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Specific White Matter Tracts and
Diffusion Properties Predict
Conversion From Mild Cognitive
Impairment to Alzheimer’s Disease
David B. Stone* , Sephira G. Ryman, Alexandra P. Hartman, Christopher J. Wertz and
Andrei A. Vakhtin for the Alzheimer’s Disease Neuroimaging Initiative†

The Mind Research Network, Lovelace Biomedical Research Institute, Albuquerque, NM, United States

Identifying biomarkers that can assess the risk of developing Alzheimer’s Disease (AD)
remains a significant challenge. In this study, we investigated the integrity levels of brain
white matter in 34 patients with mild cognitive impairment (MCI) who later converted to
AD and 53 stable MCI patients. We used diffusion tensor imaging (DTI) and automated
fiber quantification to obtain the diffusion properties of 20 major white matter tracts.
To identify which tracts and diffusion measures are most relevant to AD conversion, we
used support vector machines (SVMs) to classify the AD conversion and non-conversion
MCI patients based on the diffusion properties of each tract individually. We found that
diffusivity measures from seven white matter tracts were predictive of AD conversion
with axial diffusivity being the most predictive diffusion measure. Additional analyses
revealed that white matter changes in the central and parahippocampal terminal regions
of the right cingulate hippocampal bundle, central regions of the right inferior frontal
occipital fasciculus, and posterior and anterior regions of the left inferior longitudinal
fasciculus were the best predictors of conversion from MCI to AD. An SVM based on
these white matter tract regions achieved an accuracy of 0.75. These findings provide
additional potential biomarkers of AD risk in MCI patients.

Keywords: Alzheimer’s disease, diffusion tensor imaging, support vector machine, mild cognitive impairment,
automated fiber quantification, tractography, conversion, biomarker

INTRODUCTION

It is estimated that dementia affects 50 million people world-wide, and it is projected that
the number could rise to 152 million by 2050 [Alzheimer’s Disease International (ADI), 2018].
Alzheimer’s disease (AD) accounts for approximately two-thirds of all cases of dementia, making
it a global health crisis. As the number of cases of AD rise, there is increasing urgency in
early detection and intervention, as well as a need to identify those individuals at greatest risk
of developing the disease. AD is typically preceded by a prodromal stage of cognitive decline
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clinically defined as mild cognitive impairment (MCI); however,
it is estimated that only 32–38% of elderly patients exhibiting
MCI will develop AD (Mitchell and Shiri-Feshki, 2009; Ward
et al., 2013). Identifying those MCI patients at risk of conversion
to AD may permit clinicians to plan interventions and courses
of treatment. However, identifying specific cognitive, behavioral,
and neurodegenerative biomarkers that predict AD conversion
remains a significant challenge.

The brain changes that characterize AD may appear years
before symptoms emerge (Braak et al., 2011). These changes
include amyloid-beta deposition and the buildup of tau protein,
as well as early neurodegenerative changes including decreased
hippocampal volume, enlarged ventricles, and widespread gray
matter (GM) atrophy in prefrontal and temporal cortex (Jack
et al., 2010). Consequently, several potential biomarkers of
these changes have been developed to predict AD conversion
(Ewers et al., 2012; Nanni et al., 2018; Zhang and Shen, 2012).
Additionally, AD results in significant white matter (WM)
degeneration, and increasing evidence suggests that WM changes
appear early and independently of GM tissue loss, are associated
with increased tau protein concentrations, and reflect cognitive
decline (Amlien and Fjell, 2014; Brun and Englund, 1986; Gold
et al., 2012). Therefore, brain WM changes may also serve as
potential biomarkers of AD conversion.

The central aim of the current study is to identify patterns
of WM degeneration that predict conversion of MCI to AD. To
accomplish this aim, we employ a unique approach that utilizes
diffusion tensor imaging (DTI) data from MCI patients who
either convert to AD or do not and apply a machine learning
classification technique to detect specific patterns of WM changes
that predict AD conversion.

Diffusion tensor imaging is a non-invasive tool that measures
water diffusion in the brain, and is particularly useful in
revealing the organizational structure of WM by identifying the
trajectories of large axonal bundles, or tracts, using tractography
(Mori et al., 1999). Patterns of water diffusion within these
tracts can reveal changes in WM integrity that may be useful
in predicting AD conversion. Four properties of WM water
diffusivity are commonly employed: fractional anisotropy (FA),
mean diffusivity (MD), axial diffusivity (AxD), and radial
diffusivity (RD). FA measures the degree of directionality of
water diffusion, and is associated with the cellular and axonal
boundaries that delineate intact WM fibers. Low FA values can
indicate loss of WM integrity. MD measures mean diffusion rate
through tissue, and high MD values suggest axonal loss and
demyelination. AxD and RD measure water diffusion parallel
and perpendicular to axonal bundles, respectively. Low AxD
measures are associated with axonal degeneration while high
RD levels are associated with tract demyelination (Winklewski
et al., 2018). Our goal is to determine (1) the specific WM tracts
and (2) specific diffusion properties that are most predictive
of AD conversion.

To accomplish this goal, we trained and tested support
vector machine (SVM) classifiers to detect differences between
MCI converters and non-converters based on the four diffusion
properties from 20 major WM tracts. A unique SVM classifier
was developed for each tract and diffusion property separately,

allowing us to parse the predictive value of each tract and
property individually. Using this approach, we identified several
specific patterns of WM degeneration which can aid clinicians
and diagnosticians in determining those individuals at risk
of developing AD.

MATERIALS AND METHODS

Data Selection, Participant Inclusion and
Exclusion Criteria, and Demographics
The Alzheimer’s Disease Neuroimaging Initiative (ADNI),
launched in 2004, is a longitudinal multi-site study designed
to develop clinical, genetic, biochemical, and neuroimaging
biomarkers to detect and monitor cognitive impairment and
Alzheimer’s disease progression (Mueller et al., 2008). The
study recruits elderly individuals and originally assigns them
to one of four study groups based on clinical assessments:
a cognitively healthy group (CN), a group with significant
memory concern (SMC), a mild cognitive impairment group
(MCI, early, or late), and an Alzheimer’s Dementia group (AD).
Clinical, biochemical, and neuroimaging data are collected from
participants at multiple timepoints during the study. To date,
the ADNI project has proceeded in four phases: ADNI1, 2004–
2009; ADNI-GO, 2009–2011; ADNI2, 2011–2016; and ADNI3,
2016-present. In the current study, diffusion-weighted imaging
(DWI), structural magnetic resonance imaging (MRI), and
clinical assessments from the ADNI2/GO and ADNI3 phases
were utilized. Full details of the ADNI study design and protocols
can be found online1.

At the time of neuroimaging data acquisition, all participants
met the criteria for a diagnosis of MCI as established by the
ADNI protocols. These criteria include: (1) subjective report of
memory concern by participant, informant, or clinician, (2) an
education-adjusted score on delayed paragraph recall from the
Wechsler Memory Scale Logical Memory II test, (3) a score
between 24 and 30 on the Mini-Mental State Exam (MMSE),
and (4) a Clinical Dementia Rating (CDR) of 0.5 with preserved
cognitive and functional performance such that a diagnosis of AD
could not be made. In the current study, no differentiations were
made between early and late MCI participants.

Participants were divided into two groups: an MCI group
which converted to AD (C), and an MCI group which did not
convert to AD (NC). The NC group maintained a diagnosis
of MCI post data acquisition for at least 23.5 months (mean,
53.07 months; S.D., 24.11), while the C group met the criteria
for an AD diagnosis within 15 months post data acquisition
(mean, 10.91 months; S.D., 2.33). AD diagnosis criteria included
(1) an MMSE score between 20–26 (20–24 for the ADNI
3 protocol), (2) a CDR of 0.5 or 1, and (3) a clinically
determined prognosis of probable AD as established by the
NINCDS/ADRDA criteria (McKhann et al., 1984; Dubois et al.,
2007; Jack et al., 2011). Diagnoses were reviewed and agreed upon
by a committee of clinicians.

1http://adni.loni.usc.edu/methods/documents
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Participants were excluded if DWI processing failed to result
in diffusion property values for all white matter tracts evaluated
(see section “Image Acquisition and Preprocessing”). Based on
these criteria, 53 NC and 34 C participants (87 total) were
included in the current study. Table 1 summarizes group
demographics. No significant group differences in age [mean,
75.1 years; S.D., 8.0 years; t(85) = 1.146; p = 0.26] or sex [32
female; X2(1, N = 87) = 2.25; p = 0.11] were detected. There was
a significant difference in MMSE scores between groups at the
time of image acquisition with NC participants showing a small
but highly significant greater average score [NC mean, 28.2; S.D.,
1.7; C mean, 26.7; S.D., 1.7; t(85) = 4.07, p < 0.001]. Participants’
medical histories were reviewed for cardiovascular risk and/or
disease, including a history of hypertension, high cholesterol,
diabetes, coronary disease, or cardiac events. Eleven C and 14 NC
participants had a history of such conditions with no significant
group differences detected [X2(1, N = 87) = 0.36; p > 0.05].

Additionally, several measures of structural brain integrity
at time of data acquisition were assessed, including total
GM and WM volumes (as proportions of estimated total
intracranial volume, in mm3) and total volumes of white matter
hyperintensity burdens (WMH, as total volume in mm3 per
subject and as subject-specific percentages of total WM volumes),
increases of which have been shown to be risk factors for
AD and WM tract atrophy (Taylor et al., 2017). There were
significant group differences in total GM and WM volumes
[t(85) = 2.95, p = 0.004; t(85) = 2.24, p = 0.028, respectively]
and marginally significant differences in total volume of WMH
burden [p(85) = 2.36, p = 0.045] and percentage of WMH of
total WM volume [p(85) = 2.34, p = 0.047]. Details regarding
the estimations of GM, WM, and WMH can be found in the
Supplementary Material.

Image Acquisition and Preprocessing
Because ADNI is a multi-site study and data were collected
across separate study phases, differences existed in image
acquisition parameters. All ADNI2 data were acquired on 3-tesla

TABLE 1 | Participant demographics.

GROUP C NC

N 34 53

AGE 76.3 (7.7) 74.3 (8.1)

SEX 9 Female 23 Female

MMSE SCORE* 26.7 (1.7) 28.2 (1.7)

PATIENTS W/CARDIOVASCULAR
RISK/DISEASE

11 14

TOTAL GM VOLUME*
(Proportion of total intracranial vol)

0.39 (0.02) 0.40 (0.03)

TOTAL WM VOLUME*
(Proportion of total intracranial vol)

0.28 (0.02) 0.29 (0.03)

WMH BURDEN* 13,316 mm3 7741 mm3

PERC WMH BURDEN*
(of total WM volume)

3.09% (3.4%) 1.81% (1.7%)

*Indicates measures with significant group differences.
Values in parentheses represent standard deviations.

General Electric Medical Systems MR scanners. T1-weighted
anatomical scans were acquired using an accelerated fast spoiled
gradient echo sequence with inversion recovery (IR-FSPGR) or
a magnetization prepared rapid gradient echo (MPRAGE) scan
sequence in a 256 × 256 matrix with 1.2 mm × 1.0 mm × 1.0 mm
voxel sizes (TE = 2.8–3.0 ms; TI = 400 ms; TR = approx.
7 ms). Axial diffusion-weighted scans were acquired with a
spin echo planar imaging sequence in a 256 × 256 matrix
with 1.4 mm × 1.4 mm × 2.7 mm voxel sizes (TE = 60–
90 ms; TR = 9.05 s). Forty-one diffusion weighted images
(b = 1,000 s/mm2) and five non-diffusion weighted images
(b = 0 s/mm2) were acquired. ADNI3 data were acquired on
3T GE, Siemens, or Philips scanners. T1-weighted accelerated
MPRAGE scan sequences were used to acquire anatomical
images using the same parameters as ADNI2 scans on GE and
Philips systems. Siemens scan sequences were acquired using a
240 × 256 matrix with 1.0 mm3 isotropic voxels. Axial diffusion-
weighted scans were acquired using a 256 × 256 matrix with
0.9 mm × 0.9 mm × 2.0 mm voxel sizes (GE systems), a
116 × 116 matrix with 2.0 mm3 isotropic voxels (Siemens
systems), or a 128 × 128 matrix with 2.0 mm3 isotropic voxels
(Philips systems). Siemens and Philips scans were acquired in
2 mm3 isotropic voxels. Between 31 and 127 diffusion-weighted
scans were acquired (b = 1,000 s/mm2), including interleaved
non-diffusion weighted (b = 0 s/mm2) scans with variable echo
and relaxation times (depending on scanning site and system).
The majority of scans used in the present study were acquired
on GE systems (n = 70), and no significant differences existed
between MCI groups regarding scanner system used [X2(2, N =
87) = 0.796, p = 0.67].

Diffusion Weighted Image Processing
For each dataset, diffusion weighted images were registered to the
mean non-diffusion weighted (b = 0 s/mm2) image and corrected
for motion and eddy-current artifacts using a 14-parameter
deformation algorithm (Rohde et al., 2004). Corrected diffusion
images were then aligned to T1-weighted structural images and
resampled to 2 mm3 isotropic resolution. Diffusion tensors were
then fit using the Robust Estimation of Tensors by Outlier
Rejection (RESTORE) algorithm (50 iterative steps; Chang et al.,
2005). The open-source MrDiffusion software toolbox, part of the
Vistasoft software package, was used for DWI preprocessing2.

White matter tractography was performed using the
Automated Fiber Quantification (AFQ) pipeline (Yeatman
et al., 2012). First, whole brain fiber tractography was applied
to the tensor fit diffusion weighted data using a deterministic
streamline tracking algorithm. Streamlines were seeded at all
voxels with a fractional anisotropy (FA) value greater than
0.3 within a WM mask, and tracking terminated when the FA
value at the next step was below 0.1 or the angle of the next
step direction was greater than 30◦. Second, streamlines were
assigned to a fiber group if they passed through two waypoint
ROIs defined anatomically in Montreal Neurological Institute
standard space by Wakana et al., 2007, and transformed into
individuals’ native space. The resulting fiber groups were then

2http://web.stanford.edu/group/vista/cgi-bin/wiki/index.php/MrDiffusion
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compared to fiber tract probability maps of major white matter
tracts (Hua et al., 2008) transformed into native space, and fibers
passing through low probability areas were discarded. Finally,
WM tracts were cleaned by excluding fibers greater than four
standard deviations above mean fiber length or those which
deviated more than five standard deviations from the WM tract
core trajectory. This procedure resulted in 20 major WM tracts
delineated for each dataset. Each of the 20 WM fiber tracts were
segmented into 100 equidistant slices (nodes) and four diffusion
properties were calculated at each node: FA, MD, RD, and AxD.
The values of these properties at each node were calculated using
spline interpolation and summarized as a weighted sum of the
values of each fiber contributing to the tract at that node. Weights
are based on the distance of each fiber from the center of the
tract. Note that, given the variable lengths of the 20 WM tracts,
distances between nodes will differ from tract to tract (i.e., in
shorter tracts, nodes will be closer together than in longer tracts).

Classification Based on Diffusion
Properties From Single White Matter
Tracts
The predictability of each diffusion property of each white
matter tract was assessed separately by training and testing a
unique support vector machine (SVM) classifier for each tract
and diffusion property. Additional SVM classifiers were also
trained and tested based on the combined diffusion properties
for each tract. All SVMs used for classification were non-linear
and used a radial basis function kernel. We chose the non-linear
radial basis function kernel SVM because it allows potentially
non-linearly separable features to become separable in a higher-
dimensional space and can perform better than traditional
linear SVMs (Jin and Wang, 2012). Each SVM was trained
and tested using the leave-one-out cross-validation (LOOCV)
method. LOOCV is a method where an SVM is trained using
all but one dataset. The SVM is then tested on the remaining
dataset and either correctly or incorrectly classifies that dataset.
LOOCV is applied iteratively, leaving one dataset out of training
at a time, until all datasets are tested. Figure 1 outlines the
SVM training and testing procedure. Within each iteration of
the LOOCV loop, the training data are comprised of the N-1
tract diffusion datasets (where N equals the number of subjects)
defined by the tract diffusion value at each node along the
tract. To ensure proper SVM performance, the training data
were normalized by subtracting the mean of each tract node
(averaged across training datasets) and dividing by the tract node
standard deviation. Normalization was then applied to the testing
dataset by subtracting the training dataset means and dividing
by the training dataset standard deviations. Recursive feature
elimination (RFE) was then applied to the training data to reduce
dimensionality and optimize classifier performance. RFE is a
common feature selection procedure which reduces the number
of features (i.e., tract nodes) used in SVM classification by an
iterative process where redundant and uninformative features
are eliminated until the subset of features with the highest
discriminability between classes is determined (Guyon et al.,
2002). In our case, we employed an algorithm developed by

Yan and Zhang, 2015, which combines RFE with correlation bias
reduction. RFE was applied iteratively to the training data until
a subset of the 10 most discriminative tract nodes were derived.
These selected tract diffusion features (nodes) were then used to
build the SVM classifier model. This SVM model was applied to
the testing data based on these selected features and classified the
data as either C or NC.

Evaluation of WM Tract Diffusion
Properties
The predictability of the diffusion properties of each WM
tract was evaluated based on two metrics of SVM classifier
performance: accuracy and the area under the Receiver Operating
Characteristic (ROC) curve, or AUC. A true positive occurred
when the SVM classifier correctly classified a C dataset and a
true negative occurred when the classifier correctly classified
an NC dataset. Accuracy was defined as the proportion of
correctly classified datasets (i.e., the sum of true positives and
true negatives) summed over all testing datasets (LOOCV loops).
AUC is a measure that quantifies the trade-off between true and
false positives (i.e., correctly classified C datasets vs. incorrectly
classified NC datasets) where values greater than 0.5 reflect a
higher ratio of true positives.

Once classifier accuracies and AUCs were obtained for every
diffusion property from every WM tract, selection criteria
were applied to further identify those tracts and properties
that possessed predictive value. A random classifier performing
at chance will obtain an accuracy greater than 0.59 with a
probability 0.05 or less (based on the number of datasets in
the current study). Additionally, a classifier that obtains an
AUC at or near 0.5 is also performing at chance. Therefore,
only tract and diffusion properties that obtained accuracies
greater than expected by chance (at p < 0.05) and which also
possessed AUC values greater than 0.6 were considered predictive
of AD conversion.

To test the statistical significance of the accuracies obtained
from these predictive tracts and diffusion properties, permutation
tests were performed. In these tests, the accuracy of each classifier
was compared to a distribution of accuracies obtained from
1,000 classifiers that used the same tract diffusion data, but in
which group assignment (C or NC) was randomly permuted in
the same proportion as the original data. For each permuted
classifier, normalization and RFE procedures were performed to
ensure consistency. A one-sample t-test was used to compare the
accuracy obtained from the SVM classifier to the distribution of
accuracies obtained from the 1,000 permutations. Values less than
p = 0.05 were considered significant.

Because we applied the RFE optimization procedure to select
the 10 most discriminative tract nodes in each iteration of the
LOOCV loop, we were able to obtain a histogram of the most
selected nodes from each WM tract based on each diffusion
property. This allowed us to identify the regions in each WM
tract that were most predictive of AD conversion. Once these
nodes were identified, standard statistical tests were performed
to determine if significant C vs. NC group differences existed in
the diffusion values at these nodes. Independent samples t-tests
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FIGURE 1 | Schematic of classification procedure. Within the leave-one-out cross-validation (LOOCV) loop, tract diffusion data from N-1 subjects are normalized
and then recursive feature elimination is applied to select specific datapoints used to train the support vector machine (SVM) model. The model is then tested on the
tract data from the remaining subject. The LOOCV loops over all N subjects. Outside of the loop, classifications are summed to evaluate SVM accuracy and area
under the curve (AUC) values. Additionally, selected datapoints are summed to determine which regions along the tract are selected by the RFE procedure.

were performed at each node where the false discovery rate was
controlled to adjust for multiple comparisons (p < 0.05).

Tract nodes selected by the most accurate classifiers which also
showed significant group differences were considered WM tract
regions most predictive of AD conversion. To further confirm
and quantify the predictability of these regions, a final SVM
classifier was trained and tested. This classifier followed the same
classification procedure outlined above; however, it utilized only
the data from the selected and significant nodes. The accuracy
and AUC of this classifier quantified the final predictive value
of the specific tracts, diffusion properties, and tract regions
implicated in AD conversion.

RESULTS

Tables 2, 3 display the accuracies and AUCs obtained from all
tract diffusion property classifications, respectively. Of the 80
single tract and diffusion property classification tests performed,
10 were found to possess predictive value (i.e., obtained an
accuracy > 0.59 and an AUC > 0.6). Permutation tests confirmed
that these 10 tract and diffusion properties were significantly
accurate in discriminating between C and NC (p < 0.0001,
all tests). It should be noted that radial diffusivity of the right
arcuate fasciculus tract also possessed predictive value, obtaining
an accuracy of 0.60; however, the AUC was 0.35. This suggests

that, while poor at classifying AD converters, radial diffusivity
from this tract classified non-converters well.

The WM tracts where at least one diffusion property had
predictive value include the left and right corticospinal tracts,
the right cingulum hippocampal bundle (right CHB), the right
inferior frontal occipital fasciculus (right IFOF), the left inferior
longitudinal fasciculus (left ILF), the right superior longitudinal
fasciculus (right SLF), and the left uncinate fasciculus.

Of the four diffusion properties, AxD accounted for 60% (6
out of 10) of the diffusion measures from tracts with predictive
value, followed by MD (3 out of 10) and RD (1 out of 10).
FA from all 20 tracts evaluated failed to predict AD conversion
greater than chance, based on accuracy and AUC. Interestingly,
single-tract SVM classifiers based on all diffusion properties
were less predictive than classifiers based on a single diffusion
property for each of the 20 tracts evaluated, and none performed
better than chance.

As an additional exploration of the results obtained from
our classification tests, we decided to evaluate potential sex
differences in the accuracies of each tract and diffusion property.
Although our sample only included nine C and 23 NC
female participants, we found that accuracies were greater
for females than males and greater than overall (male and
female combined) accuracies on almost every tract and diffusion
property classification. Accuracies according to participant sex
are presented in Supplementary Table 1.
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TABLE 2 | SVM classifier accuracies from single tract classification.

ACCURACY

TRACT FA MD RD AxD ALL

Left thalamic radiation 0.63 0.46 0.49 0.55 0.52

Right thalamic radiation 0.61 0.52 0.53 0.45 0.54

Left corticospinal 0.61 0.49 0.55 0.67* 0.59

Right corticospinal 0.55 0.54 0.48 0.61* 0.52

Left cingulum cingulate 0.58 0.51 0.43 0.47 0.57

Right cingulum cingulate 0.56 0.54 0.49 0.60 0.51

Left cingulum hippocampus 0.59 0.52 0.48 0.52 0.59

Right cingulum hippocampus 0.55 0.68** 0.54 0.67** 0.59

Callosum forceps major 0.59 0.55 0.56 0.61 0.51

Callosum forceps minor 0.61 0.59 0.55 0.62 0.59

Left IFOF 0.59 0.55 0.56 0.54 0.59

Right IFOF 0.59 0.58 0.55 0.72** 0.59

Left ILF 0.59 0.60** 0.62** 0.63** 0.59

Right ILF 0.52 0.53 0.56 0.62 0.51

Left SLF 0.61 0.54 0.60 0.58 0.61

Right SLF 0.56 0.56 0.59 0.68* 0.54

Left uncinate 0.53 0.67* 0.58 0.56 0.62

Right uncinate 0.61 0.58 0.59 0.56 0.51

Left arcuate 0.62 0.52 0.55 0.59 0.54

Right arcuate 0.61 0.55 0.60‡ 0.55 0.54

*Indicates accuracy with predictive value of AD conversion.
**Indicates tract diffusion property where statistically significant group differences
at selected nodes were detected.
‡ Indicates accuracy with predictive value of non-conversion to AD.

We identified the specific nodes along each tract that predicted
AD conversion for each diffusion property that possessed
predictive value. These were the specific nodes selected during
SVM classification training by the RFE process. We then
evaluated the diffusion values at each of these selected nodes to
determine where significant C vs. NC group differences existed.
This analysis revealed specific regions (groups of nodes) in
three WM tracts that are most predictive of AD conversion.
Specifically, we found central and terminal (hippocampal)
regions in the right CHB tract; a central region in the right
IFOF tract; and posterior and anterior regions in the left ILF
tract (Figure 2). These regions were identified across multiple
diffusion measures in the right CHB and left ILF tracts.

As a final measure of the predictive value of these selected and
significant WM regions, a final SVM classifier was trained and
tested using only the diffusion data at these specific nodes. This
classifier achieved an accuracy of 0.75 and an AUC of 0.72. The
RFE process from this final classifier revealed that nodes from all
three WM tracts were selected: node 96 in the right CHB (mean
diffusivity), nodes 37–45 in the right IFOF, and node 86 in the left
ILF (axial diffusivity).

DISCUSSION

In the current study, tractography-based SVM classifiers were
used to evaluate differences between stable MCI patients and
those who converted to AD based on four diffusion properties

from 20 major WM tracts. A classifier was developed for each
diffusion property from each WM tract independently, so that
the predictive value of individual tracts and diffusion properties
could be evaluated separately. Results revealed seven WM tracts
predictive of AD conversion. Axial diffusivity was the most
predictive property of AD conversion, followed by mean and
radial diffusivities. Additional analyses revealed specific regions
along each of these tracts that predicted conversion. When these
regions were tested for significant group differences between
AD converters and non-converters, regions from three tracts
emerged as the most likely indicators of AD conversion risk:
central and terminal regions of the right CHB, central regions
of the right IFOF, and posterior and anterior regions of the
left ILF WM tracts.

In the current study, we found that the right CHB tract,
the right IFOF tract, and the left ILF tracts were the most
predictive of AD conversion in MCI patients. These tracts
connect to GM structures associated with memory function,
and WM compromise in these tracts has been associated with
increased risk of AD conversion (Fu et al., 2014; Gold et al., 2012;
Mielke et al., 2012). In particular, the CHB and ILF tracts are the
major connecting fibers of the parahippocampal gyrus (Lin et al.,
2021). Our analysis shows that the parahippocampal terminal
regions of both of these tracts are compromised in at-risk MCI
patients, consistent with previous reports (Mielke et al., 2012;
Marcos Dolado et al., 2019). Interestingly, in a study reported by

TABLE 3 | SVM classifier areas under curves (AUCs) from single
tract classification.

AUC

TRACT FA MD RD AxD ALL

Left thalamic radiation 0.58 0.38 0.55 0.48 0.44

Right thalamic radiation 0.55 0.36 0.25 0.43 0.40

Left corticospinal 0.47 0.37 0.39 0.71* 0.52

Right corticospinal 0.41 0.39 0.41 0.61* 0.44

Left cingulum cingulate 0.53 0.35 0.40 0.39 0.52

Right cingulum cingulate 0.43 0.44 0.56 0.41 0.51

Left cingulum hippocampus 0.49 0.49 0.43 0.49 0.55

Right cingulum hippocampus 0.33 0.72** 0.61 0.68** 0.61

Callosum forceps major 0.45 0.53 0.51 0.53 0.41

Callosum forceps minor 0.48 0.47 0.24 0.58 0.45

Left IFOF 0.44 0.56 0.51 0.54 0.56

Right IFOF 0.51 0.53 0.56 0.67** 0.50

Left ILF 0.44 0.61** 0.67** 0.65** 0.59

Right ILF 0.40 0.53 0.59 0.53 0.42

Left SLF 0.41 0.45 0.54 0.50 0.57

Right SLF 0.48 0.64 0.59 0.72* 0.46

Left uncinate 0.23 0.61* 0.51 0.49 0.59

Right uncinate 0.44 0.45 0.64 0.57 0.49

Left arcuate 0.53 0.40 0.32 0.49 0.43

Right arcuate 0.42 0.41 0.35‡ 0.43 0.24

*Indicates accuracy with predictive value of AD conversion.
**Indicates tract diffusion property where statistically significant group differences
at selected nodes were detected.
‡ Indicates accuracy with predictive value of non-conversion to AD.
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FIGURE 2 | Tract nodes selected by the RFE procedure for tracts with predictive value. Top images display tracts from one participant overlaid on structural images
in axial view. Bottom graphs are histograms displaying the percentage of times each tract node was selected by the RFE procedure. Red lines above bars indicate
nodes where significant C vs. NC group differences were detected. Left: right CHB tract; Middle: right IFOF tract; Right: left ILF tract.

Solodkin et al., 2013, which performed a DTI analysis restricted
to the parahippocampal gyrus, the authors found that anterior
regions of the gyrus were compromised in MCI patients who
converted to AD, while patients with AD had WM compromise
throughout the gyrus, suggesting that this region may be affected
early during prodromal stages of the disease. The right IFOF
connects frontal cortical regions to occipital, posterior temporal,
and parietal cortices (Sarubbo et al., 2011). Loss of WM integrity
in the IFOF has been implicated as a risk factor for conversion
to AD (Bendlin et al., 2010; Smith et al., 2010; Fu et al., 2014),
and AD patients exhibit widespread compromise along the IFOF
tract, including anterior, posterior, and central regions which is
associated with memory impairment (Nir et al., 2015; Chen et al.,
2020; Dou et al., 2020). Our results suggest that compromise
to the central region of the IFOF may precede more extensive
damage and be an early stage of disease progression.

In our study, axial diffusivity was the diffusion measure
which was the greatest predictor of AD conversion. Changes
in axial diffusivity have been associated with axonal injury
or compromise (Song et al., 2003; Mac Donald et al., 2007;
Winklewski et al., 2018), and our findings thus suggest that loss

of axonal integrity may be an early indicator of AD risk. Of
the few studies that have examined DTI measures as potential
predictors of AD conversion, most report changes in fractional
anisotropy or mean diffusivity (Fu et al., 2014; Brueggen et al.,
2015; Dyrba et al., 2015; Makovac et al., 2018; Marcos Dolado
et al., 2019), suggesting that changes in mean diffusivity may
predict AD conversion. Given that mean diffusivity is a composite
measure that reflects both axial and radial diffusivity, it is possible
that the predictive value of mean diffusivity is driven by loss of
axonal integrity; however, more research is needed. Nevertheless,
our results highlight the merit in examining multiple diffusivity
measures when identifying patients at risk of AD conversion.

Although not a central focus of our study, the analysis of sex
differences in tract and diffusion property classification revealed
that differences between C and NC MCI patients were greater
for females than males. This is consistent with reports that men
and women differ in incidence, pathology, and progression to AD
from MCI (Kim et al., 2015; Mazure and Swendsen, 2016). While
an intriguing finding, it should be noted that our low sample size
of women in the current study (32 females total with nine AD
converters) warrants caution in reaching definitive conclusions.
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As the ADNI project is an on-going study, it is likely that
more female MCI patients (converters and non-converters) will
emerge, and a clearer picture of sex differences in AD conversion,
specifically WM tract changes, will allow clinicians to develop
more sex-targeted interventions and treatments.

Additionally, the MCI patients in our study had several
significant differences in measures of whole brain GM and WM
volumes, as well as differences in WMH burden with the AD
conversion group showing greater total lesion volume compared
to non-converters. Higher WMH burden has been associated
with dementia, including AD, and is often already present in
MCI patients (Debette and Markus, 2010). However, the impact
that WMH lesions have on WM tract integrity is less clear. In
a recent study by Reginold et al., 2018, the authors specifically
examined WMH impact on corticospinal WM tracts in a healthy
control population. They concluded that a pattern of Wallerian-
type degeneration occurs when lesions directly transect WM
fibers, impacting the fiber along its length, while fibers near
WMH lesions show a penumbra effect, compromising nearby
tract integrity with decreasing effect with distance. Since we did
not specifically examine interactions between WMH lesions and
tract integrity, the WM tract changes we observed could have
resulted from either or both possibilities in affected tracts. The
degree to which WMH differences between our groups resulted
in the WM tract differences we observed remains an intriguing
question. The focus of future research will be to determine how
WMHs evolve in AD and how they interact with changes in WM
tract integrity.

White matter tissue loss in AD has traditionally been
regarded as secondary to GM tissue loss (Roher et al., 2002),
a view supported by the amyloid cascade hypothesis (Hardy
and Higgins, 1992). However, there is evidence that WM
damage in AD occurs independently of GM damage, and
the relationship between GM and WM loss during disease
progression is likely complex. For example, several studies have
reported that WM damage may precede hippocampal atrophy
during prodromal stages of AD and may be a better predictor
of conversion to AD than GM tissue damage (Agosta et al.,
2011; Brickman et al., 2012; Zhuang et al., 2013). There is also
emerging evidence that WM loss may result in downstream GM
neurodegeneration. In a recent study by Araque Caballero et al.,
2018, the authors found that specific WM tracts are affected
years before symptoms in early-onset autosomal dominant AD,
where increased degeneration in callosal and projection WM
tracts was associated with increased GM damage in the projection
zones of these tracts. This evidence is supported by the discovery
that tau pathology is propagated along connected WM pathways
and that tau accumulates in downstream regions connected to
affected WM tracts (Jacobs et al., 2018). It is reasonable to suspect
that interactions between GM and WM tissue damage evolve
during AD progression and that different regions will show
different neurodegenerative patterns at different stages during
the disease. In future research, we intend to extend our findings
by investigating degeneration in regions where predictive WM
tracts originate and terminate across disease progression, and a
clearer pattern of GM and WM interactions in AD progression
may emerge.

There is evidence that WM degeneration, as detected non-
invasively through DTI, may contribute to other forms of
dementia, particularly vascular dementia (Finsterwalder et al.,
2020; Vemuri et al., 2018). An intriguing question is the extent to
which the biomarkers predictive of AD conversion investigated
here are specific to AD or whether they may reflect risk for
other forms of dementia. Emerging research which employs DTI
measures to parse vascular and AD dementias may shed light on
these questions (Raja et al., 2020).

There are several limitations to the current study that should
be noted. First, we acknowledge that the number of AD
converter and non-converter participants used in our study is
small. Unfortunately, despite the increasing application of DTI
in longitudinal studies of AD and dementia, there remains a
paucity of such data. Indeed, it is a limitation of many studies
investigating AD conversion based on DTI metrics. We anticipate
that, as research continues, more DTI data will become available,
and the results obtained in the present study can be further
tested. Nevertheless, we believe that our approach for detecting
potential WM changes predictive of AD conversion, which
emphasizes individual tract and diffusion property classification,
will facilitate the search for effective biomarkers as more data
are collected. A second limitation of the current study is that
the differences between MCI groups were examined at only one
timepoint for each participant. Subtleties in the dynamics of WM
changes as they progress from MCI to AD are likely missed.
Planned research, which incorporates longitudinal data, may
reveal additional vulnerabilities in patients who convert to AD, as
well as factors that confer resilience in those patients who do not.
Finally, we note that our choice of SVM classifiers is only one of
many potential machine learning approaches. Machine learning
has been used extensively in recent years for early AD diagnosis,
where its utility in recognizing patterns in complex neuroimaging
data has been exploited to effectively classify and discriminate
between early AD and MCI patients (for recent reviews, see
Rathore et al., 2017; Martí-Juan et al., 2020; Tanveer et al.,
2020). Although other approaches exist (e.g., logistic regression,
artificial neural networks, linear discriminant analyses, Bayes
classifiers), several studies which have directly compared machine
learning algorithms in AD classification suggest SVM classifiers
perform as well as or better than other approaches and remain
one of the most widely-used (Cabral et al., 2015; Zhang and
Liu, 2018; Tanveer et al., 2020; Wen et al., 2021). Nevertheless,
different approaches could yield additional findings regarding
WM tract integrity as a potential predictor of AD conversion.

Ongoing research has revealed multiple potential predictors
of risk of AD conversion, and several candidate biomarkers
have emerged. These include molecular biomarkers of amyloid
beta deposition and early neuronal damage, neuroimaging
biomarkers of structural GM neurodegeneration and cerebral
atrophy, neuropsychological markers of cognitive decline, as well
as combinations of multiple markers (Ewers et al., 2012; Zhang
and Shen, 2012; Nanni et al., 2018). Our results complement this
earlier work and provide additional indicators of potential risk
of developing AD. The need to discover definitive biomarkers
for AD prediction and diagnosis is most clearly realized by
radiologists, clinicians, and diagnosticians whose patients’ care
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and management depend on their assessments. DTI is a non-
invasive means to detect WM changes and, with increasing
evidence that WM degeneration is a central component of AD
progression, provides additional measures that can facilitate
effective and reliable prognoses. Further, with the development
and availability of more sophisticated tools, such as automatic
tractography, novel WM predictors can be readily incorporated
into the diagnostic profile. Hopefully, our results will help guide
clinicians as they make determinations about those patients at
greatest risk of developing AD.
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