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While aging is typically associated with cognitive decline, some individuals are able
to diverge from the characteristic downward slope and maintain very high levels of
cognitive performance. Prior studies have found that cortical thickness in the cingulate
cortex, a region involved in information processing, memory, and attention, distinguish
those with exceptional cognitive abilities when compared to their cognitively more
typical elderly peers. Others major areas outside of the cingulate, such as the prefrontal
cortex and insula, are also key in successful aging well into late age, suggesting that
structural properties across a wide range of areas may better explain differences in
cognitive abilities. Here, we aim to assess the role of regional cortical thickness, both
in the cingulate and the whole brain, in modeling Top Cognitive Performance (TCP),
measured by performance in the top 50th percentile of memory and executive function.
Using data from National Alzheimer’s Coordinating Center and The 90 + Study, we
examined healthy subjects aged 70–100 years old. We found that, while thickness in
cingulate regions can model TCP status with some degree of accuracy, a whole-brain,
network-level approach out-performed the localist, cingulate models. These findings
suggests a need for more network-style approaches and furthers our understanding of
neurobiological factors contributing to preserved cognition.
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INTRODUCTION

Advancements in health care and modern technology have led to an increase in life expectancy,
such that by 2030, individuals 65 and older will outnumber those under the age of 18. Moreover,
between 2000 and 2010, the United States saw a 30.2 and 29 percent increase in individuals aged
90–94 and 95+, respectively (US Census Bureau, 2010, 2018). With more individuals surviving
until their ninth and tenth decades, many are interested in successful and healthy older aging.
Contrary to those that may experience decline, some elderly individuals are able to remain disease
free and maintain their cognitive abilities. Researchers have also identified subsets of individuals
in their 70 and 80s that exhibit better-than-normal cognitive performance in comparison to their
cognitively normal aged-matched peers. While various definitions of high-performance have been
used, a common thread is well-preserved memory and executive functioning.

By examining morphological characteristics of the brain using structural neuroimaging, several
studies have attempted to understand trajectories that are associated with avoiding decline and
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have started to elucidate what neurobiological factors contribute
to preserved cognition throughout advanced aging. One
representative group, known as SuperAgers, were distinguished
based on their middle-age-like episodic memory, despite being
in their eighties (Harrison et al., 2012; Gefen et al., 2015). Upon
conducting a whole brain analysis, this high-performing group
exhibited significantly greater cortical thickness in the cingulate
cortex (Harrison et al., 2012). Note, however, that the modest
sample sizes (n = 12 SuperAgers and n = 10 elderly controls) may
have impacted their ability to reliably identify a broader range
of regions. Following this finding, an a priori region-of-interest
(ROI)-based analysis revealed that SuperAgers displayed greater
cortical thickness in the posterior and caudal anterior cingulate
cortex when compared to elderly controls (Gefen et al., 2015).

Studies of successful aging are not limited to the popularized
SuperAger cohort and many have examined top performing
individuals based on varying neuropsychological performance
and tests. One commonality across studies has been highlighting
the structural integrity of the cingulate cortex. Seventy-year-
old successful agers, defined by high performance in episodic
memory, working memory, and processing speed, displayed
greater cortical thickness within the right anterior cingulate
and prefrontal cortex (Harrison et al., 2018). Additionally,
they had greater hippocampal volume and lower white matter
hyperintensity volumes. Another study, examining optimal
cognitive aging assessed by high performance in visuo-
constructive abilities and visual reasoning, found that older
individuals with high fluid abilities displayed greater cortical
thickness in large areas of the cingulate cortex. Interestingly, they
did not find this same relationship when comparing high vs.
average performers in younger groups (Fjell et al., 2006).

Though the cingulate has proven to be important in successful
aging, the structural integrity of other regions and networks
have also been identified in preserved cognitions. For example,
Sun et al. (2016) found that younger SuperAgers, aged 60–
80, exhibited greater cortical thickness in the midcingulate,
dorsomedial prefrontal cortex, angular gyrus, and superior
frontal gyrus; all key regions in the default mode and salience
networks. Whole brain analyses in high functioning individuals,
aged 90 and older, revealed structural preservation in prefrontal
and insular areas (Yang et al., 2016). Similarly, 70 + year
old Successful Agers, distinguished by high memory scores,
exhibited greater cortical thickness in the insula, midcingulate
cortex, and the medial prefrontal cortex (Harrison et al., 2018).
Thus, while the cingulate appears in each of these studies,
several other regions have been implicated as well, suggesting
a possible widespread network contributing to the resistance to
cognitive decline.

It is important to note that our goal here is not to identify
a set of specific cortical biomarkers of successful aging. Rather,
the goal of the present study is a more generalized one. Here,
we aim to understand how well cortical thickness can be used
to model a behavioral outcome like successful aging, whether
certain regions are disproportionately involved in this, and
whether the cingulate cortex in particular is disproportionately
involved. Thus, one hypothesis is that there is a set of specific
regions, such as the cingulate regions, where thickness is able

to predict cognitive status, while other regions have little or no
predictive value (i.e., the cingulate is particularly informative
when trying to model cognitive status). A second hypothesis is
that the predictive power is distributed as a relatively smooth
gradient across regions, with some more predictive than others,
but no clear-cut differentiation between predictive and non-
predictive regions. Finally, a third, “null” hypothesis is that all
regions are equally predictive (or non-predictive) of cognitive
status. Using structural and neuropsychological data from the
National Alzheimer’s Coordinating center (NACC), we evaluated
these hypotheses by examining the relationship between cortical
thickness the brain and high cognitive performance in measures
of episodic memory and executive function; two abilities that are
otherwise known as hallmark domains of cognitive impairment
and disease progression. We examined individuals aged 70–
89, who demonstrated a combined performance at or above
the top 50th percentile in both domains, deemed as Top
Cognitive Performers (TCP) and we compared logistic regression
performance using the cingulate ROIs relative to using the
whole brain. To assess reliability of our models and the overall
informativeness of individual regions, we performed Monte
Carlo sampling of the population, creating logistic regression
models for each sample. Finally, we examined the efficacy of these
approaches as a function of age as by breaking them down by
decade and including data from The 90 + Study. Individuals in
their 90s display a more marked and rapid decline than those in
their 70s in cognitive domains such as memory, perceptual speed,
knowledge, and fluency (Singer et al., 2003), making it valuable to
understand how the informativeness of these metrics persists into
very advanced stages of aging.

EXPERIMENTAL DESIGN AND
METHODS

The National Alzheimer’s Coordinating
Center
Participants
Three hundred and forty-seven individuals were selected from
the larger NACC cohort (Figure 1A). NACC is a database of
patient information collected from multiple Alzheimer disease
centers funded by the National Institute on Aging (Beekly et al.,
2004). For this analysis, participants were required to be seventy
years old and above (70–89 years old) and have at least one
T1 MRI scan available within 2 years of their initial UDS
visit. Additionally, participants were required to have a NACC
status indicating normal cognition and behavior (NORMCOG
and NACCUDSD), as determined by a clinician or panel of
clinicians based on neuropsychological test scores, CDR, Form
B9 (Clinician Judgment of Symptoms), and center specific tests.
Individuals who contained missing data in any of the criteria
variables, described below, were excluded from the analyses.

Neuropsychological Criteria for Group Inclusion
Previous studies of successfully aging cohorts have used
neuropsychological tests with specific criteria based either on
performance being consistent with a younger population or
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FIGURE 1 | Inclusion flow chart for (A) NACC and (B) The 90 + Study Participants. Blue box reflects the participants included in the final analysis of top cognitive
performers (TCP).

with performance being atypically high for their age group.
Following the latter, T were required to be in the top 50th
percentile for both the Wechsler Memory Scale-revised Logical
Memory IIA-Delayed Recall (WMS-R IIA) and Trails Making
Test- Part B (Trails-B). The WMS-R IIA tests verbal and visual
modalities and asks participants to recall units of a story after
a 15 min delay (Wechsler, 1987). Trails-B engages executive
function and processing speed by asking the participant to draw
a line that connects an ordered progression of alternating letters
and numbers (e.g., 1—A—2—B—3—C. . .) as quickly as possible
(Tombaugh, 2004). All individuals that did not fit these criteria
were classified as non-Top Cognitive Performers (non-TCP).

MRI Acquisition and Processing
Pre-calculated regional cortical thickness data for NACC MRIs
were provided by the IDeA Lab at University of California,
Davis. T1-weighted structural MRI (sMRI) scans were obtained
from multiple centers using 3.0 and 1.5 Tesla scanners (GE,
Siemens, and Phillips). sMRI data from the date closest to
the initial UDS visit were processed based on the Advanced
Normalization Tools (ANTs) toolkit and thickness pipeline
(Das et al., 2009). Modifications to that pipeline for improving
GM/WM segmentation used to generate the numbers in NACC
are described by Fletcher et al. (2012).

The 90 + Study
Participants
One hundred and eight individuals from the larger The
90 + Study cohort were included (Figure 1B). The 90 + Study,
established in 2003, is an ongoing longitudinal investigation of
aging and dementia in individuals aged 90 and above, consisting
of the survivors of the Leisure World Cohort Study (Kawas,
2008). Participants were selected based on the availability of a
sMRI, two or more neuropsychological visits, and a cognitively
normal diagnosis at a majority of their visits (i.e., 2 out of 3
visits or 3 out of 4 visits). Cognitively normal was determined by
The 90 + Study and refers to a primary diagnosis, determined
by neurological examiners, where an individual is deemed as
normal, absent of impairment in any cognitive domains, and
able to complete Instrumental activities of daily living (IADL).
Individuals who contained missing data in any of the criteria
variables were excluded from the analyses.

Neuropsychological Criteria for Group Inclusion
While participants in The 90 + Study are visited every 6
months by researchers who perform neuropsychological tests, the
number of visits for each individual at the time of these analyses
varied from 1visit to 23. Thus, based on the available data, median
cognitive scores from up to four visits closest to sMRI scan date
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were chosen as a more robust measure of cognition that would
account possible variance in individual session performance.
Following NACC TCP criteria, The 90 + TCP individuals were
required to perform at or above the top 50th percentile for their
age group on the long-delay recognition portion of the California
Verbal Learning Test—short form (CVLT) and at or above the
top 50th percentile on completion time for their age group in the
Trails-B. All other individuals that did not fit these criteria were
classified as non-Top Cognitive Performers (non-TCP).

MRI Acquisition and Processing
T1-weighted structural MRI scans were collected on a 3.0 Tesla
GE Discovery MR750w scanner (1 mm isotropic resolution,
TE = 3 ms, TR = 7.2 ms, flip angle = 11◦). Images were
processed using Mindboggle (Klein et al., 2017), which performs
atlas registration to the Desikan-Killiany-Tourville (DKT) atlas
(Desikan et al., 2006) and cortical thickness estimation using
Advanced Normalization Tools (ANTs; its additional FreeSurfer
estimates were not used here). ANTs calculates cortical thickness
by measuring the distance between gray/white matter boundaries
and gray/CSF boundaries by quantifying the amount of
registration needed to bring these surfaces together. Thickness
was calculated in the original native subject space before being
transformed into MNI space. Using DKT regions of interest
as masks, we computed the average cortical thickness within
each ROI. To reduce edge effects that will be present in these
masks (thickness is computed in the cortical sheet and the
ROIs will cover voxels not in a particular subject’s sheet),
thickness maps were clipped at 1mm and the average computed
across all resulting non-zero voxels. The average cortical
thickness of three bilateral cingulate regions from the DKT
atlas (posterior cingulate cortex, caudal anterior cingulate cortex,
rostral anterior cingulate cortex) was examined as a priori regions
based on their previously shown involvement in successful
aging (Figure 2).

Statistical Analysis of MRI Study
Participants and Cortical Thickness
For both datasets, statistical analyses were performed using
SAS and both the Statsmodels1 and skikit-learn2 libraries in
Python. To evaluate the influence of cortical thickness on top
cognitive performance (TCP), two logistic regression model
were used to model TCP status as a function of regions of
interest as follows: (1) 6 bilateral a priori cingulate ROIs (rostral
anterior, caudal anterior, and posterior segments), and (2) a
forward-selection model with 62 whole brain cortical ROIs
(cutoff p-value for the F statistic, p = 0.25). Receiving Operating
Characteristic (ROC) curves were created to assess the accuracy
of TCP status as a diagnostic marker. Additionally, unpaired
t-tests were used to evaluate differences in continuous variables
(age, education-NACC, and neuropsychological performance)
and Fisher’s exact test to evaluate gender distribution, across the
two subject groups.

1https://www.statsmodels.org/
2https://scikit-learn.org/

FIGURE 2 | Desikan Killiany Tourville Atlas Three bilateral a priori cingulate
regions derived from DKT atlas; left hemisphere is shown.

RESULTS

Demographics and Neuropsychological
Performance at Baseline
NACC analyses used data from 11 Alzheimer’s Disease Research
Centers (ADRCs) for UDS visits conducted between September
2005 and December 2020. The average time between initial
neuropsychological visit and MRI was 133.3 (189.6) and 138.7
(185.1) days for non-TCP and TCP, respectively. The 347 NACC
participants had an average of 15 years of education and were
60.81% female (Table 1). TCP and Non-TCP groups did not differ
in age in either the 70 [t(24) = 0.71, p = 0.48] or 80 year old
subgroups [t(1) = 0.98, p = 0.33]. They did, however, differ in
education [t(242) = 5.02, p < 0.0001] and gender distribution
(Fisher’s exact p = 0.04) in the 70 year-olds and education
[t(101) = 2.72, p = 0.01] in the 80 year-olds.

The 108 90+ Study participants were 63.89% female and 47%
had a college education (Table 2). TCP and Non-TCP did not
differ in age [t(106) = 0.58, p = 0.57], gender distribution (Fisher’s
exact p = > 0.999), or education level at a baseline visit [X2(2,
n = 108) = 1.88, p = 0.39].

Cortical Thickness in the National
Alzheimer’s Coordinating Center Sample:
A priori Cingulate Regions
When considered in isolation, logistic regressions modeling TCP
status based on the a priori cingulate regions’ thickness (Table 3)
failed to robustly model TCP status. When examining the full
NACC 70–89 sample, no cingulate ROI could reliably model
TCP status (p’s > 0.1, uncorrected for multiple comparisons).
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TABLE 1 | NACC demographics.

All 70 year old’s TCP Non-TCP T-test/Fisher’s
exact test

80 Year Old’s TCP Non-TCP T-test/Fisher’s
Exact Test

n 347 244 83 161 103 22 81

Age (SD) 75.94 (4.95) 74.25 (2.72) 74.07 (2.68) 74.34 (2.75) 0.476 83.31 (2.67) 82.82 (2.56) 83.44 (2.70) 0.331

Female (%) 211 (60.81%) 150 (61%) 59 (71%) 91 (56%) 0.037 61 (59.22%) 13 (59.09%) 48 (59.26%) >0.999

Education (SD) 15.00 (3.38) 15.07 (3.35) 16.49 (2.37) 14.33 (3.54) <0.0001 14.82 (3.47) 16.55 (2.54) 14.35 (3.55) 0.008

NACC sample subject demographic information with T-test and Fisher’s Exact Test comparisons. p value < 0.05.

TABLE 2 | The 90 + study demographics.

All TCP Non-TCP T-test/Fisher’s exact test or chi square test

n 108 35 73

Age (SD) 93.85 (2.60) 94.06 (2.60) 93.75 (2.62) 0.565

Female (%) 69 (63.89) 22 (62.86) 47 (64.38) >0.999

Education (SD)
High-school graduate or less (%)
Some college to college graduate (%)
Some graduate school or higher (%)

15 (13.89)
47 (43.52)
46 (42.59)

3 (8.57)
18 (51.43)

14 (40)

12 (16.44)
29 (39.73)
32 (43.84)

0.391

The 90 + Study sample subject demographic information with T-Test, Fisher’s Exact Test, and Chi square test comparisons.

When restricted to only those in their 70s, the right caudal
anterior (p = 0.04, uncorrected), and rostral anterior (p = 0.01,
uncorrected) cingulate showed some predictive power, but this
was not the case in the NACC participants in their 80s (p = 0.15
and p = 0.29, respectively).

We next turned to receiver-operating characteristic (ROC)
analysis, using a logistic multiple regression based on all six
cingulate ROIs modeling TCP status. Here, we used the area
under the curve (AUC) to quantify performance and assess the
sensitivity and specificity of the model. Using this, the cingulate
regions yielded an estimated AUC of 0.64 across the full age
range in NACC (Figure 3A). While modest, this AUC was reliably
better than chance. Given the combination of the biased base-rate
of TCP status and the multiple predictors used (and potential
for overfitting), a null value of 0.5 for AUC cannot be assumed.
To assess the null and estimate the true alpha, we conducted
a permutation analysis, randomly shuffling the TCP/non-TCP
labels 10,000 times and running the same logistic regression and
AUC estimation to empirically derive an alpha using the same
data and the same proportion of TCP status labels. We found the
alpha to be∼0.009, indicating the odds that a large or larger AUC
would be generated by chance (Figure 3D, blue line).

Cortical Thickness in the National
Alzheimer’s Coordinating Center Sample:
Whole-Brain
To determine whether the cingulate ROIs represented the ideal
or near-ideal set of regions for this approach, we next performed
a whole-brain forward-selection logistic regression (i.e., using all
62 cortical ROIs). This analysis selected the left caudal anterior
cingulate, left caudal middle frontal, left entorhinal, left medial
orbitofrontal, left paracentral, right cuneus, and right superior
frontal regions with a resulting AUC of 0.74 and a permutation-
derived alpha of p < 0.0001. Thus, while one of the cingulate

regions was present in this model, the optimal model drew upon
regions throughout the brain.

We should note that this is not the result of any global
difference in cortical thickness across TCP groups. Estimates of
average whole-brain cortical thickness were calculated for each
individual by weighted averaging of the thickness from all 62
regions (weighted by region volume). Unpaired t-tests showed no
difference in average whole-brain cortical thickness for the whole
cohort or for those in their 70s or 80s separately (all t’s < 0.8, all
p’s > 0.4).

Cortical Thickness Across Age Groups
We next turned to the question of whether our ability to model
TCP status was affected by age. To do so, we shifted from
thickness values provided by NACC to thickness values derived
from ANTs directly as we wanted to include data from The
90+ Study as well to give a broader age range (note, we found that
overall, the estimates provided by NACC yielded slightly higher
AUCs than those provided by ANTs.) Here, we found that when
restricting ourselves to the a priori cingulate regions, all three
age groups yielded virtually identical ROC curves and 0.68 AUC
values (Figure 3B). As with the combined data, however, shifting
to a whole brain analysis improved performance considerably.
The AUCs rose to 0.75 in the cohort in their 70’s, 0.88 in those
in their 80’s, and 0.83 in the 90 + (alpha < 0.0001 in all).
ROC contrast estimations comparing AUC’s for cingulate vs.
forward-selected ROIs revealed a significant difference across all
age groups, suggesting a better fit by regional cortical thickness
(all p < 0.02).

Role of Age, Sex, and Education
Covariates
Our primary question here was whether cortical thickness could
be used to model TCP status. As such, we excluded typical
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TABLE 3 | Fitted logistic regression models.

Age Group ROI Fitted Model

70–89 Left Caudal Anterior Cingulate, Left Posterior
Cingulate, Left Rostral Anterior Cingulate,
Right Caudal Anterior Cingulate, Right
Posterior Cingulate, Right Rostral Anterior
Cingulate

Logit(TCP) = −4.13 + 0.48 xLCaudalAnteriorCingulate + 0.48 xLPosteriorCingulate + 0.28
xLRostralAnteriorCingulate + 0.43 xRCaudalAnteriorCingulate + 0.33 xRPosteriorCingulate - 0.61 xRRostralAnteriorCingulate

Left Caudal Anterior Cingulate, Left
Caudal Middle Frontal, Left Entorhinal, Left
Medial Orbitofrontal, Left Paracentral, Right
Cuneus, Right Superior Frontal

Logit(TCP) = −2.36 + 0.66 xLCaudalAnteriorCingulate + 1.72 xLCaudalMiddleFrontal - 0.62 xLEntorhinal + 1.28
xLMedialOrbitofrontal + 1.37 xLParacentral − 1.00 xRCuneus − 2.23 xRSuperiorFrontal

70s Left Caudal Anterior Cingulate, Left Posterior
Cingulate, Left Rostral Anterior Cingulate,
Right Caudal Anterior Cingulate, Right
Posterior Cingulate, Right Rostral Anterior
Cingulate

Logit(TCP) = −3.95 + 0.73 xLCaudalAnteriorCingulate + 0.28 xLPosteriorCingulate + 0.51
xLRostralAnteriorCingulate + 1.05 xRCaudalAnteriorCingulate + 0.10 xRPosteriorCingulate − 1.28 xRRostralAnteriorCingulate

Left Entorhinal, Left Inferior Temporal, Left
Paracentral, Left Rostral Anterior
Cingulate, Right Caudal Anterior
Cingulate, Right Lingual, Right Rostral
Anterior Cingulate

Logit(TCP) = −4.19 - 0.64 xLEntorhinal + 1.01 xLInferiorTemporal + 1.62 xLParacentral + 1.19
xLRostralAnteriorCingulate+ 1.33 xRCaudalAnteriorCingulate − 1.50 xRLingual − 1.39 xRRostralAnteriorCingulate

80s Left Caudal Anterior Cingulate, Left Posterior
Cingulate, Left Rostral Anterior Cingulate,
Right Caudal Anterior Cingulate, Right
Posterior Cingulate, Right Rostral Anterior
Cingulate

Logit(TCP) = −5.37 − 0.30 xLCaudalAnteriorCingulate + 1.91 xLPosteriorCingulate − 0.24xLRostralAnteriorCingulate −

1.06 xRCaudalAnteriorCingulate + 0.74 xRPosteriorCingulate + 0.77 xRRostralAnteriorCingulate

Left Pericalcarine, Left Postcentral, Left
Superior Temporal, Left Supramarginal, Right
Isthmus Cingulate, Right Parahippocampal,
Right Superior Parietal

Logit(TCP) = −9.94 + 3.49 xLPericalcarine + 9.14 xLPostcentral − 5.33 xLSuperiorTemporal + 3.95 xLSupramarginal+

5.76 xRIsthmusCingulate− 3.72 xRParahippocampal − 7.79 xRSuperiorParietal

90s Left Caudal Anterior Cingulate, Left Posterior
Cingulate, Left Rostral Anterior Cingulate,
Right Caudal Anterior Cingulate, Right
Posterior Cingulate, Right Rostral Anterior
Cingulate

Logit(TCP) = −2.67 + 1.51 xLCaudalAnteriorCingulate + 0.55 xLPosteriorCingulate − 0.11xLRostralAnteriorCingulate −

1.28 xRCaudalAnteriorCingulate + 0.71 xRPosteriorCingulate − 0.43 xRRostralAnteriorCingulate

Left Isthmus Cingulate, Left Lateral
Orbitofrontal, Left Pars Opercularis, Left
Transverse Temporal, Right Caudal
Anterior Cingulate, Right Medial
Orbitofrontal, Right Insula

Logit(TCP) = −4.21 + 2.31 xLIsthmusCingulate + 5.41 xLLateralOrbitofrontal − 6.94 xLParsOpercularis+ 2.25
xLTransverseTemporal − 2.63 xRCaudalAnteriorCingulate− 2.77 xRMedialOrbitofrontal + 2.33 xRInsula

First row for each respective age group (70–89, 70s, 80s, and 90s) represents logistic regression models ran with a priori cingulate ROIs as predictors. Second row
for each respective age group represents forward selection logistic regression models ran with all 62 cortical ROIs and each region selected; cingulate regions are
bolded for reference.

covariates such as age, sex and education that might otherwise
predict TCP status and therefore inflate our AUC values. To
determine their predictive value beyond cortical thickness, we
repeated each of these logistic regression models including these
factors. There was a slight increase in AUC’s across all age groups
when age, sex, and education were added to the model (Table 4).
The 70 year old group showed the largest improvement, moving
from 0.75 to 0.8, while the 80 year old group improved from 0.88
to 0.89 and the 90 year old group from 0.83 to 0.85.

Reliability of Selected Regions
Finally, we turned to the question of the consistency of the
generated models. Informally, Table 3 shows that there is some
degree of consistency across models, but that there is significant
deviation in the regions chosen as well. These data lead to the
hypothesis considered at the outset that, rather than a specific set
of ROIs carrying far more predictive value than others, that all

ROIs capture some amount of this variance. In this framework,
which ROIs are selected in the model might depend, to a large
degree, on the specific sample of brains used rather than purely
any prior probability of the predictive value of a given region.

Here, we sought to determine the distribution of the predictive
value of each ROI across samplings. To do so, we performed a
non-parametric bootstrapping analysis that drew 1,000 samples
from our 70 to 89 NACC population. Each sample drew the same
number of TCP and non-TCP individuals as our final dataset,
drawing samples with replacement to arrive at an estimate of
the samples one might have outside of our particular population
(Wu and Jia, 2013). Figure 4 shows the resulting distribution
of how often each region was selected in the forward-selection
logistic along with an inset depicting several possible models. This
enables us to determine whether a subset of regions is selected
more often than others (e.g., inset, orange line), all regions are
equally likely to be selected (inset, blue solid or dashed lines), or
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FIGURE 3 | Receiver operating characteristic curves show better TCP predictive performance in whole brain model. Top: ROC curves with area under the curves
(AUC) displayed for (A) entire NACC sample (ages 70–89), (B) a priori cingulate regions in all age groups, and (C) network/whole-brain forward-selected ROIs across
all age groups. Bottom: Permutation analyses where the labeling of TCP vs. non-TCP was shuffled 10,000 times in (D) NACC 70 year olds, (E) NACC 80 year olds,
and (F) The 90 + Study 90 year olds. Red dotted lines represent AUC’s for a priori cingulate ROIS reflected in (B) and blue solid lines represent AUC for
network/whole-brain forward-selected ROIs reflected in (C). AUC: Area under the curve, 70s: NACC 70 year olds, 80s: NACC 80 year olds, 90s: The 90 + Study 90
year olds.

TABLE 4 | Effects of age, sex, and education on AUC values.

Age group Forward selected
ROIs

Forward selected
ROIs + sex

Forward selected
ROIs + education

Forward selected ROIs +
sex, education

Forward selected ROIs +
age, sex, and education

70–89 0.73 0.74 0.77 0.79 0.79

70s 0.75 0.76 0.78 0.80 0.80

80s 0.88 0.89 0.89 0.90 0.89

90s 0.83 0.83 0.84 0.84 0.85

To assess predictive ability beyond cortical thickness, age, sex, and education were added to logistic regression model.

if some in between gradient of predictive value for regions exists
(inset, purple line). Results showed a curvilinear distribution that
highlighted the relative importance of some regions, but also
demonstrated the broad predictive value across the whole brain.
In particular, two regions (left entorhinal and right superior
frontal) were selected in almost every iteration with two more
(left caudal middle frontal and left medial orbitofrontal) selected
over 75% of the time. Notably these four ROIs were also
included in our initial forward-selection model. Moving down
in frequency of selection, 11 ROIs were selected ∼60–70% of the
time. This group included three of the a priori cingulate ROIs.
Note, all of the 62 ROIs were selected at least 22% of the time,
although some number of these are at rates expected by chance
(determined by 1,000 random shufflings of the TCP/non-TCP
labels and repeating the entire process to determine the base rate

of region selection). When this analysis was repeated in the 70
year-olds separately, the two of the top four ROIs in the whole
group were again in the top 4 here, but the overall distribution
was quite linear (Supplementary Figure 1A). When repeated in
just the 80-year olds, the distribution was again non-linear, but
no region was included more than 62% of the iterations and none
of the original top four ROIs were present in the top four in this
subset (Supplementary Figure 1B).

DISCUSSION

The present study aimed to: (1) assess if the cingulate as a
localized a priori network sufficiently models successful aging,
(2) observe if such relationships between cortical thickness and
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FIGURE 4 | Frequency of ROI selection in bootstrapping analysis. Random samplings of subjects matching our existing TCP rates were repeatedly drawn and
analyzed using the same logistic forward regression to determine how often each ROI was selected by the model. ROIs here are sorted by their frequency of being
selected, which was normalized by the number of iterations (n = 1,000) to scale from 0 to 1, and ROI names are color-coded by whether they are part of the
cingulate (red), were in the original whole-brain model (blue), or both (purple). The horizontal line reflects the chance frequency of selection. ROI names are based on
NACC labels. RPOSCINM, Right Posterior Cingulate; LPOSCINM, Left Posterior Cingulate; LROSANCM, Left Rostral Anterior Cingulate; RCUNM, Right Cuneus;
LPARCENM, Left Paracentral; LCACM, Left Caudal Anterior Cingulate; RCACM, Right Caudal Anterior Cingulate; RROSANCM, Right Rostral Anterior Cingulate;
LMEDORBM, Left Medial Orbital; LCMFM, Left Caudal Middle Frontal; LENTM, Left Entorhinal; RSUPFRM; Right Superior Frontal. For full list, please refer to NACC’s
Imaging Data Researcher’s data dictionary: https://files.alz.washington.edu/documentation/rdd-imaging.pdf. Inset figure: Hypothetical distributions that would arise
from different underlying models: (orange) distribution that would result if only a small subset of regions were highly predictive; (purple) distribution that would result if
an even gradient of predictive ability existed across regions; (blue, dashed) distribution that would result if no regions’ cortical thickness could model TCP status;
(blue, solid) distribution that would result if all regions had some predictive power but there was no differentiation across regions.

TCP persists in rising age groups, and (3) assess the reliability
of various selected networks in the brain in modeling TCP. We
were particularly interested in the cingulate cortex based on it
recurring role in successful aging literature, as well its role in
cognition; including information processing, memory, emotional
processing, task engagement, and attention (Vaidya et al., 2007;
Pearson et al., 2011; Stanislav et al., 2013). Here, we were able
to replicate the finding that the thickness of cingulate cortex
can be used to some degree to model TCP status and that this
ability was similar across 70s, 80s, and 90+ cohorts (Figure 3B).
However, we also found that far stronger models could be made
when extending the scope of the analysis to the whole brain. Our
AUCs from the ROC analyses revealed that, across all age groups,
forward selected ROIs from the logistic regression outperformed
a priori cingulate regions in modeling TCP status. Furthermore,
the regions selected by logistic regressions, either on the complete
dataset (Table 4) or via random sub-sampling of our data
(Figure 4) often had representation of the cingulate (typically
caudal anterior cingulate), but also included representation
across the brain.

Thus, while our results continue to implicate structural
characteristics of the cingulate cortex in successfully aging
individuals, these results suggest that global-style networks,
rather than literature driven localized areas, may be better at
modeling preserved cognition in the elderly. This is not to suggest
a new subset of regions as a model for studying successful aging,

but rather to propose examining a more data-driven set of ROIs
as a robust approach in modeling superior cognition in memory
and executive function.

Similar relationships can be found in other modes of imaging.
Seventy-year-old “supernormals,” defined by stringent criteria
based on 5-year maintenance of episodic memory and executive
functioning, displayed stronger functional connectivity between
anterior cingulate and the hippocampus, middle cingulate,
posterior cingulate, among other regions when compared
to healthy elderly controls and those with mild cognitive
impairment (MCI) (Lin et al., 2017). More importantly, these
researchers identified a functional “Supernormal map,” consisting
of the right fusiform gyrus, right middle frontal gyrus, right
anterior cingulate cortex, left middle temporal gyrus, left
precentral gyrus, and left orbitofrontal cortex, which successfully
predicted a 1-year change in global cognition and correlated to
Alzheimer’s pathology (Wang et al., 2019). Similar to possible
cortical signatures of successful aging, these findings all suggests
a pattern of widespread brain regions that may reflect the
neurobiological underpinnings that result in preserved cognition.

This widespread pattern is perhaps best illustrated in Figure 4
where we aggregated across many random resamplings of our
70–89 year-old population to determine how frequently different
regions were included in our logistic model. Under the null
hypothesis of all regions being equally uninformative of TCP
status (inset, blue dashed), we would have observed a flat
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distribution with all regions being included ∼25% of the time.
Under a localistic hypothesis in which some subset of regions
are informative of TCP status while others are not (inset, orange
line), we would have observed a step-function distribution where
most regions were uninformative and highly unlikely to be
included in the model while others were highly informative
and almost always included in the model. Our results were not
consistent with either of those hypotheses, instead supporting the
view that while cortical thickness is informative of TCP status
and while individual regions do vary in their predictive value,
there is no specific subset of regions that are the key regions
we should use. Instead, the results suggest that many, if not all
regions carry the ability to inform modeling of TCP status. Thus,
specific set of regions one isolates in a given analysis from a
given sample of scans will vary to some degree from what one
would arrive at with a different set of scans. However, these
results do not arise from simple Type II error as shown by the
permutation analyses in Figures 3D–F and by the distribution
shown in Figure 4. Rather, if all regions contain variance that is
informative of TCP status to some degree, we would expect that
noise and the randomness associated with a particular population
(that which we attempted to model in Figure 4) will lead to a
somewhat different subset of ROIs being chosen in any particular
forward selection model, consistent with what we observed in
Table 4. Therefore, when approaching the problem of modeling
TCP status from regional cortical thickness, we must view this as
a “brain-wide” problem rather than a “localistic” problem. Rather
than approaching a problem such as the relationship between a
biomarker like cortical thickness and a behavioral outcome such
as TCP status by searching for a critical region or small set of
regions, a richer understanding of this relationship might be had
by taking a more “distributed” or network-based approach.

While discussing this network-level view of relating regional
thickness to TCP status, we should note that a number of the
beta coefficients in our models (Table 3) are negative. These
negative coefficients should not be interpreted as demonstrating
a thinner cortex in these regions in TCP individuals. For example,
in our 70–89 group, while approximately half of the coefficients
in Table 3 are negative in both the cingulate and the whole-brain
analyses, TCP individuals are numerically thicker in all these
regions (see also Figure 3). The negative coefficients are merely
the byproduct of this multiple regression approach.

Finally, we should note that the group analyses in NACC
revealed significant differences in sex and education. TCP
subjects in their 70s tended to have a higher education and
female distribution, while those in their 80s tended to only be
more highly educated. All AUCs increased when both sex and
education were added into the model, but the gains in AUC
appeared quite modest. This is not to say that sex and education
are not informative of cognitive status. When examining a cohort
of SuperAgers from the Personality and Total Health Through
Life (PATH) study, researchers found that SuperAging was both
more prevalent in woman and associated to education (Maccora
et al., 2021). It is possible that the significant differences in
demographics are attributed to TCP group inclusion, which is
reflected higher scores in both memory and executive function.
Previous studies examining the role of age, sex, and education

in elderly cognition revealed that (1) individuals with higher
levels of education performed better on cognitive tests and (2)
women performed better than men on verbal memory tasks
(van Hooren et al., 2007). Additionally, despite there being
no group differences in the oldest-old TCP, The 90 + Study
previously showed that higher education is associated with lower
prevalence rates of dementia in women (Corrada et al., 2008).
For example, if education and sex alone are used to model
TCP status in the 70–89 group, performance is at least as
good as the a priori cingulate-only models (AUC = 0.7 vs.
the cingulate’s AUC of 0.64). However, it is not the case that
thickness is merely a very expensive way of determining age and
education, as in other groups, performance is far worse (e.g.,
90 + Age + Education AUC = 0.52 vs. cingulate AUC = 0.68
or whole-brain AUC = 0.83). Therefore, it is clear that cortical
thickness, while potentially correlated with these other factors,
can be used to model TCP status irrespective of them.

Limitations
While participants were required to be diagnosed as cognitively
normal, and thus determined to be free from MCI or dementia, it
is possible that we are capturing some non-TCP individuals who
are pre-clinical, defined here as asymptomatic participants with
evidence of AD pathology or individuals who display cognitive
symptoms that do not meet clinical criteria for MCI. AD-
related lesions accumulate in the brain years before cognitive
deficits (Morris and Price, 2001; Rowe et al., 2007), with
longitudinal studies showing amyloid deposition measured by
PET 15 years before symptom onset (Bateman et al., 2012).
Thus, it is possible that the effects observed can be attributed
to other aging biomarkers not captured on structural MRI,
especially given the wide age range. Future studies examining
such biomarkers will be informative for better understanding
differences in the available data.

We should also point out that the behavioral measures chosen
for these analyses were based on previous successful aging studies,
which typically use a test of delayed recall [usually CVLT or
Rey Auditory Verbal Learning Test (RAVLT)] and executive
function (usually Trails B). The WMS-R IIA and CVLT were
chosen as tests of delayed recall to mirror this standard as closely
as possible, limited by what data is available in each dataset.
There are some key differences between these tests of delay recall
potentially influencing the differences found between cohorts.
The WMS-R IIA requires participants to recall units of a provided
story while the CVLT requires participants to recall words from
a list. While a narrative will help memory and can be used
in both cases, any such narrative must be constructed by the
participant in the case of the CVLT, leading to potentially more
contamination by executive function in a word list task like the
CVLT (Tremont et al., 2000). While these tests are not identical
in nature, both are measures of verbal memory and tap into
strategic organization of the information to help memory and
we find it more likely that the differences observed between
cohorts are better explained by additional complex changes the
aging brain goes through that may change the importance of
structural characteristics of certain brain regions throughout
the lifespan, such as amyloid deposition or vascular changes.
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It is important to note that differences were also observed within
NACC throughout age groups, thus making it less likely that
differences are attributed test type.

In addition to the relatively modest sample sizes (particularly
in the 80− and 90-year old subgroups), it is important to
note the role of volunteer and selection biases these analyses
common to many aging studies and potentially all neuroimaging
studies. People who are able and willing to participate in imaging
tend to be healthier and meet a priori selection criteria. One
large study examining the nature of volunteer and selection
biases found that those who were more likely to participate in
studies were also more likely to be cognitively healthy, well-
educated, and male compared to their counterparts who were
not interested in participating (Ganguli et al., 2015). Inclusion
criteria and recruitment, amongst other factors, have led to a
more heterogenous population in NACC participants, which tend
to be mostly Caucasian and of both high socioeconomic and
education status. Given that participants from The 90 + Study
are largely survivors of Leisure World Cohort Study and recruited
from a retirement community in Laguna Woods, California, it
is certainly possible that participants are not fully representative
of the population. As reported by Melikyan et al. (2019),
compared with the oldest-old population in the United States
(He and Muenchrath, 2011), the cognitively normal sample in
The 90 + Study has a higher proportion of Caucasians (98.5%
vs. 88%) and a higher percentage of individuals with more than
a high school education (78% vs. 28%). Previous research has
shown that differences in sex and education may account for
cognitive test performance (Hall et al., 2007; van Hooren et al.,
2007), and cortical thickness (Seo et al., 2011; Habeck et al., 2020;
Steffener, 2021). As reported in Tables 1, 2, the overall TCP
NACC sample was 61% female with had an average of 15 years of
education, while The 90+ Study sample was 64% female and 46%
college educated and above. It is possible that higher education or
larger female distributions may be influencing external validity
by: (1) introducing a moderation relationship between key
demographics, test performance, and cortical thickness that we
would not otherwise see in the general public or (2) significantly
influencing the distribution of TCP (approximately 32 and 30%
for current NACC and The 90 + Study analyses, respectively)
that is not representative of all elderly individuals. It is also
important to note that, given these potential biases and the
fact that percentiles for TCP group inclusion were determined
based on a very select subset of each of these cohorts (blue
boxes reflected in Figure 1), inclusion in the top 50th percentile
for each of our cognitive domains may not reflect TCP in the
general public. Finally, we should note that the present study
cannot identify specific mechanisms that are associated with these
differences in cortical thickness.
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