and waist circumference had the highest measures
of betweenness.

Female Network
For females, ∼69.2% of edges were set to zero. Centrality
measures are provided in Table 2 and Figure 3. Visual
examination of the graph revealed several edges for females. The
strongest edges were between MetS components, particularly
HDL-cholesterol and triglyceride, glucose and blood pressure,

FIGURE 1 | Network plot for males. Brain-PAD, Brain predicted age

difference, DMNPFCxPCC, Resting State Functional Connectivity in the

Default Mode Network; WC, Waist Circumference; NAA/Cre, Ratio of

N-Acetylaspartate to Creatine; mI/Cre, Ratio of Myo-inositol to Creatine;

WMH/TIV, White Matter Hyperintensities adjusted for total intracranial volume.

Red bars indicate negative correlations and blue bars indicate positive

correlations. Thicker, shorter bars indicate stronger relationships. Minimum

edge strength set to 0.5 was ignored in network plots because it was larger

than the absolute value of the strongest edge.

as well as NAA and glutamate. ApoE status had positive
and negative associations with several other variables, but
in particular was positively associated with white matter
hyperintensities. This indicates that ǫ4+ females in our sample
may have greater white matter burden at midlife. Other edges of
interest included: the positive association between ǫ4 status and
waist circumference and systolic blood pressure, the negative
association between NAA and waist circumference and NAA
and brain-PAD, suggesting that individuals with older brains
than their chronological age and higher waist circumferences
have lower levels of NAA. Nodes with measures of strength
more than 1 SD above the mean for females were functional
connectivity in the DMN and mI, indicating that these variables
might hold more information for connecting with the wider
network. Measures of closeness revealed that several nodes for
females were close to other nodes in the network, but functional
connectivity in the DMN, hypertension, waist circumference and
ApoE were all above the mean and mI was more than 1 SD above
the mean closeness for the other variables. For females, variables
or nodes with the highest degrees of betweenness included ApoE
and hypertension.

Follow-Up Linear Regression Analyses
The strongest male network nodes, triglycerides levels and waist
circumference, analyzed as continuous variables for the purpose
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FIGURE 2 | Network plot for females. Brain-PAD, Brain predicted age

difference; DMNPFCxPCC, Resting State Functional Connectivity in the

Default Mode Network; WC, Waist Circumference; NAA/Cre, Ratio of

N-Acetylaspartate to Creatine; mI/Cre, Ratio of Myo-inositol to Creatine;

WMH/TIV, White Matter Hyperintensities adjusted for total intracranial volume.

Red bars indicate negative correlations and blue bars indicate positive

correlations. Thicker, shorter bars indicate stronger relationships. Minimum

edge strength set to 0.5 was ignored in network plots because it was larger

than the absolute value of the strongest edge.

of the regression analysis, significantly predicted cognitive
performance for male [F(2, 73) = 3.47, p = 0.036] but not female
[F(1, 101) = 0.34, p = 0.711], participants. The strongest female
network nodes, mI and DMN connectivity, predicted cognitive
performance for female [F(2, 99) = 4.65, p = 0.012] but not
male [F(2, 73) = 2.93, p = 0.060] participants. Thus, midlife
cognitive performance appears sensitive to markers of metabolic
dysfunction in men, while cognition appears more sensitive to
brain integrity markers in women, particularly markers that are
associated with risk for AD pathologies such as mI and DMN
Connectivity (Voevodskaya et al., 2016, 2019).

DISCUSSION

In this study, we investigated relationships between
cardiometabolic risk factors and brain integrity through
network analysis. Network metrics suggested meaningful
differences between males and females at midlife. Although
the networks revealed many metrics about the relationships
between brain, demographic and metabolic variables for
males and females, measures of density and betweenness
centrality are of the greatest interest for understanding how
many links exist between variables in a network, which
can be an indicator of higher risk, and which variables

might bridge the relationship between other variables
of interest.

Potential Mechanisms
Overall, the findings of the present study suggest that the
network for males was sparse relative to the network for females.
Consistent with prior research (Pasha et al., 2018b), the network
for males revealed greater interconnectedness between metabolic
risk factors and white matter hyperintensities. Additionally,
though one study found women to have higher levels of WMH
than men overall, higher BMI was associated with higher WMH
only in men (Alqarni et al., 2021), providing further support
for sex differences in the relationship between metabolic risk
factors and WMH. HDL cholesterol and waist circumference
appear to be of particular importance for males as this node
had the highest level of betweenness. Low HDL-cholesterol and
elevated triglyceride levels, which also had a high degree of
strength centrality in the network, have been associated with
increased risk for dementia only in men in another study
(Ancelin et al., 2013). Waist circumference has emerged as an
important predictor of cardiovascular disease markers, such as
elevated C-reactive protein, over the other MetS components for
both sexes (Nakamura et al., 2008; Cheong et al., 2015), though
our findings suggest that this effect may bemore robust for males.

For females, the network had a higher measure of density
and indicated many relationships between metabolic risk factors,
brain integrity and genetic status at midlife. Though strong
edges were visible between MetS components in females as in
males, relationships between WMH and metabolic syndrome
components were weak. This finding is consistent with the
findings discussed previously on sex differences in white matter
burden (Pasha et al., 2018b; Alqarni et al., 2021). Most notable
was the centrality of ApoE and age in the graphical model of
the female network. Most notable was the centrality of ApoE
and age in the graphical model of the female network. The
prevalence of ǫ4+ individuals in our sample is ∼15%, which is
consistent with the general population (Heffernan et al., 2016).
This, unfortunately, results in an unbalanced sample for the
network analysis. It would be interesting to re-examine the
female network in sample with a more balanced ratio of ǫ4+
and ǫ4- individuals, to see if it remains stable. Though our
findings are somewhat limited by the small sample of ǫ4+
individuals, our results suggest that age and genetics may play
an important role in driving brain-metabolic health relationships
in midlife, which is consistent with prior literature (Plassman
et al., 2010). ApoE ǫ4 status has been shown to have larger
impact on memory performance and hippocampal atrophy in
women than inmen (Azad et al., 2007), and this network suggests
that midlife cardiovascular mechanisms might be responsible
for this relationship. This finding is unsurprising, as ApoE ǫ4
status conveys greater risk of neurocognitive and cardiovascular
disease for females (Mortensen and Høgh, 2001; Riedel et al.,
2016), and sex has been found to moderate associations between
amyloid burden, ǫ4 status and functional connectivity in the
DMN (Damoiseaux et al., 2012; Caldwell et al., 2019). Biological
changes occurring during the menopausal transition may lead
to additional vulnerabilities in cardiovascular and metabolic
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TABLE 2 | Centrality measures for each node including betweenness (which nodes serve as bridges between other nodes in the network), closeness (relative closeness

of a node to all other nodes in a network), and degree/strength (how many direct connections a node has with other nodes).

Male Female

Variable Betweenness Closeness Strength Betweenness Closeness Strength

brain-PAD −0.722 0.000 −1.079 −0.766 −0.664 −1.087

DMPFCxPCC −0.722 0.000 −1.079 −0.766 −0.993 −1.333

Glutamate/Cre −0.722 0.000 −0.154 0.975 0.370 0.388

Blood Glucose 0.760 0.000 0.312 0.684 0.654 1.430

HDL-Cholesterol 1.747 0.000 1.041 −0.766 −0.149 0.264

Hypertension −0.722 0.000 −0.158 1.748 1.255 1.109

Triglyceride 0.760 0.000 1.937 −0.766 −0.143 0.766

WC 1.747 0.000 1.683 −0.089 0.788 0.605

NAA/Cre −0.722 0.000 −0.154 −0.379 0.254 −0.118

WMH/TIV −0.722 0.000 −0.181 −0.766 0.116 −0.687

Age −0.722 0.000 −0.694 −0.283 −0.117 −0.699

ApoE 0.760 0.000 −0.394 1.942 1.150 0.989

mI/Cre −0.722 0.000 −1.079 −0.766 −2.521 −1.625

Brain-PAD, Brain predicted age difference; DMNPFCxPCC, Resting State Functional Connectivity in the Default Mode Network; WC, Waist Circumference; NAA, N-Acetylaspartate; mI,

Myo-inositol; Cre, Creatine; WMH/TIV, White Matter Hyperintensities adjusted for total intracranial volume.

FIGURE 3 | Centrality Plot for each node including betweenness (which nodes serve as bridges between other nodes in the network), closeness (relative closeness of

a node to all other nodes in a network), and degree/strength (how many direct connections a node has with other nodes).

health (Gordon et al., 1978; El Khoudary et al., 2020). Since the
average age at natural menopause in the United States is around
52.6 years (Reynolds and Obermeyer, 2005), the age range in
our sample could be capturing women with variable hormonal
profiles that encompass premenopausal, perimenopausal, and
postmenopausal women. Recent literature has suggested that
perimenopause, in particular, could drive changes in brain
integrity and metabolic processes (Brinton et al., 2015; Palla
et al., 2020). Reproducibility of self-reported menopausal status

varies (Paganini-Hill and Ross, 1982; Horwitz and Yu, 1985;
Colditz et al., 1987; den Tonkelaar, 1997; Rödström et al.,
2005). However, it is important for these issues to continue
to be explored further by measuring the endogenous levels of
relevant sex hormones (Wildman et al., 2008) and documenting
the use of HRT, as many sex differences in cardiovascular
disease are attributed to protective effects of estrogen (Stanhewicz
et al., 2018; Peters et al., 2019; Rodgers et al., 2019). Due to
the small number of participants on HRT, we were unable to
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examine any potential effects of medication. Future studies with
a larger number of participants on HRT could examine the
role of either testosterone or estrogen therapies on relationships
between brain integrity and metabolic function using a similar
statistical technique to our analysis as research studies on HRT
to protect against neurocognitive decline have shown mixed
findings (LeBlanc et al., 2001; Wu et al., 2020).

Somewhat challenging to interpret is the high level of
betweenness of systolic blood pressure for females. Hypertension
in midlife has been associated with increased risk for dementia
among women but not men (Gilsanz et al., 2017). Another study
has shown that midlife hypercholesterolemia and hypertension
convey risk for dementia in both men and women (Azad et al.,
2007). Even though our networks demonstrate that there are
sex differences in the degree of impact of these risk factors on
brain health, it is unclear if hypertension acts as the driving
force for other MetS risk factors. Unlike ApoE, the betweenness
of hypertension appears to be driven more by its relationship
with other MetS risk factors rather than a position between
brain integrity and MetS. Females in our sample who meet MetS
criteria for elevated systolic blood pressure appear to be older and
more likely to be ǫ4 carriers (Figure 2), which re-emphasizes the
significance of ǫ4 status in the network.

In both males and females, glutamate and NAA were
positively related to one another. Concentrations of these neural
metabolites have been correlated in other research, with some
hypothesizing that NAA can be converted to glutamate when
supplies are low (Clark et al., 2006). Ultimately, these 1 H MRS
findings are difficult to untangle and only suggest that our sample
is relatively healthy without notable levels of pathology. However,
an edge between NAA and waist circumference was visible only
in females, such that females meeting MetS criteria for elevated
waist circumference had lower levels of NAA. Relationships
between female neuronal viability and waist circumference are
not widely studied, but previous research has found that elevated
BMI and subclinical atherosclerosis is associated with lower levels
of NAA in the anterior (Gazdzinski et al., 2010) and posterior
cingulate cortex (Haley et al., 2010b). Additionally, NAA was
associated with brain-PAD in females, such that women with
greater brain-age gaps might have poorer neuronal viability.
Though application of brain-aging algorithms in a midlife
population is still relatively novel, previous literature using a
similar technique to analyze brain-PAD (brainageR, https://
github.com/james-cole/brainageR) has shown that accelerated
brain aging may be observable in midlife women in relation to
lifestyle factors which impact hormone levels, in this case number
of childbirths. Further, their findings are consistent with observed
patterns of parity and risk of AD, where increased number
of childbirths conveys lower risk of neurocognitive decline (de
Lange et al., 2019). This provides additional evidence that brain-
PAD at midlife could relate to later life outcomes and that female
populations experience hormonal changes throughout their life
that convey unique risk factors for neurocognitive decline. Myo-
inositol provided the least information of any node in the
network, which is surprising as myo-inositol and the other brain
variables selected are considered preclinical markers of AD, and
elevations have been found in asymptomatic individuals with

cardiometabolic risk (Kantarci et al., 2000; Haley et al., 2010a;
Voevodskaya et al., 2016, 2019).

The application of network modeling in this study is novel
and significant in that graph-theory techniques can contribute
unique information to cognitive risk assessment about the
interconnectedness and organization of relationships among risk
factors, over and above the measured levels of physiological
variables of neurobiological significance. Research applying
network modeling to psychopathology suggests that a more
tightly connected network is riskier because “activation” of one
symptom can spread to others (Borsboom and Cramer, 2013).
This seems even more likely with biological systems as there
are mechanistic relationships between nodes in our network.
Relationships in the male body-brain network suggest that
males have greater vulnerability than females to cerebrovascular
lesions under conditions of metabolic syndrome. The female
picture appears to be more complicated. Our network analyses
suggest direct relationships between ǫ4 status and metabolic
risk factors in women, such as waist circumference and systolic
blood pressure, supporting previous research on the role of
ApoE in females with cardiovascular disease (Sampedro et al.,
2015; Riedel et al., 2016). As mentioned, women have higher
incidence of AD (Zhao et al., 2016; Andrew and Tierney, 2018;
Beam et al., 2018; Buckley et al., 2019) and cardiovascular risk
factors have been suggested as a mechanism for this disparity
(Volgman et al., 2019). Our follow-up linear regression analyses
demonstrate the ability of the strongest nodes in the sex-specific
body-brain network models to better account for variance in
current cognitive performance of their respective sex, even in
midlife when cognitive function is relatively preserved. These
findings further support the utility of the network analysis
method to identify variables which convey unique vulnerability
for neurocognitive decline in male and female populations.
In midlife, the constructed sex-specific networks also provide
valuable information about mechanisms of brain vulnerability
in at-risk populations, before cognitive function is significantly
impaired, by simultaneously examining the effects of multiple
physiological variables on each other as well as on brain and
cognitive function.

Our study assessed sex, not gender identity, so our findings
may or may not generalize to transgender men and women. As
our work stands, it is unclear whether observed sex differences
are a result of biological mechanisms based on genotype,
hormone levels or sociocultural experiences of sex and gender.
However, these observed differences between midlife males and
females suggest a personalized medical approach which takes sex
into consideration as key to early identification and management
of modifiable risk factors for cognitive aging.

CONCLUSIONS

Our findings support prior research on sex differences in
relationships between cardiometabolic risk, genetics and brain
integrity and provide further support for a personalizedmedicine
approach which takes sex into consideration. Network analysis
has the additional benefit of untangling complex mechanisms by
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allowing researchers and clinicians to consider multiple variables
at once. The network for females suggests an important influence
of genetic status on metabolic risk and brain integrity and may
warrant additional attention when presenting clinically with any
of these risk factors, which may be modifiable with appropriate
pharmaceutical or behavioral intervention.
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