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The oldest-old subjects represent the fastest growing segment of society and are
at high risk for dementia with a prevalence of up to 40%. Lifestyle factors, such
as lifelong participation in cognitive and leisure activities, may contribute to individual
cognitive reserve and reduce the risk for cognitive impairments. However, the neural
bases underlying cognitive functioning and cognitive reserve in this age range are still
poorly understood. Here, we investigate spectral and functional connectivity features
obtained from resting-state MEG recordings in a cohort of 35 cognitively normal
(92.2 ± 1.8 years old, 19 women) and 11 cognitively impaired (90.9 ± 1.9 years old,
1 woman) oldest-old participants, in relation to cognitive traits and cognitive reserve.
The latter was approximated with a self-reported scale on lifelong engagement in
cognitively demanding activities. Cognitively impaired oldest-old participants had slower
cortical rhythms in frontal, parietal and default mode network regions compared to the
cognitively normal subjects. These alterations mainly concerned the theta and beta band
and partially explained inter-subject variability of episodic memory scores. Moreover, a
distinct spectral pattern characterized by higher relative power in the alpha band was
specifically associated with higher cognitive reserve while taking into account the effect
of age and education level. Finally, stronger functional connectivity in the alpha and beta
band were weakly associated with better cognitive performances in the whole group of
subjects, although functional connectivity effects were less prominent than the spectral
ones. Our results shed new light on the neural underpinnings of cognitive functioning in
the oldest-old population and indicate that cognitive performance and cognitive reserve
may have distinct spectral electrophysiological substrates.
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INTRODUCTION

The oldest-old population, including individuals aged
85–90 years and older, is the fastest growing segment of
Western societies (Corrada et al., 2010; Legdeur et al., 2018).
The number of oldest-old is estimated to increase fivefold
in the coming decades, resulting in 77 millions of oldest-old
individuals worldwide by 2050 (United Nations, Department
of Economic and Social Affairs, Population Division, 2019).
Many of these individuals will suffer from cognitive impairments
and dementia, with a dementia prevalence of up to 40% in
this age range and major implications for public health and
society (Bullain and Corrada, 2013; Yang et al., 2013). The
identification of dementia’s neuropathological substrate becomes
increasingly challenging with age (Yang et al., 2013). This is due
to an increasing prevalence of Alzheimer’s and cerebrovascular
pathologies (the most common causes of dementia) among
non-demented oldest-old individuals (Wharton et al., 2011;
Paolacci et al., 2017; Legdeur et al., 2019), and to a more
frequent co-occurrence of multiple dementia-related pathologies
(Corrada et al., 2012; James et al., 2012). In parallel, convergent
evidence suggests that different lifestyle factors may contribute
to individual cognitive reserve-defined as the adaptability of
functional brain processes to cope with aging or pathological
processes (Stern, 2009; Stern et al., 2018)- and protect from,
or delay cognitive decline and incidence of clinical dementia
(Verghese et al., 2003; Pettigrew et al., 2019; Soldan et al., 2021)
even in presence of extensive brain pathologies (Xu et al., 2019).
Yet, the neural underpinnings of cognitive functioning and
history of lifelong engagement in cognitive activities in the
oldest-old population are not clear.

Few electrophysiological studies have investigated the
brain functional substrate of cognitive impairments in the
oldest-old population, since data for this age range are scarce
(Yang et al., 2013; Legdeur et al., 2018). Studies that used
electroencephalography (EEG) or magnetoencephalography
(MEG) in older adults aged 65–80 years found that demented
subjects and subjects at risk of developing dementia have
brain functional alterations with slowing of cortical oscillations
(Babiloni et al., 2006; Fernández et al., 2006; van der Hiele et al.,
2007; de Haan et al., 2008), reduced functional connectivity
in the higher frequency bands in posterior, parietal and limbic
brain regions, and stronger functional connectivity between
frontal and posterior areas (Engels et al., 2017; Miraglia et al.,
2017; Maestú et al., 2019; Babiloni et al., 2020a). However,
it is unknown whether comparable spectral and functional
connectivity patterns are observable in cognitively impaired
oldest-old compared to cognitively normal oldest-old, and
how these patterns could relate to protective and cognitive
reserve factors.

Little research has been done on the electrophysiological
substrate of cognitive reserve (Šneidere et al., 2020; Balart-
Sánchez et al., 2021). Results on resting-state data are
controversial with studies reporting involvement of alpha
rhythms (Babiloni et al., 2020b), gamma rhythms (Yang and
Lin, 2020), or no association with cognitive reserve (López
et al., 2014). One study found negative and positive associations

between whole-brain EEG functional connectivity and cognitive
reserve in younger and older healthy adults, respectively,
suggesting possible shifts in the relationship between brain
electrophysiology and cognitive reserve with aging (Fleck et al.,
2017). In light of these considerations, understanding the
possibly age-specific (Gonzalez-Escamilla et al., 2018) neural
underpinning of cognitive impairment and cognitive reserve
in the oldest-old is key to identifying protective factors for
cognitive decline, testing prevention and treatment options,
and monitoring dementia-related pathological evolution in
this age segment.

MEG is a neuroimaging technique that allows quantifying
electrophysiological patterns at the individual subject level
by probing the magnetic fields associated with postsynaptic
potentials by means of sensor arrays that cover the whole
head (Hämäläinen et al., 1993; Stam, 2010; Hari and Puce,
2017; Gross, 2019). Signal contributions from different brain
regions can be estimated from sensor-level data using source-
reconstruction algorithms (Baillet et al., 2001), including
beamforming techniques (Hillebrand et al., 2005), and further
analyzed to elucidate spectral features of neuronal activity and
functional couplings between regions (Hillebrand et al., 2012).
MEG studies have revealed the functional organization of the
brain across different frequency bands into large-scale systems,
including the visual, sensorimotor and default mode networks
(de Pasquale et al., 2010; Brookes et al., 2011; Hipp et al.,
2012), and its disruption in neurodegenerative disorders (Stam,
2014) and dementia (Stam, 2010; Engels et al., 2017; Hughes
et al., 2019) but have not been applied to the oldest-old. The
objective of this study is to elucidate the relation between spectral
and functional connectivity properties of MEG oscillations and
cognitive impairments in a unique cohort of oldest-old subjects
from the EMIF-AD 90 + Study (Legdeur et al., 2018), and to
investigate the relationship between these neural biomarkers and
lifelong engagement in cognitively demanding activity, a possible
protective factor for cognitive decline and proxy for cognitive
reserve (Stern, 2009; Landau et al., 2012).

MATERIALS AND METHODS

Subjects
60 subjects (91.8 ± 2.0 years of age, 37 females) were recruited
at the Amsterdam University Medical Centers (Amsterdam
UMC), The Netherlands, in the framework of the EMIF-AD
(European Medical Information Framework for AD) 90 + Study
(Legdeur et al., 2018), a case-control study with cognitively
normal and impaired individuals to investigate the protective
factors for cognitive impairment in the oldest-old population.
In order to increase the power of our study and in agreement
with others (Bullain and Corrada, 2013), we also included 4
subjects aged between 88 and 90 years. Neurological disorders
(e.g., stroke or epilepsy), severe depression (Geriatric Depression
Scale (GDS) > 11) (Yesavage et al., 1982) and visual or
auditory impairments that made neuropsychological testing
impossible, were exclusion criteria. Moreover, 14 out of 60
subjects were excluded from further analyses because of missing
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MRI data, low-quality MEG recordings or poor MRI-MEG
co-registration (see below), so that a restricted subset of 46
subjects (91.9 ± 1.9 years of age, 29 females) were included in
the final analyses. This study was approved by the local Medical
Ethics Review Committee of the Amsterdam UMC, and all
subjects provided written informed consent.

Clinical and Cognitive Assessment
Each participant underwent a comprehensive
neuropsychological, functional and clinical assessment.
Neuropsychological and functional testing was administrated by
a neuropsychologist; clinical diagnosis was made by a neurologist,
geriatrician or general practitioner (McKhann et al., 1984;
Petersen, 2004). Subjects were considered cognitively normal
(CN) if they scored 0 points on the Clinical Dementia Rating
(CDR) scale (Morris, 1993) and had no clinical diagnosis of
dementia or mild cognitive impairment (35 CN, 92.2 ± 1.8 years
of age, 19 females). Cognitively Impaired (CI) subjects (11 CI,
90.9 ± 1.9 years of age, 10 females) had a CDR score larger than
0 points (median CDR = 1) and a clinical diagnosis of probable
Alzheimer’s disease (AD, 10 subjects) or amnestic mild cognitive
impairment (aMCI, 1 subject).

The overall cognitive ability of each participant was assessed
with the Mini-Mental State Examination (MMSE) (Folstein et al.,
1983). Executive control was tested with the letter fluency test
(1 min per letter, letters D-A-T) (Tombaugh et al., 1999),
the processing speed with the Trail Making Tests (TMT)-B
score (Reitan, 1958; Broshek and Barth, 2000), and episodic
memory with the total score of the CERAD (Consortium to
Establish a Registry for Alzheimer’s Disease) battery over three
trials (Rossetti et al., 2010). Lifelong engagement in cognitive
activities was assessed with a retrospective self-reported scale
quantifying how often the participant engaged in common
cognitively demanding activities that depend minimally on
socioeconomic status, such as reading books or newspapers,
playing games or writing letters (Wilson et al., 2003; Landau et al.,
2012). Specifically, each participant was asked to rate her/his
engagement in these activities at 6, 12, 18, 40, and current years
of age, according to a 5-level frequency scale (once a year or
never/several times a year/several times a month/several times a
week/several times a day). From the questionnaire responses, two
composite scores were computed: the current cognitive activity
(cCAQ) (average score at current age), and the past cognitive
activity (pCAQ) (average score across ages 6, 12, 18, and 40 years)
(Landau et al., 2012). The lifelong engagement in leisure and
cognitively stimulating activities has been associated with lower
dementia risk (Verghese et al., 2003; León et al., 2014; Wang et al.,
2017), slower hippocampal atrophy (Valenzuela et al., 2008) and
amyloid accumulation (Landau et al., 2012) in aging, and it is
considered a proxy of individual cognitive reserve.

Brain Imaging
Magnetic Resonance Imaging Acquisition and
Processing
Each subject underwent an MRI session on a 3T Philips
Achieva scanner equipped with an 8-channel head coil, which

included a structural three-dimensional (3D) T1-weighted
acquisition (sagittal gradient-echo sequence; isotropic voxel
size 1 × 1 × 1 mm3, TR 7.9 ms, TE 4.5 ms, flip angle
8◦). T1-weighted volumes were skull-stripped, corrected for
intensity inhomogeneity, and segmented into gray matter, white
matter, and cerebrospinal fluid compartments with the Statistical
Parametric Mapping (SPM) toolbox, version 8 (Penny et al.,
2011). The gray matter compartment was then parcellated into
78 cortical regions of interest (ROIs) according to the Automatic
Anatomical Labeling (AAL) atlas and 2 hippocampal regions
(Tzourio-Mazoyer et al., 2002; Gong et al., 2009; Supplementary
Table 1) through spatial normalization of the T1-weighted
volumes to MNI space and application of the inverse MNI-
to-native transform to bring the parcellation volume to native
space [SPM version 8 (Penny et al., 2011)]. The correspondence
between the 80 gray matter regions and the 7 resting state
networks (RSNs) defined by Yeo et al. (2011) was assessed with
a majority-voting procedure in MNI space (MNI-normalized
atlases from the Lead-DBS database (Horn and Kühn, 2015) were
used) using in-house MATLAB code (Supplementary Table 1).

Magnetoencephalography Recording and
Preprocessing
Magnetic fields were recorded with a 306-channel whole-
head MEG system (Elekta Neuromag Oy, Helsinki, Finland)
inside a magnetically shielded room (Vacuumschmelze, Hanau,
Germany), at a sampling frequency of 1,250 Hz. An online anti-
aliasing filter of 410 Hz and a high-pass filter of 0.1 Hz were
applied to sensor-level signals. The MEG protocol consisted of
a 5-min eyes-closed recording in resting-state condition, during
which subjects were instructed to remain awake and cognitively
alert, but they were not assigned any specific task.

Sensor-level time-series were visually inspected to identify
‘bad’ channels (i.e., flat channels and channels affected by
high-frequency noise or jump artifacts), which were excluded
before applying temporal signal-space separation (tSSS)
(min/median/max = 6/11/13 excluded channels per subject).
Next, artifact components originating from outside the head
volume, including both external noise sources and biomagnetic
sources, were removed with the tSSS algorithm implemented in
MaxFilter software (Elekta Neuromag Oy, version 2.2.15) (Taulu
and Simola, 2006; Taulu and Hari, 2009). For the tSSS parameter
setting, an automatic adjustment of the subjects’ sphere center
coordinates (Supplementary Material SI.1 and Supplementary
Figures 1, 2), a subspace correlation limit of 0.9, and a sliding
window of 10 s were used.

The position of the head with respect to the MEG sensors
was assessed by means of five Head Position Indicator (HPI)
coils and monitored during the recording. The outline of each
subject’s scalp (approximatively 500 points) and the HPI coils
were digitized with a 3D digitizer (Fastrak, Polhemus, Colchester,
VT, United States), and registered to the MRI space using a
surface-matching procedure with an approximate accuracy of
4 mm (Whalen et al., 2008). A sphere was then fitted to the outline
of the scalp as obtained from the co-registered MRI, which was
used as a volume conductor model for the beamformer algorithm
(see next section).
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Source Reconstruction
In order to obtain source-localized activity, the sensor-level
preprocessed time-series were projected to 80 locations (sources)
in the cortex corresponding to the centroids of the AAL and
bilateral hippocampal ROIs, using a beamforming approach
(Hillebrand et al., 2012, 2016). Briefly, the sensor-level data were
spatially filtered to estimate the contribution to each source’s
time-series. For each source, the filter weights were determined
from the broad-band (0.5–48 Hz) data covariance matrix and the
forward solution (lead field) of the target source according to a
scalar minimum variance beamformer (Hillebrand and Barnes,
2005; Hillebrand et al., 2005).

From the source-reconstructed time-series, 8 (not necessarily
consecutive) epochs of 13.1 s duration (16,384 samples) were
selected for each subject using an automatic procedure. Epochs
possibly corrupted by artifacts or during which the subjects
may have been drowsy were identified and discarded, based
on the presence of extreme values in the temporal domain
(indicators of artifacts such as eye movement or high frequency
noise), individual peak frequency (IPF) outliers, and low alpha1
occipital power content (indicators of transition to the first stages
of sleep; Hari and Puce, 2017; Supplementary Material SI.2
and Supplementary Figure 3). Out of the remaining epochs,
the 8 epochs with the highest individual alpha peak frequency
and alpha1 occipital power content were selected for each
subject, in order to include an equal amount of data for each
subject while avoiding possible drowsiness biases across subjects
(Supplementary Material SI.2 and Supplementary Figure 3).
A random subsample of the epochs selected by this automatic
procedure was visually inspected to ensure data quality.

Spectral Analysis
For each selected epoch (16,384 samples), the power spectral
densities (PSDs) of the source-level time-series were estimated
using the periodogram method implemented in MATLAB. The
IPF was computed as the frequency at which the average PSD
in the occipital regions peaked (Supplementary Table 1), in the
range 4–13 Hz. The total power (i.e., the integral of the PSD)
in the frequency range 0.5–48 Hz, and the relative band power
(RBP) in the delta (0.5–4 Hz), theta (4–8 Hz), alpha1 (8–10 Hz),
alpha2 (10–13 Hz), beta (13–30 Hz) and gamma (30–48 Hz) band
(i.e., the integral of the PSD in each frequency range, normalized
by the total power) were computed for each ROI, epoch, and
subject. Values were then averaged over epochs in order to obtain
single values per ROI per subject.

Functional Connectivity Analysis
Single epoch MEG data were used to build 80 × 80 functional
connectivity matrices for each frequency band of interest. For
each epoch and subject, the source-level time-series were band-
pass filtered into the six bands of interest (delta, theta, alpha1,
alpha2, beta, and gamma) using a two-way least-square finite
impulse response (FIR) filtering as implemented in EEGLAB
(Delorme and Makeig, 2004). Band-pass filtered time-series were
then pair-wised orthogonalized to correct for the effects of spatial
leakage (i.e., removing zero-lag coupling components). This
correction scheme was applied at the single epoch level, and in

both directions (orthogonalization of a signal i with respect to
a signal j, and vice versa). Next, orthogonalized time-series were
Hilbert-transformed and their amplitude envelopes (magnitude
of the analytic signal) were pair-wise correlated using the
Pearson’s correlation coefficient, thus computing the corrected
Amplitude Envelop Correlation (AECc) (Brookes et al., 2012;
Hipp et al., 2012). The AECc is a robust functional connectivity
measure comprised between −1 and 1 that demonstrates high
levels of within- and between-subject consistency and group-
level reproducibility (Colclough et al., 2016; Sareen et al., 2021).
The resulting functional connectivity matrices were then made
symmetric by averaging their upper and lower triangular parts,
averaged over the 8 epochs, and used to compute (i) the average
functional connectivity at the whole-brain level (i.e., the average
over all functional connections between the 80 cortical ROIs),
and (ii) the nodal functional connectivity strength (i.e., the row-
wise sum of the functional connectivity matrices) for each subject.
Group-average functional connectivity matrices for the CI and
CN group are shown in Supplementary Figure 4.

Statistical Analyses
Statistical differences between the CI and CN group were
assessed with ANCOVA analyses within a general linear model
(GLM) formulation. Age and gender were added as covariates
in all the analyses. Considering that functional connectivity
and band power content are positively related (Demuru et al.,
2020), the RBP was added as covariate in supplementary
analyses when comparing functional connectivity values. The
effect size was quantified with the Cohen’s d coefficient (Cohen,
2013) between GLM residual distributions, after correcting for
covariates. When multiple comparisons were performed (e.g.,
when comparing region-wise RBP or functional connectivity
strength), the false discovery rate (FDR) was controlled at
0.05 level with the Benjamini-Hochberg procedure (Meskaldji
et al., 2013). Pair-wise associations between cognitive scores
were assessed with the Spearman’s rank correlation coefficient
(ρ). Multivariate relationships between spectral or functional
connectivity brain features and cognitive scores (including
cognitive reserve indicators) were assessed with partial least
square correlation (PLSC) analyses (Krishnan et al., 2011). PLSC
identifies multivariate correlation patterns through singular value
decomposition of the data covariance matrix. This operation
results in a set of orthogonal and paired brain and cognitive
saliences, each one representing a pattern of brain and cognitive
features with maximum covariance. To interpret the brain
and cognitive saliences, we computed the Pearson’s correlation
coefficient between the original data and their projection onto
the respective saliences, which results in the so-called brain
and cognitive loadings (Kebets et al., 2019). A large positive
(or negative) loading for a particular brain (cognitive) feature
indicates a greater contribution of that feature to the multivariate
correlation pattern. The statistical significance of the multivariate
correlation patterns was assessed with permutation testing (1,000
permutations, correlation patterns with p < 0.05 after FDR
correction were deemed significant). The reliability of brain
and cognitive loadings for the significant correlation patterns
was assessed with bootstrapping (500 random data resamplings)
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and computing standard scores with respect to the bootstrap
distribution (loadings were considered reliable for absolute
standard score > 3) (Krishnan et al., 2011; Zöller et al., 2019). For
the PLSC analyses, missing cognitive scores were imputed using
the 4-nearest-neighbor method.

All the analyses were performed with MATLAB (The
MathWorks, Inc., version R2019b).

RESULTS

Subjects and Cognitive Profiles
We investigated the spectral and functional connectivity profiles
of MEG data recorded in 35 CN and 11 CI oldest-old subjects.
The demographic, clinical and cognitive characteristics of the
two groups, and the related statistical comparisons, are reported
in Table 1. There was a significant difference between the two
groups in terms of age [Student’s t-test, t(44) = 2.03, p = 0.048,
CI < CN, difference of the means = 1.3 years] and gender
[proportionally fewer women in the CI group, Chi-square test,
C2(1, N = 46) = 4.82, p = 0.028], and no significant difference
in years of education or GDS TOTAL score. By definition CI
subjects had significantly lower MMSE total [F(1, 42) = 60.73,
p < 10−9] and CERAD total [F(1, 42) = 19.15, p = 0.000073]
scores, indicating overall cognitive impairment and reduced
episodic memory performances compared to CNs, when taking
into account the effects of age and gender. There were no
differences between CNs and CIs with respect to letter fluency
and TMT-B scores. At the time of this study, CI subjects engaged
less frequently in cognitively demanding activity compared to
CN subjects [cCAQ, F(1, 40) = 5.03, p = 0.030]. CN and
CI oldest-old subjects did not differ in terms of cognitive
reserve (i.e., there was no difference between CNs and CIs with
respect to pCAQ scores). The rank correlations between age,
years of education, cognition, and cognitive reserve scores in
the whole groups of subjects are reported in Figure 1. There
were statistically significant (FDR < 0.05) positive correlations
between education level and pCAQ [(44) = 0.54, p = 0.0010];
verbal fluency and MMSE [(44) = 0.70, p < e−7); verbal
fluency and cCAQ (ρ(44) = 0.45, p = 0.0016]; CERAD total
and MMSE [ρ(44) = 0.40, p = 0.0062]. The pCAQ score was
also positively correlated with the verbal fluency [(44) = 0.36,
p = 0.020], but this association did not survive multiple
comparison correction.

Spectral Features in the Theta and Beta
Bands Are Altered in Cognitively
Impaired Oldest-Old Subjects
Spectral features of the CN and CI MEG were quantified with the
IPF and the relative band power (RBP) in six frequency bands,
both at the whole-brain and regional levels. Before computing
IPF and RBP values, we verified that there was no significant
difference in global power (i.e., average over all the 80 brain
regions; [F(1, 42) = 0.06, p = 0.81] or total power estimated
over the occipital regions only [F(1, 42) = 1.27, p = 0.27,
Supplementary Table 1] between the CN and CI groups.

On average, CI subjects had lower IPF than CN subjects, but
this difference did not reach statistical significance (mean ± std
IPF: CN = 9.1 ± 0.8 Hz, CI = 8.7 ± 0.3 Hz; [F(1, 42) = 2.44,
p = 0.13]. We found significantly higher whole-brain theta RBP
[F(1, 42) = 14.54, p = 0.00044, d = 1.15] and lower beta RBP
[F(1, 42) = 16.82, p = 0.00018, d = –1.23] in CI compared to
CN subjects (Figure 2). Moreover, the individual theta and beta
RBP values were strongly negatively correlated across subjects
[linear correlation coefficient r(44) = –0.79, p < e-10], suggesting
an overall shift of the average MEG spectrum toward the lower
frequencies in CI subjects. This effect is qualitatively illustrated
by the group-average power spectral density curves in Figure 2A.
There was also a significant decrease of whole-brain gamma
RBP in CI compared to CN subjects, but this effect had smaller
effect size than was the case for the theta and beta bands
[F(1, 42) = 4.19, p = 0.047, d = –0.63]. No significant CI-CN
whole-brain RBP differences were found in the delta, alpha1 or
alpha2 frequency band.

Next, we investigated the spectral properties of CN and CI
time-series at the level of the individual cortical regions. We
found spatially diffuse CI-CN RBP alterations in the theta and
beta band with 73 and 77 regions surviving multiple comparison
correction, respectively (FDR < 0.05). In the theta band, RBP
was higher in CI compared to CN subjects in the frontal lobe,
including superior frontal and anterior cingulate cortices, in the
primary and association somatosensory cortices, and, to a lesser
extent, in the parietal and temporal lobes (no region showed
lower theta RBP) (Figure 3A). In the beta band, RBP was lower

TABLE 1 | Demographic and cognitive characteristics.

CN (n = 35) CI (n = 11) p-values

Demographic and clinical indicators

Age, years 92.2 (1.8) 90.9 (1.9) 0.048*

Gender, F/M 19/16 1/10 0.028*

Education, years 12.5 (4.7) 12.4 (4.2) 0.94

GDS TOTAL 1.7 (1.6) 3.0 (2.3) 0.057

Cognition

MMSE, points 28.3 (1.1) 23.2 (3.4) <e-9**

DAT fluency, number 28.2 (7.9) 23.0 (10.9) 0.090

TMT-B, seconds 268 (125) 217 (105) 0.15

CERAD TOTAL, words 16.6 (3.5) 11.4 (3.4) 0.000073**

Cognitive engagement

cCAQ, points 3.2 (0.6) 2.6 (1.0) 0.03*

pCAQ, points 2.5 (0.6) 2.8 (0.6) 0.49

Column 1: demographic, clinical and cognitive indicators. Columns 2 and 3: group-
mean (standard deviation) values for continuous variables for the 35 cognitively
normal (CN) and 11 cognitively impaired (CI) subjects. Column 4: p-values
for statistical comparisons between CN and CI groups (one-way ANOVA for
continuous and interval variables; chi-square test for categorical variables).
*p < 0.05; **p < 0.001. GDS TOTAL score was missing for 1 CI subject; TMT-B
for 8 CN and 5 CI subjects; pCAQ for 1 CN and 1 CI subject; cCAQ for 1 CN
and 1 CI subject. Reported statistics are based on available data. GDS, Geriatric
Depression Scale; MMSE, Mini-Mental State Examination; CERAD, total score of
the Consortium to Establish Registry for Alzheimer’s Disease; DAT, letters D-A-
T fluency test; TMT-B, Trail Making Tests B score; cCAQ, current engagement in
cognitively demanding activities; pCAQ, past engagement in cognitively demanding
activities.
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FIGURE 1 | Relationships between cognitive and cognitive reserve scores.
The matrix entries represent the Spearman’s rank correlation coefficient
between cognitive performances, cognitive reserve, age and education level.
Correlations surviving multiple comparison correction (FDR < 0.05) are
indicated with an asterisk. Edu, education level; MMSE, Mini-Mental State
Examination; CERAD, total score of the Consortium to Establish Registry for
Alzheimer’s Disease; DAT, letters D-A-T fluency test; TMT-B, Trail Making Tests
B score; cCAQ, current engagement in cognitively demanding activities;
pCAQ, past engagement in cognitively demanding activities.

in CI compared to CN subjects in superior parietal regions
(including the postcentral gyrus), posterior cingulate/precuneus,
dorsolateral prefrontal, and anterior cingulate cortices (no region
showed higher beta RBP) (Figure 3A). Globally, these spectral

alterations mainly involved the default mode network and, to a
lesser extent, the limbic, somatomotor, and fronto-parietal resting
state networks, in both the theta and beta band (Figure 3B). The
visual cortex was spared in the theta bands but partially affected
in the beta band.

Functional Connectivity Is Similar
Between Cognitively Normal and
Impaired Subjects
We investigated possible CI-CN group-differences of functional
connectivity values at whole-brain and cortical region level. At
the whole-brain level, the average functional connectivity in
the alpha2 band was decreased in CI compared to CN, with
small effect size [F(1, 42) = 4.28, p = 0.045, d = –0.64; F(1,
42) = 2.36, p = 0.13, d = –0.47 when also covarying for the alpha2
RBP]. There was no CI-CN difference of average functional
connectivity in the other frequency bands. Similarly, no CI-CN
comparison of functional connectivity at the level of single brain
regions survived multiple comparison correction (FDR < 0.05)
in any frequency band.

Magnetoencephalography Brain
Features Relate to Cognition and
Cognitive Reserve in Oldest-Old
Subjects
The cognitive profile of individual subjects was characterized
in terms of overall cognitive ability (MMSE score), executive
control (letter fluency), processing speed (TMT-B score) and
episodic memory (CERAD total score). Moreover, we considered
the lifelong engagement in cognitively demanding activity as
possible protective factors for cognitive impairment and proxy
for subjects’ cognitive reserve. We investigated multivariate
linear relationships between whole-brain spectral or functional

FIGURE 2 | Whole-brain average spectral properties of cognitively normal and impaired oldest-old subjects. (A) Group-average power spectral density curves over
80 cortical regions of interest, for cognitively normal (n = 35, blue curve) and cognitively impaired (n = 11, orange curve) subjects. Solid lines represent the group
means; shaded areas represent ± 1 standard deviation interval. (B) Distributions of whole-brain relative band power (RBP) in the theta and beta band, after
correction for age and gender. ∗∗p < 0.001 for CI-CN comparison.
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FIGURE 3 | Cortical distribution of spectral differences between cognitively normal and impaired subjects. (A) Cortical surface plots of local effect size (Cohen’s d) for
statistically significant (FDR < 0.05) CI-CN comparisons of source relative band power (RBP), in the theta and beta frequency band (ANCOVA analyses including age
and gender covariates). Cortical regions not surviving multiple comparison correction are represented in gray. (B) Percentage effect size contributions in the 7 RSNs,
for the theta and beta RBP. The percentage effect size contribution for each RSN was assessed by normalizing the effect size sum over the regions belonging to
each RSNs by the sum of all regions’ effect size, and considering only the regions significantly different between cognitively normal and impaired subjects. Inset:
schematic representation of the 7 RSNs on the cortical surface. VIS, visual; SM, sensorimotor; DA, dorsal attention; VA, ventral attention; FP, fronto-parietal; DMN,
default mode; LIM, limbic network.

connectivity features, and cognition, cognitive reserve, education
level and age with two PLSC analyses. The analyses were
performed on the whole group of 46 subjects (i.e., considering
both CI and CN subjects) and replicated in the CN group
(we did not repeat the analyses in the CI group given the
small sample size).

Concerning the spectral features, the PLSC analysis extracted
by construction 7 multivariate correlation patterns, one of which
was statistically significant (p = 0.0010; FDR < 0.05). On an
exploratory basis, we also report a second multivariate correlation
pattern with p = 0.68. The brain and cognitive loadings associated
with the two patterns are shown in Figures 4A,B, with loadings
that were reliably different from zero highlighted in yellow. The
first multivariate pattern shows an association between higher
cognitive reserve (larger pCAQ score and education level, while
taking into account the age) and processing speed, and a spectral
signature characterized by less power in the delta and gamma
band and more power in the alpha band (Figure 4A). The second
multivariate pattern mirrors the CI-CN differences reported
above (Figure 2) and suggests an association between poorer
cognitive performances (including lesser current involvement in
cognitively demanding activities, i.e., lower cCAQ) and slowing
down of brain oscillations, particularly involving the beta and
theta band (Figure 4B).

Concerning the functional connectivity features, none of the
multivariate correlation patterns survived multiple comparison
correction. However, we report on an exploratory basis the
correlation pattern with the smallest p-value (p = 0.087),
which suggests a possible relationship between better cognitive
performance and stronger functional connectivity in the alpha
and beta band (Figure 4C). All PLSC results were consistent
when analyses were performed on CN participants only
(Supplementary Figure 5), suggesting that the brain-cognition
associations reflect a continuum over cognitive decline stages and
are not driven by just the cognitively impaired individuals.

DISCUSSION

This study represents the first characterization of neuronal
oscillations’ spectral features and amplitude coupling with respect
to cognition and lifelong engagement in cognitive activity in
oldest-old participants using MEG. Compared to cognitively
normal subjects, those with cognitive impairments showed
extended alterations of relative power in the theta and beta band,
indicating a global slowing of cortical oscillations. The source-
level power alterations heavily involved the frontal lobe in the
theta band and extended to fronto-parietal and visual areas in
the beta band, with an overall predominant involvement of the
default mode network. Spectral and, to a lesser extent, functional
connectivity features related to cognitive traits. In the spectral
domain, two multivariate correlation patterns were discussed,
one mirroring the spectral changes observed in cognitively
impaired participants with lower (higher) power content in the
theta (beta) band associated with better cognitive performances
(trend-level, p = 0.068). The main multivariate correlation
pattern (p = 0.0010) revealed an association between spectral
content in the delta, alpha, and gamma band, and cognitive
reserve approximated with the lifelong (past) engagement
in cognitively demanding activity. Finally, better cognitive
performances were marginally associated with overall stronger
functional connectivity in the alpha and beta band.

Our finding of higher theta and lower beta power in
cognitively impaired oldest-old subjects suggests that the
association between electrophysiological changes and cognitive
impairment is substantially similar in oldest-old participants and
individuals younger than 85 years.

Younger old-adults with prodromal AD, early onset AD
or typical-onset AD show widespread power increases of
electrophysiological signals in lower frequency bands (delta
and theta band) and power decreases in higher frequency
bands (alpha and beta band) compared to normal aging adults,
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FIGURE 4 | Multivariate correlation patterns between electrophysiological and cognitive features. Each panel represents, from left to right: (i) the brain loadings, (ii)
the cognitive loadings, and (iii) the data projection onto the brain and cognitive saliences for the first (A) and second (B) significant multivariate correlation patterns
between spectral and cognitive features, and for the multivariate pattern between functional connectivity and cognitive features (C) from partial least square
correlation (PLSC) analyses. In the loading plots, bars and dots represent the average and dispersion of brain and cognitive loadings over 500 bootstraps; loadings
reliably different from zero are shaded in yellow. P-values for the multivariate correlation patterns are reported below the loading bar plots (* indicates pattern
surviving multiple comparison correction at FDR < 0.05). In the scatter plots on the right, each dot represents brain and cognitive data of a single subject projected
onto the corresponding PLSC saliences, with cognitively normal (CN) and impaired (CI) subjects represented in light blue and orange, respectively. The r-squared
between the brain and cognitive data projection onto the PLSC saliences is reported above each scatter plot and quantifies the amount of cognitive scores’ variance
explained by the spectral or functional connectivity features.

indicating a global slowing of resting-state activity (Dauwels
et al., 2010; Micanovic and Pal, 2014; Engels et al., 2016,
2017; Gouw et al., 2017; Babiloni et al., 2020a). This finding
is highly consistent in literature, and it is here extended to
cognitively impaired oldest-old with probable late-onset AD
or aMCI. It should be noted, however, that the slowing of
cortical oscillations is observed not only in AD, but also in
multiple pre-dementia and dementia forms (notably, dementia

with Levy Bodies) (Dauwan et al., 2016; van der Zande et al.,
2020), as well as in normal aging (Knyazeva et al., 2018). In our
sample, there was a small but significant age difference between
cognitively normal and cognitively impaired subjects, but the
latter were on average younger than the former. It is therefore
unlikely that the slowing down of cortical rhythms observed in
our cognitively impaired sample was due to physiological aging
rather than neurodegenerative processes. In further support
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of this interpretation, lower IPF, larger relative power in the
theta band and lower power in higher frequency bands (beta,
gamma) were weakly associated with worse overall cognitive
performances, memory, executive control, processing speed,
and current engagement in cognitively demanding activity both
in the whole sample and in the cognitively normal group
only, suggesting a relationship between cortical slowing and
cognition that is independent from clinical classification. This
is consistent with previous findings that have linked increased
theta power with decreased cognitive functioning in healthy
older adults (Mitchell et al., 2008; Stomrud et al., 2010; Finnigan
and Robertson, 2011). Moreover, baseline theta power predicts
longitudinal cognitive decline and conversion to dementia in
younger old-adults (Prichep et al., 2006; Gouw et al., 2017;
Rossini et al., 2020). Finally, previous works have associated theta
(but also delta and alpha) power with clinical symptoms and
global cognitive status in AD patients (Engels et al., 2016; Gouw
et al., 2017). In our study, it was not possible to investigate
associations between electrophysiological and cognitive features
specifically in the AD/aMCI group given the small sample size
(only 11 out of 46 subjects were cognitively impaired). Therefore,
it remains to be further investigated in a larger cohort whether
the relationships between spectral features and cognition in this
age range are diagnosis-dependent (Vlahou et al., 2014; Benwell
et al., 2020) or reflect more generic neurodegenerative processes
that lead to cognitive decline.

The cortical distributions of the theta and beta changes in
cognitively impaired oldest-old participants largely overlapped in
the frontal lobe with involvement of the default mode network,
but showed distinct spatial patterns in posterior cortices.

Theta alterations were widespread and mainly involved the
frontal lobe, while beta alterations extended to more posterior
areas, including the visual cortices and showing relatively large
effects in the precuneus and posterior cingulate regions. The
superior parietal cortex was affected in both bands, in agreement
with MEG findings in younger AD patients (Berendse et al.,
2000; Engels et al., 2016, 2017). Globally, the power changes
involved the default mode network, a brain system that includes
medial (medial prefrontal and precuneus/posterior cingulate
cortices), hippocampal and parietal regions (Raichle et al., 2001;
Greicius et al., 2003; Andrews-Hanna et al., 2014; Raichle,
2015). Functional connectivity in the default mode network
predicts cognitive abilities in healthy adults (Van Den Heuvel
et al., 2009) and is strongly implicated in the pathophysiology
of AD (Agosta et al., 2012). In AD and preclinical AD,
default mode regions show early accumulation of amyloid-β
and early neurodegeneration (Palmqvist et al., 2017; Sepulcre
et al., 2017), possibly driven by high baseline activity levels
(Buckner et al., 2009). Default mode regions in AD also show
decreased synchronization of hemodynamic signals (weakened
functional connectivity) as assessed with resting-state functional
magnetic resonance imaging (rfMRI) (Myers et al., 2014; Pasquini
et al., 2017). Interestingly, simultaneous EEG-rfMRI studies in
healthy subjects specifically associate the amplitude of neuronal
oscillations in the theta and beta frequency band to default mode
network hemodynamic activity (Laufs et al., 2003; Scheeringa
et al., 2008; Hlinka et al., 2010). Alterations of default mode

hemodynamic activity and widespread changes of theta and
beta rhythms could therefore be the manifestations of the
same pathophysiological mechanisms, such as activity-dependent
neurodegeneration (Buckner et al., 2009; Griffa and van den
Heuvel, 2018; de Lange et al., 2019). Moreover, computational
models demonstrate that activity-dependent degeneration of
default mode regions can reproduce AD-like changes such as
oscillatory slowing and loss of spectral power (de Haan et al.,
2012). Yet, the subdivision of cortical regions into RSNs that we
used in this work was derived from fMRI data (Yeo et al., 2011). It
is not yet clear whether MEG functional activity shows the same
RSNs (de Pasquale et al., 2010), especially in this age group, which
deserves further investigation.

Previous studies on AD patients also report slower rhythms
in the occipital lobe and visual areas in the alpha band (Engels
et al., 2017; Babiloni et al., 2020a), which was not the case for
our cohort. However, the alpha band was involved in terms
of functional connectivity, with cognitively impaired oldest-
old participants having lower alpha2 amplitude coupling at
the whole-brain network level. This CI-CN difference partially
related to the power content in the two groups, since covarying by
the alpha2 band power decreased the effect size. Nonetheless, the
functional-connectivity group-effect should not be disregarded
because of the power contribution. Signal power is necessary
to get functional connectivity, especially when connectivity is
based on amplitude coupling, and the relationship between
the two dimensions is non-trivial and may reflect underlying
mechanisms (Tewarie et al., 2019). In addition, the PLSC
analysis suggested a relationship between stronger functional
connectivity in the alpha and beta band, and preserved
cognitive performances, particularly in the executive domain.
These results in oldest-old participants are in line with MEG
literature showing decreased functional connectivity in AD
(Berendse et al., 2000; Stam et al., 2002, 2006, 2009; Yu et al.,
2017), but they remain preliminary considering the limited
power of the study in relation to the small effects detected
in the functional connectivity domain. Indeed, it should be
noted that the effect sizes of the CI-CN group-differences
and the linear associations with cognitive traits were more
prominent in the spectral domain, highlighting the relevance
of relatively simple electrophysiological measures in a clinical
setting. Functional connectivity analyses on larger cohorts
may nonetheless contribute to the understanding of neural
mechanisms associated with specific cognitive dysfunctions -such
as impairments in executive functioning- that strongly rely on
network-level integration processes.

Participants underwent an interview reporting how often
they engaged in common cognitively demanding activities that
depend minimally on socioeconomic status (Landau et al.,
2012). Lifestyle factors are considered as a proxy for cognitive
reserve, defined as the adaptability of functional brain processes
to cope with aging, brain insults or pathological processes
(Stern, 2009; Stern et al., 2018). In particular, frequency of
past and present engagement in cognitively demanding activities
has been associated with lower amyloid-β accumulation in
brain tissues (Landau et al., 2012), less hippocampal atrophy
(Valenzuela et al., 2008), and lower dementia incidence
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(Valenzuela and Sachdev, 2006; Xu et al., 2019) in healthy older
adults. However, in subjects aged 85 years or older, education,
occupational complexity and engagement in cognitive and leisure
activities do not predict cognitive decline nor the risk of 5-
year incident dementia (Lavrencic et al., 2018; Hakiki et al.,
2020), suggesting that cognitive reserve mechanisms may be
age-dependent and become less effective in counterbalancing
neurodegenerative processes (Nelson et al., 2019). In line with
these observations, past engagement in cognitively demanding
activities (pCAQ score) did not differ between cognitively
normal and impaired oldest-old participants in our study,
although higher pCAQ scores were weakly associated with
better executive performances at the whole-group level. As
expected, higher pCAQ (but not cCAQ) scores were also
associated with higher educational level, a component of the
cognitive reserve construct (Nucci et al., 2012). On the contrary,
cognitively impaired participants tended to engage less frequently
in cognitive activities than cognitively normal ones at the time of
the study. The frequency of current engagement in cognitively
demanding activities may therefore better reflect the present
cognitive status rather than cumulate cognitive reserve. Our and
literature findings converge on the hypothesis that education
and sociobehavioral lifestyle habits including lifelong (past)
engagement in cognitively demanding activities may serve as
protective factors for cognitive decline in younger-old, but that
this beneficial effect may be progressively less prominent in
oldest-old subjects who, possibly, face distinct or more severe
pathophysiological mechanisms.

In support of this hypothesis, we found that cognitive
reserve in oldest-old participants was associated with a specific
spectral signature involving delta, alpha and gamma band,
in contrast to the spectral changes associated with cognitive
performances, which mainly involved the theta and beta band.
In particular, higher cognitive reserve (higher pCAQ scores
and education level while accounting for age) related to
lower (higher) cortical oscillation power in the delta (alpha)
band, combined with lower power in the gamma band. This
finding nicely corroborates a recent sensor-level EEG study
that identified higher alpha amplitudes in (amyloid negative)
older adults (mean age 75 years) with subjective cognitive
complaints and higher educational level compared to those
with lower education level (Babiloni et al., 2020b). It is well
known that posterior resting-state alpha is progressively reduced
with aging, which may partially be linked to a deterioration
of the cholinergic system (Wan et al., 2019). Our results
suggest that lifestyle factors may compensate this process, even
at advanced age, resulting in stronger alpha activity at rest.
However, we have also shown that the relationship between
cognitive reserve and spectral features is independent from
memory and executive control performance, which was taken
into account through the multivariate nature of our analyses
and replication of results in the cognitively normal group. Yet,
the spectral signature of cognitive reserve might change as
a function of the pathological substrate underlying cognitive
decline (Babiloni et al., 2021). Considering the small size of the
CI group, it was not possible to perform reliable correlation
analyses within this group. Further research is needed to

elucidate the interplay between the distinct electrophysiological
mechanisms reflecting cognitive reserve, cognitive decline, and
pathological load, particularly in an age segment - the oldest-
old- for which dementia risk and protective factors identified in
younger subjects may not be valid. Taken together, our results
indicate that functional adaptability mechanisms associated with
cognitive reserve (lifelong engagement in cognitive activity)
are present in the oldest-old and expressed in specific
electrophysiological signatures, but that they are less effective in
limiting cognitive decline.

This study has some limitations that should be noted. First,
the sample size is relatively small and absence of statistically
significant findings might relate to limited statistical power.
However, one should consider that the recruitment of oldest-
old subjects in research programs is challenging and few
neuroimaging data are available for oldest-old participants
(Legdeur et al., 2018). Second, in this study measures of
brain pathology, such as biomarkers for amyloid, tau, and
cerebrovascular pathologies, were not taken into account. Third,
the subjects’ cognitive profile was condensed in few cognitive
scores probing executive control, processing speed and episodic
memory, mainly to accommodate the limited statistical power
linked to the small sample size. However, further analyses
are needed to fully explore the relationship between cognitive
dimensions and MEG features. For example, executive control
is a complex construct that is only partially captured by the
phonemic verbal fluency (DAT scores) (Jurado and Rosselli, 2007;
Friedman and Miyake, 2017; Vallesi, 2021). Finally, individual
levels of cognitive reserve were approximated with a self-reported
questionnaire on past engagement in cognitively demanding
activities. Self-reporting may be poorly reliable, particularly
in the oldest-old age range, and additional sociobehavioral
proxies of cognitive reserve could be used in future studies
(Stern et al., 2018).

To conclude, in this work we have shown that cognitive
impairments in oldest-old subjects are associated with a slowing
of theta/beta oscillatory brain activity converging onto the
default mode network. In the same subjects, a distinct spectral
signature involving the delta, alpha and gamma band is associated
with cognitive reserve mechanisms, which, however, may be
ineffective in preserving cognitive performances in this age
range. Future studies should further investigate how these brain
functional changes relate to underlying neuropathological factors
and to functional adaptive mechanisms that are possibly specific
to this age range.
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