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Objectives: Cognitive aging has been extensively investigated using both univariate and
multivariate analyses. Sophisticated multivariate approaches such as graph theory could
potentially capture unknown complex associations between multiple cognitive variables.
The aim of this study was to assess whether cognition is organized into a structure
that could be called the “cognitive connectome,” and whether such connectome differs
between age groups.

Methods: A total of 334 cognitively unimpaired individuals were stratified into early-
middle-age (37–50 years, n = 110), late-middle-age (51–64 years, n = 106), and elderly
(65–78 years, n = 118) groups. We built cognitive networks from 47 cognitive variables
for each age group using graph theory and compared the groups using different global
and nodal graph measures.

Results: We identified a cognitive connectome characterized by five modules:
verbal memory, visual memory—visuospatial abilities, procedural memory,
executive—premotor functions, and processing speed. The elderly group showed
reduced transitivity and average strength as well as increased global efficiency
compared with the early-middle-age group. The late-middle-age group showed reduced
global and local efficiency and modularity compared with the early-middle-age group.
Nodal analyses showed the important role of executive functions and processing speed
in explaining the differences between age groups.

Conclusions: We identified a cognitive connectome that is rather stable during aging in
cognitively healthy individuals, with the observed differences highlighting the important
role of executive functions and processing speed. We translated the connectome
concept from the neuroimaging field to cognitive data, demonstrating its potential to
advance our understanding of the complexity of cognitive aging.
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INTRODUCTION

Cognitive aging has been extensively investigated. A common
approach has been to focus on how a particular cognitive
function changes over time or differs across age groups,
using univariate methods for data analysis (West, 2001;
Tisserand and Jolles, 2003; Lachman, 2004; Schroeder and
Salthouse, 2004; Schaie, 2005; Salthouse, 2009, 2010, 2016;
Harada et al., 2013; Ferreira et al., 2015; Reas et al., 2017;
Oschwald et al., 2019). While this approach has provided
important insight on age-related cognitive decline, cognitive
functions are highly interrelated with each other through
complex associations, possibly in a dynamic manner across
ages, i.e., these inter-relations may differ across age groups.
Capturing such complex associations is difficult when focussing
on a particular cognitive function in isolation, as conventionally
done with univariate analysis. This motivated the development
and use of multivariate approaches, facilitating a deeper and
more integrated understanding of cognitive aging (Salthouse
and Ferrer-Caja, 2003; Viroli, 2012; Hoogendam et al., 2014;
Habeck et al., 2015; Nielsen and Wilms, 2015; Salthouse
et al., 2015; Machado et al., 2018). Previous multivariate
studies have informed on the complex association between
cognitive performance and key demographic, clinical, and
neuroimaging variables. However, it is still largely unknown
how cognitive domains and cognitive components are organized
and interrelated with each other, forming a structure that
could be called the ‘‘cognitive connectome.’’ Further, whether
this cognitive connectome changes during aging has not been
investigated so far. Within the connectome field of neuroscience
(Bullmore and Sporns, 2021), graph theory has recently emerged
as a promising technique to investigate complex associations in
the data, both in normal and pathological aging.

Graph theory enables the analysis of complex inter-
relationships between multiple measures. Although graph theory
has been extensively applied to neuroimaging data in the field of
aging (Zhu et al., 2012; Jung et al., 2018; Chong et al., 2019; Lee
et al., 2019; Xia et al., 2019), to our knowledge only one study
has applied graph theory on cognitive data in an aging study
(Gonzalez-Burgos et al., 2020). In that study, Gonzalez-Burgos
et al. (2020) studied compensation of age-related differences in
verbal fluency and demonstrated the potential of graph theory to
investigate cognitive aging, as an alternative to other multivariate
methods such as random forest analysis or orthogonal partial
least squares to latent structures (Machado et al., 2018; Gonzalez-
Burgos et al., 2020). To our knowledge, four other previous
studies applied graph theory on cognitive data, in other fields
than normal aging: three studies investigated children with
epilepsy (Garcia-Ramos et al., 2015, 2016; Kellermann et al.,
2015), and another study investigated neurological patients with
different etiologies (Jonker et al., 2019). Hence, translating the
concept of connectome from the neuroimaging field to cognitive
data (i.e., the ‘‘cognitive connectome’’) is timely and is expected
to provide relevant new insights on how human cognition is
organized. This step is warranted in order to understand the
behavioral outcomes of the well-studied brain connectome in
neuroimaging research (Van den Heuvel and Sporns, 2019;

Bullmore and Sporns, 2021). This understanding could have
various implications, both for research and clinical work in
normal and pathological aging.

The overall goal of the current study was to investigate
cognitive aging with graph theory using a large set of cognitive
measures (47 variables) in three groups of age spanning from
37 to 78 years (early-middle-age = 37–50 years; late-middle-
age = 51–64 years, and elderly = 65–78 years). The first aim
was to investigate how multiple cognitive domains and cognitive
components are interrelated with each other in the whole
cohort, forming a cognitive connectome independent of age.
To address this first aim, we applied modular analyses using
graph theory. The second aim was to investigate whether this
cognitive connectome differs between groups of early-middle-
age, late-middle-age, and elderly individuals. To address this
second aim, we also appliedmodular analyses using graph theory,
across the three groups of age. The third aim was to gain a
deeper understanding of network features underlying age-related
differences in the cognitive connectome. To address this third
aim, we quantified and analyzed global and nodal measures
from the three age groups. Based on previous studies from our
group (Ferreira et al., 2015; Machado et al., 2018) and other
groups (Lachman, 2004; Willis et al., 2010), we hypothesized that
differences between the twomiddle-age groups would bemodest,
but the differences would be more prominent when comparing
middle-age groups with the elderly group. We anticipated
more disconnected cognitive networks in the elderly group,
with an important role of executive functions and processing
speed in network differences, as predicted by the executive and
processing speed theories of cognitive aging (Salthouse, 1996;
West, 1996).

MATERIALS AND METHODS

Participants
A total of 334 participants were selected from the GENIC
(Group of Neuropsychological Studies of the Canary Islands)
database (Ferreira et al., 2017). All individuals were native
Spanish speakers from the Canary Islands, with ages between
37 and 78 years and a balanced distribution of sex across
age. For the current study, participants were selected according
to the following criteria: (1) No dementia according to
a Mini-Mental State Examination (MMSE) score ≥24, a
Blessed Dementia Rating Scale (BDRS) score <4, and a
Functional Activities Questionnaire (FAQ) score <6; (2) No
mild cognitive impairment based on consensus diagnosis from
two experienced neuropsychologists, following Winblad et al.
(2004) criteria applied on comprehensive neuropsychological
assessment (Ferreira et al., 2015) and age-, sex-, and education-
corrected normative data; (3) Right-handed manual preference
as assessed by the Edinburgh Handedness Inventory. We applied
this criterion because some cognitive functions such as language
abilities (Springer et al., 1999), visuospatial functions (Zaidel,
1990; Kong et al., 2018), or attention (Heilman, 1995) are
lateralized and so, the ‘‘cognitive connectome’’ could be different
in left-handed individuals; (4) No abnormal findings such as
stroke, tumors, or hippocampal sclerosis on MRI according
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to an experienced neuroradiologist; and (5) No neurologic or
psychiatric disorders, systemic diseases with neuropsychological
consequences, or history of substance abuse. An exception
was made for the BDRS. Although the BDRS scale cut-off
for abnormality is frequently established at ≥4 points (Blessed
et al., 1968; Erkinjuntti et al., 1988), the ‘‘changes in personality,
interests and drive’’ subscale may influence the BDRS total
score and does not necessarily reflect functional impairment.
With the aim of excluding only individuals with functional
impairment, we included those participants with total BDRS
scores ≥4 (n = 15) if: (a) 70% or higher percentage of the
BDRS total score resulted from the ‘‘changes in personality,
interests and drive’’ subscale; and (b) if a score ≤1.5 was
obtained in the other two subscales (‘‘changes in performance
of everyday activities’’ and ‘‘changes in habits’’). The same
procedure has been applied in previous studies (Cedres et al.,
2019; Gonzalez-Burgos et al., 2020). Participation was completely
voluntary and all subjects gave written informed consent in
accordance with the Declaration of Helsinki. The study was
approved by the local ethics committee of the University of La
Laguna (Spain).

Cognitive Assessment
A comprehensive neuropsychological protocol was applied
covering the following cognitive domains: processing
speed, attention, executive functions, premotor functions,
episodic memory, procedural memory, visuoconstructive,
visuoperceptive, and visuospatial functions, and language.
The protocol is fully detailed in Supplementary Table 1 and
described elsewhere (Ferreira et al., 2015). In addition, the
MMSE (Folstein et al., 1975) was used as a measure of global
cognition, and the BDRS (Blessed et al., 1968) and the FAQ
(Pfeffer et al., 1982) were used as measures of functional status.
The Wechsler Adult Intelligence Scale (WAIS-III) Information
subtest (Wechsler, 1997a) was scored and used as an indicator of
crystallized intelligence.

Graph Analysis
All cognitive variables detailed in Table 1A were selected as
the nodes to construct the network constituting the cognitive
connectome.

Regarding our first aim of investigating an age-independent
cognitive connectome in the whole cohort, all cognitive variables
were corrected for age and crystallized intelligence (WAIS-III
Information subtest) by using multiple linear regression prior to
network construction. The resulting residual values were used for
network construction. We controlled the age because we aimed
to investigate an age-independent cognitive connectome, and we
also controlled for crystallized intelligence because it is known to
have a strong impact on cognitive performance (Ferreira et al.,
2016).

Regarding our second aim of investigating whether the
cognitive connectome differs between age groups of early-
middle-age, late-middle-age, and elderly individuals, new
cognitive networks were built separately for each age group by
controlling only for the effect of crystallized intelligence, using

multiple linear regression prior to network construction. Again,
the resulting residual values were used for network construction.

The edges between the nodes were calculated through
matrices of Pearson correlation coefficients from each pair of
nodes. Matrices were binarized by thresholding the correlation
coefficients at a range of densities from 15% to 50% of
connections, in steps of 1%. This ensured the exclusion of
disconnected networks (densities below 15%) and random
topologies (densities above 50%, when the small-world index
became close to 1). Network topologies were compared across
this range of densities. Results from global graph measures were
reported across all densities. Results from nodal graph measures
were considered also across all densities but reported only at the
median density (30%), to simplify reporting and as a common
procedure to represent the whole range of densities (Pereira et al.,
2018; Ferreira et al., 2019). Both self-connections and negative
correlations were excluded.

Regarding our third aim of gaining a deeper understanding of
the network features underlying potential age-related differences
in the cognitive connectome, the nodal and global graph
measures described below were calculated. Some graph measures
have been reported to be unstable, especially in small cohorts
(Mårtensson et al., 2018). To circumvent this issue, we aimed for
age groups larger than those in studies shown to be reproducible
(Welton et al., 2015), and selected graph measures that are stable
according to Mårtensson et al. (2018).

Figure 1 shows a graphical representation of the nodal
graph measures included in this study. The nodal global
efficiency, the local efficiency, and the participation coefficient,
which were calculated from the binary networks across the
different densities. In addition, we also included the nodal
strength, which was calculated from the weighted network (before
binarization). The nodal global efficiency is the average of the
inverse shortest path length from a node to all other nodes
in the network. The local efficiency is the global efficiency
of a node calculated on the subgraph created by the node’s
neighbors. The participation coefficient quantifies the relation
between the number of edges connecting a node outside
its community and its total number of edges. The nodal
strength is the sum of the weights of all edges connected to
a node.

Figure 2 shows a graphical representation of the global
graph measures included in this study: the average global
efficiency, the average local efficiency, the transitivity, and the
modularity. All these measures were calculated in the binary
networks across the different densities. In addition, we also
included the average strength, which was calculated from the
weighted network (before binarization). Global measures such
as the average global efficiency, the average local efficiency, and
the average strength represent the mean of all nodes across
the whole network for each nodal measure. The transitivity
refers to the fraction of a node’s neighbors that are also
neighbors of each other in the whole network, normalized by
the whole network. Hence, the transitivity reflects how well
the nodes are connected to nearby nodes forming cliques.
The modularity is a quantitative measure that reflects the
extent to which a graph can be divided into clearly separate
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TABLE 1 | Cognitive variables and cognitive modules.

(A) Cognitive variables included as the nodes in graph analysis (B) Cognitive modules from modular analysis with the Newman algorithm

LM A-Immediate TAVEC 1st trial Verbal Memory Module
LM B1-Immediate TAVEC Learning
LM B2-Immediate TAVEC Interference
LM A-Delay TAVEC Short delay
LM B-Delay TAVEC Short delay-Clues
LM A-Recognition TAVEC Long delay
LM B- Recognition TAVEC Long delay-Clues

VR I-Total Score 8/30 Long delay Visual Memory and Visuospatial Module
VR II-Total Score FRT
VR-Copying JLOT-First half
VR- Total Recognition JLOT-Second half
8/30 1st trial BNT
8/30 Learning Spatial Span backward
8/30 Interference Block Design Total
8/30 Short delay

STROOP Words Digit Span forward Executive Functions and Premotor Functions Module
STROOP Colors Digit Span backward
STROOP Inhibition Spatial Span forward
Phonemic fluency Luria’s HAM Right
Semantic fluency Luria’s HAM Left
Action fluency Luria’s—Coordination

PCV Decision time CTT-Part 1 Processing Speed Module
PCV Motor time

HT 1st trial HT Long delay Procedural Memory Module
HT Learning

The table shows the cognitive variables used as the nodes in the network construction (A). The table also shows the cognitive variables included in each of the different cognitive
modules (B). Please see Supplementary Table 1 for more information about cognitive variables and tests. LM, Logical Memory; FRT, Facial Recognition Test; JLOT, Judgment of
Line Orientation Test; VR, Visual Reproduction; BNT, Boston Naming Test; HT, Hanoi Tower; PCV, PC-Vienna System; CTT, Color Trails Test.

communities (that is, subgraphs or modules). In addition,
complementary modular analyses were performed using the
Newman algorithm (Newman, 2004) to provide qualitative
information on how cognitive variables are organized into
specific communities.

Statistical Analysis
To address the aims of the current study, we stratified individuals
into three age groups by dividing the whole age range from
37 to 78 years into equidistant groups with an age range of
13 years each: an early-middle-age group (37–50 years) treated
as the reference group, a late-middle-age group (51–64 years),
and an elderly group (65–78 years). We favored three age
groups because three is the smallest number of groups to
test for non-linear group differences. In particular, we used
ANCOVA (see below) to test both linear and non-linear
trends in cognitive performance across age groups. Also,
we ensured that the resulting groups had sizes larger than
previous studies shown to be reproducible (Welton et al.,
2015). We further confirmed that the sizes of the age groups
provided enough power for the comparisons using ANCOVA
(see below).

Because graph analysis is based on correlations, cognitive
variables that showed low variability were excluded from the
analysis. More specifically, among all variables included in
our comprehensive neuropsychological protocol (Ferreira et al.,
2015), we excluded error variables, the PASAT (Gronwall,
1977), recognition variables in all our memory tests, and

the discrimination test from Visual Reproduction (Wechsler,
1997b). This gave a total of 47 cognitive variables included in
our graph analysis (Table 1A). We ensured that the selection
of 47 cognitive variables covered all cognitive domains and
their subcomponents. Further, missing data could not be
accommodated in our software, and given the multivariate
nature of graph theory, individuals with at least one missing
value in any of the included 47 cognitive variables were
excluded from this study. We used the BRAPH software
version 1.0.0 (Mijalkov et al., 2017) for graph analysis
and R Studio version 0.99.483 with the ULLRToolbox for
statistical analyses.

The widely used Newman algorithm (Newman, 2004) was
implemented for modular analyses, to reduce the set of
47 cognitive variables down to a few modules (Table 1B). This
analysis also served as our computational method to identify
cognitive connectomes. Since different algorithms can produce
different modular solutions and thus affect the identification
of the cognitive connectome, we replicated all our analyses
with another widely used method: the Louvain algorithm
(Blondel et al., 2008). Pearson’s correlation was used to test the
relationship between educative level and crystallized intelligence
(WAIS-III Information subtest). ANCOVA and Chi square tests
were used for continuous and categorical variables, respectively.
A p-value <0.05 was deemed significant in all analyses. In
addition, the false discovery rate (FDR) adjustment was used at p
≤ 0.05 (two-tailed) for analyses involving nodal graph measures
(Genovese et al., 2002).
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FIGURE 1 | Schematic representation of nodal graph measures. Circles
represent nodes and edges represent connections between the nodes. The
Global Efficiency panel represents a less efficient connectivity between the
two yellow nodes (left: two steps between yellow nodes) vs. a more efficient
connectivity between the two yellow nodes (right: multiple connections of one
and two steps between yellow nodes). The Local Efficiency panel represents
a less efficient connectivity between the yellow node and all other nodes (left:
only one connection) vs. a more efficient connectivity between the yellow
node and all other nodes (right: four connections). The Participation panel
represents two communities (blue and gray); the yellow node belongs to the
blue community and has less connections (edges) with the gray community in
the left part of the panel (low participation) than in the right part of the panel
(high participation). The nodal strength panel represents the intensity of the
connectivity of the yellow node with its connections, where thinner
connections (left) represent a lower strength and thicker connections (right)
represent a higher strength. Parentheses indicate whether binary or weighted
networks were used for each nodal measure.

RESULTS

Key Characteristics of the Whole Cohort
and the Three Age Groups
Table 2 shows the key characteristics of the whole cohort
(N = 334) and the three age groups. Briefly, there were no
group differences in sex distribution, but educative level and
scores in crystallized intelligence (WAIS-III Information subtest)
differed across ages. Hence, we controlled for the effects of the
educative level/WAIS-III Information subtest when investigating
cognitive performance across age groups. Since there was a
strong correlation between the educative level and WAIS-III
Information subtest (r = 0.7, p < 0.001), we favored the
continuous nature of WAIS-III Information subtest to be used
as a covariate in further analyses. In order to characterize
cognitive profile across age groups, the set of 47 cognitive
variables were reduced into five cognitive domains or modules
using modular analysis with the Newman algorithm. After
controlling for the WAIS-III Information subtest in ANCOVA,
we observed lower MMSE scores and lower performance in
all the five cognitive modules with increasing age (Table 2,
Figure 3). More specifically, we observed a significant linear
trend in executive and premotor functions, verbal memory,
visual memory, and visuospatial measures. This means that the

FIGURE 2 | Schematic representation of global graph measures. Circles
represent nodes and edges represent connections between the nodes. The
Transitivity is the number of triangles in a network, with the left panel showing
a lower transitivity (one triangle), vs. the right panel showing a higher
transitivity (three triangles). The Modularity panel shows that there are three
modules (blue, yellow and gray), which can be less clearly divided into
separate communities on the left part (high between-module connectivity
relative to within-module connectivity: low modularity) than on the right part
(low between-module connectivity relative to within-module connectivity: high
modularity). Parentheses indicate that binary networks were used for the
Transitivity and Modularity global measures. The global measures of Global
Efficiency, Local Efficiency and Average Strength were also used in this study
but are not represented in this Figure because they are similar to the
representation in Figure 1, but for the global network instead of the local
network.

magnitude of the difference between the early-middle-age group
and the late-middle-age group was similar to the magnitude
of the difference between the late-middle-age group and the
elderly group. In contrast, we observed a significant quadratic
trend in procedural memory and processing speed, indicating
comparable performance between the two middle-age groups,
and significantly worse performance in the elderly group. All
tests with ANCOVA showed power values of 1 or close to 1,
indicating good statistical power.

Aim 1—Age-Independent Cognitive
Connectome
To investigate how cognitive domains and cognitive components
are organized and interrelated with each other (i.e., to determine
the ‘‘cognitive connectome’’), independently of age, we corrected
our 47 cognitive variables by de-trending the effects of age and
WAIS-III Information subtest. The age-independent cognitive
connectome was then investigated through a modular analysis
(Newman algorithm) performed on the 47 de-trended cognitive
variables. As it can be seen in Figure 4, memory variables
of verbal nature clustered together forming a first module.
Memory variables of visual nature clustered together and with
visuospatial measures, forming a second module. Executive and
premotor functions also clustered together, forming the third
module. Variables of procedural memory and processing speed
formed the fourth and fifth small separate modules, respectively.
Between-module correlations were observed between the
modules of verbal memory, visual memory—visuospatial
measures, and executive—premotor measures. However,
procedural memory and processing speed modules showed
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TABLE 2 | Key characteristics of the whole cohort and the three age groups.

Whole cohort
(N = 334)

Early-middle-age
(n = 110)

Late-middle-age
(n = 106)

Elderly
(n = 118)

M(SD)/count(%) M(SD)/count(%) M(SD)/count(%) M(SD)/count(%) p-value

Age (years) (min-max) 57.85 (11.2)
(37–78)

44.6 (3.4)a,b

(37–50)
57.8 (4.4)b

(51–64)
70.2 (3.8)
(65–78)

<0.001

Sex (female, count (%)) 188 (56.0%) 58 (52.7%) 63 (59.4%) 67 (56.8%) 0.61
Education level

Illiteracy 4 0 0 4 <0.001
Unfinished primary studies 43 2 6 35
Completed primary studies 120 48 31 41
Completed secondary studies 73 34 20 19
University studies 94 26 49 19

WAIS-III Information 15.3 (6.3) 15.7 (5.8)a,b 17.6 (6.4)b 12.9 (5.9) <0.001
MMSE 28.5 (1.5) 29 (1.3)a,b 28.6 (1.4)b 27.9 (1.6) <0.001
Verbal memory module 0 (1) 0.3 (0.6)a,b 0.2 (0.7)b −0.5 (0.6) <0.001
Visual memory and visuospatial module 0 (1) 0.4 (0.4)a,b 0.1 (0.5)b −0.5 (0.6) <0.001
Executive and premotor functions module 0 (1) 0.4 (0.5)a,b 0.2 (0.7)b −0.6 (0.6) <0.001
Processing speed module 0 (1) −0.5 (0.4)a,b

−0.2 (0.5)b 0.7 (0.8) <0.001
Procedural memory module 0 (1) 0.0 (0.7) 0.1 (0.8)b −0.1 (0.7) <0.05

The table shows mean (SD) except for sex and education level, where count (%) is shown. The five cognitive modules were obtained using the Newman algorithm in the whole cohort
when reducing the set of 47 cognitive variables into modules. All 47 cognitive variables had previously been corrected for age and crystallized intelligence (WAIS-III Information subtest).
The three age groups were then compared across modules to investigate age-related differences in cognitive performance. ANCOVA with crystallized intelligence (WAIS-III Information
subtest) as a covariate was used to test between-group differences in MMSE and cognitive modules. Processing speed is an inverse measure so that a higher score denotes a worse
performance. aSignificantly different from the Late-middle-age group. bSignificantly different from the Elderly group. MMSE, Mini-Mental State Examination. WAIS, Wechsler Adult
Intelligence Scale.

FIGURE 3 | Differences in cognitive performance across age groups. Between-group differences in MMSE and cognitive modules were analyzed using ANCOVA
with crystalized intelligence (WAIS-III Information subtest) as a covariate. Processing speed is an inverse measure, so that a higher score denotes a worse
performance. Whiskers show 95% confidence intervals. aSignificantly different from the late-middle-age group. bSignificantly different from the elderly group. MMSE,
Mini-Mental State Examination.

weak almost non-existent between-module correlations. The
Louvain algorithm showed the same results except for procedural
memory and processing speed modules converging into one
single module (Supplementary Figure 1).

Aim 2—Age-Related Differences in the
Cognitive Connectome
We then investigated whether the cognitive connectome differs
across age groups of early-middle-age, late-middle-age, and

elderly individuals. This time, performance in our 47 cognitive
variables were corrected only for WAIS-III Information, by
de-trending its effect.

Firstly, we visually inspected the five modules from the
age-independent cognitive connectome fixed across the three
age groups, in order to describe the correlation matrices used
for the quantitative analyses of global and nodal measures
described below (Figure 5, see Supplementary Figures 2–4
for matrices with larger size). The correlation matrix in
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FIGURE 4 | Age-independent cognitive connectome in the whole cohort. Weighted correlation matrix in the whole cohort (N = 334) sorted out by cognitive modules
obtained with the Newman algorithm. Pearson’s correlation coefficients were used to build the matrix. The color bar indicates the strength of the Pearson’s
correlation coefficients: colder colors represent weaker correlations, while warmer colors represent stronger correlations. PM, procedural Memory module; VM,
verbal memory module; PS, processing speed module; VMV, visual memory and visuospatial abilities module; EPF, executive functions and premotor functions
module; LM, logical memory; FRT, facial recognition test; JLOT, judgment of line orientation test; VR, visual reproduction; BNT, boston naming test; HT, hanoi tower;
PCV, PC-Vienna System; CTT, color trails test.

the early-middle-age group was very similar to that of
the age-independent cognitive connectome. Nonetheless, in
the early-middle-age group, the visual memory—visuospatial
module showed stronger between-module correlations with
executive—premotor and verbal memory modules. Likewise,
the correlation matrix of the late-middle-age group was
similar to that of the early-middle-age group, although with
a tendency to show weaker within-module correlations in
the visual memory—visuospatial module, stronger within-
module correlations in verbal memory and executive—premotor
modules, and stronger between-module correlations of the
executive—premotor module with verbal memory and visual
memory—visuospatial modules. The elderly group showed
overall weaker correlations than the other two age groups.
However, the elderly group was the only group where processing
speed variables showed correlations with cognitive variables from
other modules.

Secondly, in order to quantify the differences described on
visual inspection of correlation matrices, we conducted new
modular analyses (Newman algorithm), separately within each
age group. These modular analyses tested whether different
cognitive modules emerge in each age group. Our results

showed rather similar cognitive connectomes across the three
age groups. The most notable differences were observed
in visual and executive domains, which emerged as only
one module in the early-middle-age group, but split into
two separate modules in late-middle-age and elderly groups
(Figure 6). Likewise, while verbal memory and processing
speed were separate modules in early-middle-age and late-
middle-age groups, the two modules converged into one
single module in the elderly group (Figure 6). The Louvain
algorithm showed very similar results. The only exception
was that in the elderly group, the procedural memory
module converged with the visual memory—visuospatial module
instead of converging with the executive—premotor module
(Supplementary Figure 6).

Aim 3—Global and Nodal Network
Differences in the Cognitive Connectome
Across Age Groups
We compared global and nodal network measures calculated
from correlation matrices of early-middle-age, late-middle-age,
and elderly groups. Significant densities are detailed between
brackets in the following sentences. Regarding global network
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FIGURE 5 | Correlation matrices for each age group, keeping the five modules from the whole cohort fixed. Newman algorithm was used for modular analysis.
Pearson’s correlation coefficients were used to build the matrix. The color bar indicates the strength of the Pearson’s correlation coefficients: colder colors represent
weaker correlations, while warmer colors represent stronger correlations. See Supplementary Figures 2–4 for matrices with larger size and labelled regions. LM,
Logical Memory; FRT, Facial Recognition Test; JLOT, Judgment of Line Orientation Test; VR, Visual Reproduction; BNT, Boston Naming Test; HT, Hanoi Tower; PCV,
PC-Vienna System; CTT, Color Trails Test.

measures, the elderly group showed decreased transitivity
in all densities (15%–50%) and increased average global
efficiency measures (17%–39%) when compared with the
reference early-middle-age group (Table 3, Figure 7). The late-
middle-age group showed decreased average global efficiency
(32%–36%; 38%–43%), average local efficiency (16%–18%;
20%–25%), and modularity measures (19%–24%; 28%–47%)
when compared with the reference early-middle-age group
(Table 3, Figure 7). The comparison between the elderly
group and the late-middle-age group showed that the elderly
group had increased average global efficiency (19%–50%) and
modularity measures (19%–24%; 29%–43%) and decreased
average strength and transitivity measures (26%–50%; Table 3,
Figure 7).

Regarding nodal network measures, the elderly group showed
a decrease in local efficiency and nodal strength in processing
speed variables and an increase in global efficiency in procedural
memory and processing speed variables, when compared
with the reference early-middle-age group (Table 4). Further,
the elderly group showed an increase in the participation
coefficient in executive and visuospatial variables, compared
with the reference early-middle-age group. The late-middle-
age group showed a decrease in local efficiency and an
increase in the participation coefficient in processing speed
when compared with the reference early-middle-age group.
Finally, the comparison between elderly and late-middle-age
groups showed that the elderly group had an increase in global
efficiency in processing speed and visuoperceptive variables
and an increase in the strength in processing speed variables.
Further, the elderly group showed a decrease in local efficiency
in executive variables, when compared with the late-middle-age
group.

DISCUSSION

We investigated how multiple cognitive domains and cognitive
components are interrelated with each other, forming a cognitive
connectome. We also investigated whether this cognitive
connectome and its network characteristics differ between early-
middle-age, late-middle-age, and elderly groups. Our results
showed a cognitive connectome that illustrates the organization
of cognitive functions and cognitive components into five
modules. This cognitive connectome was rather stable across
age groups but some differences were observed in the modular
organization, the strength of correlations between cognitive
variables, and the characteristics of the networks. Our results
support the relevance of executive functions and processing
speed in cognitive aging, and stress the potential of graph theory
to unravel the complex organization of cognition.

Our first aim was to investigate how multiple cognitive
domains and cognitive components are interrelated with each
other, forming a cognitive connectome. We wanted to identify
a cognitive connectome that is independent of age and other
relevant confounding factors such as crystallized intelligence.
To that end, we regressed out the effect of age and crystallized
intelligence previous to our modular analysis. We identified
a cognitive connectome that included five modules: verbal
memory, visual memory—visuospatial functions, procedural
memory, processing speed, and executive—premotor functions.
These modules fit with the cognitive structure reported in the
study by Salthouse and Ferrer-Caja (2003), which included
‘‘space’’ abilities (similar to our visual memory—visuospatial
module), reasoning (similar to our executive module), verbal
memory, and processing speed. Despite the extensive literature
on cognitive aging, we are not aware of studies that had an
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FIGURE 6 | Cognitive variables included in each cognitive module for each age group. The alluvial plot shows how each cognitive variable flows across the
cognitive modules in each age group. The Newman algorithm was used for modular analysis. Each cognitive module is represented with a different color: blue color
represents an executive and premotor, visual memory and visuospatial functions module; green color represents a procedural memory and processing speed
module; pink color represents a verbal memory module; red color represents an executive functions module; orange color represents a premotor functions, visual
memory and visuospatial functions module; turquoise color represents a procedural memory, executive and premotor functions module; yellow color represents a
visual memory and visuospatial functions module; and violet color represents a verbal memory and processing speed module. Schematic representation of cognitive
modules using Newman and Louvain algorithms are detailed in Supplementary Figures 5, 6, respectively.

TABLE 3 | Differences in global network measures from the cognitive connectome across age groups.

Early-middle-age vs. Elderly Early-middle-age vs. Late-middle-age Late-middle-age vs. Elderly

Av. Strength n.s n.s ↓

Transitivity ↓ n.s ↓

Global Efficiency ↑ ↓ ↑

Local Efficiency n.s ↓ n.s
Modularity n.s ↓ ↑

The table shows an overview of the results from global graph analyses. Please, see Figure 7 for more details about quantitative results. Each column shows the between-group
differences in global network measures, with the first group as the reference group in the comparison: higher values in the second group in the comparison are indicated with an
upwards arrow (e.g., in the “Early-middle-age vs. Elderly” comparison, an upwards arrow indicates that the Elderly group had a higher global efficiency than the Early-middle-age
group), lower values in the second group in the comparison are indicated with a downwards arrow, and n.s denotes non-significant results. Results were considered significant when
p ≤ 0.05 (two-tailed).

explicit focus on the complex inter-relations between cognitive
domains and cognitive components, apart from the study of
Salthouse and Ferrer-Caja (2003). However, several studies that
applied analytical methods for the reduction of cognitive data are

of interest in this discussion. Using different approaches such as
factorial analysis (Mitchell et al., 2012; Viroli, 2012; Hayden et al.,
2014; Mungas et al., 2014; Nielsen and Wilms, 2015; Salthouse
et al., 2015; Rizio and Diaz, 2016) and principal component
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FIGURE 7 | Global network differences in the cognitive connectome across age groups. Figures illustrating modularity, local efficiency, global efficiency and
transitivity measures display network densities on the x-axis, spanning from min = 15% to max = 50%, in steps of 1%. Between-group differences in network
measures are displayed on the y-axis. Between-group differences are significant when the red circles fall out of the purple-shaded area. N.S., non-significant
(P > 0.05).

analysis (Oh et al., 2012; Costa et al., 2013; Aribisala et al.,
2014; Fellows and Schmitter-Edgecombe, 2015), four factors
(i.e., modules) form the most frequently reported cognitive
structure across all these studies. Among these four factors,
verbal memory, executive function, and processing speed are
the most common factors across studies. The fact that a
rather stable solution of modules has repeatedly been reported
irrespectively of the cohort, age range, cognitive tests used, and
analytical method employed, highlights the potential existence of
a universal cognitive connectome, as we have designated in our
study. Future works should apply graph theory on cognitive data
in other cohorts to further corroborate this idea.

Our second aim was to investigate whether this cognitive
connectome differs across early-middle-age, late-middle-age,
and elderly groups. Our modular analyses as well as visual
inspection of the correlation matrices showedmodest differences

in the cognitive connectome across age groups. Specifically, the
early-middle-age group showed a cognitive connectome of three
modules with moderate correlations both between-modules
and within-modules. The late-middle-age group showed a
cognitive connectome of four modules with stronger correlations
both between-modules and within-modules, especially involving
executive functions. In contrast, the elderly group showed a
cognitive connectome of three modules with weaker correlations,
but there was a unique correlation of processing speed with other
modules. These overall similarities in the cognitive connectome
across age groups were also highlighted by Salthouse and Ferrer-
Caja (2003), who found a similar cognitive structure when
stratifying the sample by age groups. These results support the
hypothesis of a stable cognitive connectome across the adulthood
and older ages in healthy aging. The increase in modules from
three in the early-middle-age group to four in the late-middle-age
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TABLE 4 | Differences in nodal network measures from the cognitive connectome across age groups.

Early-middle-age vs. Elderly Early-middle-age vs. Late-middle-age Late-middle-age vs. Elderly

Global Efficiency PCV Motor time ↑(0.006) n.s ↑(<0.001)
PCV Decision time ↑(0.006) n.s ↑(<0.001)
CTT-Part 1 ↓(0.006) n.s n.s
HT 1st trial ↑(0.006) n.s n.s
HT Learning ↑(0.006) n.s n.s
HT Long delay ↑(0.006) n.s n.s
FRT n.s n.s ↑(<0.001)

Local Efficiency PCV Motor time n.s ↓(<0.001) n.s
PCV Decision time ↓(<0.001) ↓(<0.001) n.s
HT Long delay ↑(<0.001) n.s ↑(<0.001)
CTT-Part 1 ↓(<0.001) ↓(<0.001) n.s
STROOP Words ↓(<0.001) n.s n.s
STROOP Inhibition n.s n.s ↓(<0.001)
Semantic fluency n.s n.s ↓(<0.001)

Participation STROOP Words n.s ↑(0.003) n.s
STROOP Colors ↑(0.006) ↑(0.003) n.s
STROOP Inhibition ↑(0.006) n.s n.s
Block Design Total ↑(0.006) n.s n.s

Nodal Strength PCV Motor time ↑(<0.001) n.s ↑(<0.001)
PCV Decision time ↓(<0.001) n.s n.s
CTT-Part 1 ↓(<0.001) n.s n.s

Each column shows between-group differences in local network measures, with the first group as the reference group in the comparison: higher values in the second group in
the comparison are indicated with an upwards arrow (e.g., in the “Early-middle-age vs. Elderly” comparison, an upwards arrow indicates that PCV motor time shows a higher
global efficiency in the Elderly group than the Early-middle-age group), lower values in the second group in the comparison are indicated with a downwards arrow, and n.s denotes
non-significant results. False discovery rate (FDR) adjustment was used at p ≤ 0.05 (two-tailed) for analyses. FDR adjusted p-value within parentheses. PCV, PC-Vienna System; CTT,
Color Trails Test; HT, Hanoi Tower; FRT, Facial Recognition Test.

group could be interpreted as a compensatorymechanism related
to de-differentiation processes during the late-middle-age (Baltes
et al., 1980; Hülür et al., 2015; Gonzalez-Burgos et al., 2019).
This would help to partially maintain cognitive performance
during late-middle age, as observed in our data. The reduction in
cognitive performance in the elderly, particularly in processing
speed and procedural memory, together with the decrease in
modules from four in the late-middle-age group to three in the
elderly group and the prominent finding of differentiation (weak
correlations among variables) further support this interpretation
and suggest an aberrant organization in the elderly (Park et al.,
2004; Reuter-Lorenz and Cappell, 2008; Sleimen-Malkoun et al.,
2014; Gonzalez-Burgos et al., 2019, 2021).

Other observations in regard to our second aim are that in
the late-middle-age group, visual and executive domains split
into two separate modules. In previous studies using the current
cohort, we observed that visual abilities are among the cognitive
domains that are most strongly associated with age (Machado
et al., 2018). In turn, executive functions showed less prominent
associations with age (Machado et al., 2018), suggesting
that executive functions may be important to maintain high
cognitive performance during late-middle-age adulthood (Park
and Reuter-Lorenz, 2009; Gonzalez-Burgos et al., 2019). This
interpretation is further supported in our current study by the
observation of weaker within-module correlations in the visual
module, stronger within-module correlations in the executive
module, and stronger between-module correlations between the
executive and the visual modules.

Our third aim was to gain a deeper understanding of
the network features underlying age-related differences in the
cognitive connectome of early-middle-age, late-middle-age, and

elderly groups. Briefly, our findings showed that the late-middle-
age group was less efficient and had a decreased modularity
than the early-middle-age group. The elderly group showed
decreased transitivity and higher efficiency than the other age
groups. The comparison between elderly and late-middle-age
groups showed that the elderly group had increased modularity
and decreased average strength. We interpret these findings
as follows. Regarding the late-middle-age group, the decrease
in modularity could be explained by the stronger between-
module correlations, which support our interpretation above
as a de-differentiation process during late-middle-age (Baltes
et al., 1980; Hülür et al., 2015; Gonzalez-Burgos et al., 2019).
However, this pattern does not seem to promote the formation
of local modules, which could explain the decrease in both
global and local efficiency measures (Van den Heuvel and
Sporns, 2019; Bullmore and Sporns, 2021). This finding may
seem contradictory at first, but we recently demonstrated that
reduced efficiency is a characteristic of individuals with higher
cognitive performance (Gonzalez-Burgos et al., 2021). This
interpretation is further supported in our current study by the
observation that increased global efficiency was related to lower
cognitive performance in the elderly group. In our current
study, this occurred in the context of decreased transitivity and
average strength, explained by a pattern of weak or non-existent
correlations across most variables. We discussed this finding
above as prominent cognitive differentiation suggestive of an
aberrant organization in the elderly (Gonzalez-Burgos et al.,
2019, 2021). The increased modularity in the elderly may
be driven by the merging of processing speed and verbal
memory measures in one module, and the less de-differentiated
pattern of correlations as compared with the late-middle-
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age group. This finding highlights the role of processing
speed in the elderly (Salthouse, 1996; Schaie, 2005; Robitaille
et al., 2013), as a potential compensatory mechanism on
top of the prominent role of executive functions. What we
observed is that elderly individuals with better processing
speed managed to keep a higher performance in verbal
memory. The nodal network analyses highlighted once again
the important role of executive functions in late-middle-age
individuals, and the role of processing speed in the elderly
(Salthouse, 1996; West, 1996; Schaie, 2005; Robitaille et al.,
2013).

Altogether, our current findings support two of the main
theories of aging, which postulate that executive functions and
processing speed drive cognitive aging (Salthouse, 1996; West,
1996). The role of the frontal lobe and its connections with other
cortical and subcortical regions is the neural substrate common
to these two theories of aging. While our study is on cognitive
data, we could speculate that our modular organization may
reflect the differentiated nature of cortical circuitry including
frontal-parietal brain networks (executive—premotor module;
Nowrangi et al., 2014), separate left and right medial temporal
networks (verbal and visual memory modules, respectively;
Squire and Bayley, 2007), and dorsolateral prefrontal networks
(procedural memory module; Alexander et al., 1986). Further,
this modular organization may also reflect the integrity of the
brain white matter overall (processing speed module; Gunning-
Dixon and Raz, 2000; Kloppenborg et al., 2014). An important
contribution of our study is that we have helped to unravel the
roles of executive functions and processing speed at different age
groups. In particular, we demonstrated that executive functions
seem to have a more prominent role during late-middle-age and
elderly, whereas processing speed seems to be more relevant
during the elderly.

The current study has some limitations. We performed the
modular analysis with the Newman algorithm as a means
to identify the cognitive connectome. The modular solution
obtained with this algorithm could differ from that obtained
with other methods. To minimize this problem, we also
applied another popular algorithm for modular analysis: the
Louvain algorithm (Blondel et al., 2008). We obtained very
similar modular solutions both with Newman and Louvain
algorithms, which cross-validates our findings. Furthermore, as
discussed above, similar solutions have been reported using other
methods such as factorial analysis and principal component
analysis. This suggests that the cognitive connectome may be
quite universal and does not depend on cohort, age range,
cognitive tests used, or analytical method employed. Although
we removed some cognitive variables from our graph analysis
due to methodological reasons, the information captured in the
removed variables is likely contained in variables remaining
in our graph (e.g., the component reflected by the removed
discrimination test from Visual Reproduction is very likely
contained in other visual discrimination tests such as the Facial
Recognition Test (FRT), which was retained in our graph
analysis). Hence, despite methodological choices, we believe
our current findings are generalizable. Future studies should
test the cognitive connectome in pathological populations, and

investigate whether the variables removed in this study on
healthy individuals (e.g., errors) provide relevant information
in such populations. Another limitation is that we analyzed
cross-sectional data to investigate cognitive aging. Hence,
substantiating our current results using longitudinal designs
is warranted. Finally, we have demonstrated the potential of
graph theory analysis on cognitive data to investigate complex
associations between multiple cognitive domains and cognitive
components. We interpreted our results following the principles
of connectivity proposed by Van den Heuvel and Sporns (2019),
which are primarily based on functional magnetic resonance
imaging data. However, the field of graph theory applied to
cognitive data is in its infancy, and more progress is needed to
assess whether principles and interpretations need to be adjusted
and new measures developed.

In conclusion, we identified a cognitive connectome that
is rather stable across age in cognitively healthy individuals.
Nonetheless, several differences in network features were
observed, highlighting the important role of executive functions
during the late-middle-age adulthood, as well as the role of
processing speed during the elderly. A novelty of our study
is the use of graph theory to investigate what we called the
cognitive connectome. We translated the connectome concept
from the neuroimaging field (Van den Heuvel and Sporns, 2019)
to cognitive data, demonstrating its potential to advance our
understanding of the complexity of cognitive aging.We hope that
this step opens new possibilities and encourages future studies to
validate and help to establish this new concept. One of the next
challenges will be to integrate the well-studied brain connectome
from structural and functional neuroimaging studies (Van den
Heuvel and Sporns, 2019; Bullmore and Sporns, 2021), with
the cognitive connectome investigated in the current study.
Understanding that integration could have several important
implications, both for research and clinical work in normal and
pathological aging.
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