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Globally Aging Cortical Spontaneous
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China

Most existing aging studies using functional MRI (fMRI) are based on cross-sectional
data but misinterpreted their findings (i.e., age-related differences) as longitudinal
outcomes (i.e., aging-related changes). To delineate aging-related changes the of
human cerebral cortex, we employed the resting-state fMRI (rsfMRI) data from 24
healthy elders in the PREVENT-AD cohort, obtaining five longitudinal scans per subject.
Cortical spontaneous activity is measured globally with three rsfMRI metrics including
its amplitude, homogeneity, and homotopy at three different frequency bands (slow-5:
0.02-0.08 Hz, slow-4: 0.03-0.08 Hz, and slow-3 band: 0.08-0.22 Hz). General additive
mixed models revealed a universal pattern of the aging-related changes for the global
cortical spontaneous activity, indicating increases of these rsfMRI metrics during aging.
This aging pattern follows specific frequency and spatial profiles where higher slow bands
show more non-linear curves and the amplitude exhibits more extensive and significant
aging-related changes than the connectivity. These findings provide strong evidence that
cortical spontaneous activity is aging globally, inspiring its clinical utility as neuroimaging
markers for neruodegeneration disorders.

Keywords: cortical spontaneous activity, aging, longitudinal design, amplitude, homogeneity, homotopy

1. INTRODUCTION

MRI has advanced brain aging research and revealed consistent aging patterns of thinning cortical
thickness and shrinking surface area (Elliott, 2020). These morphological changes are associated
with cognitive development during the aging process (Cox et al., 2021). Meanwhile, in theory,
only longitudinal design can delineate the aging-related changes. Recent study has demonstrated
that cross-sectional design failed in reconstructing the aging-related changes but recovering the
inter-individual differences in brain and mind (Vidal-Pineiro et al., 2021), i.e., the age-related
differences. In the present study, the term “aging-related changes” refers to the longitudinal changes
within individual subjects during the aging process while “age-related differences” refers to the
cross-sectional changes mixing within- and between-subject differences. Therefore, cross-sectional
studies do not only measure aging-related changes but have additional noise due to inter-individual
differences. Longitudinal studies assess intra-individual changes, thus, getting rid of the latter
problem (i.e., the mixing of inter-individual and aging differences). It highlights the need for
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longitudinal samples in building aging curves of human brain
structure and function, i.e., modeling aging-related changes as a
function of age.

Human brain function can be mapped with fMRI during
either performing a specific task (i.e., common task-based fMRI,
tbfMRI) or resting-state (rsfMRI). Both tbfMRI and rsfMRI
can be highly or poorly reliable in characterizing individual
differences in brain function (Noble et al., 2019; Elliott et al.,
2020), depending on the metrics of use (Zuo and Xing, 2014;
Kragel et al., 2021; Soch et al.,, 2021). TbfMRI is much better
to detect aging or age-related changes associated with a specific
cognitive function, although faces significant challenges of
developing a single task valid for all different stages of aging,
but it is, of course, less suited as a global measure for functional
changes. In this regard, rsftMRI has no need for a complex
experimental setting as tbfMRI and, thus, is more applicable
across different aging stages (Biswal, 2012; Nooner et al., 2012)
and more suitable for clinical conditions such as dementia or
stroke (Raichle, 2006). Aging has been demonstrated to have
significant effects on spontaneous brain activity measured by
rsfMRI although the direction of these effects (i.e., increase vs.
decrease) remains inconsistent among the studies (Ferreira and
Busatto, 2013; Foo et al., 2020). This might be an indication of the
limited reliability of the most common functional connectivity
metrics (Noble et al., 2019) and the lack of longitudinal rsfMRI
dataset (Zuo et al., 2014) in previous studies. A longitudinal
work with reliable rsfMRI measurements is warranted for
the insightful understanding of the aging spontaneous
brain activity.

Neural oscillations occur across the whole cortical space and
time according to a theoretical framework, namely the natural
logarithm linear law (Penttonen and Buzsaki, 2003), parcellating
them into multiple frequency bands of distinct physiological
functions (Buzsaki and Draguhn, 2004). EEG and MEG offer
great feasibility of recording these oscillations at high frequencies
but with limited spatial resolution. In contrast, rstMRI represents
a high-spatial-resolution method to record the low-frequency
(< 0.1 Hz) oscillations of the blood oxygen level dependent
(BOLD), which has been considered as the proxy of cortical
spontaneous activity (CSA) (Fox and Raichle, 2007; Power et al.,
2014). While early rstMRI studies focused on a single frequency
(e.g., 0.01-0.1 Hz) (Biswal, 2012), Zuo et al. were the first to
decompose the rsfMRI signals into multiple frequency intervals
according to the neural oscillation law (Zuo et al, 2010a).
They demonstrated the specificity of the frequency band to
human basal ganglia’s spontaneous activity by directly comparing
the rsfMRI amplitudes between two slow bands. Soon after,
this multi-band method was used to untangle the spontaneous
activity in mild cognitive impairments from normal aging (Han
etal., 2011).

In the present study, the longitudinal rsfMRI data from the
PREVENT-AD (PResymptomatic EValuation of Experimental or
Novel Treatments for Alzheimer’s disease) cohort (Tremblay-
Mercier et al, 2021) were employed to build aging curves
(i.e., aging-related changes) of global CSA at different spatial
scales and across frequency bands. Specifically, three metrics
are calculated for quantifying the CSAs amplitude of low

frequency fluctuations (ALFF) (Zuo et al, 2010a), regional
homogeneity (ReHo) (Zuo et al, 2013) and voxel-mirrored
homotopic connectivity (VMHC) (Zuo et al, 2010b) across
different slow bands (Xing et al, 2021). The author’s tenet
to use the global metrics was the simplicity, high test-retest
reliability (Zuo and Xing, 2014), and potential validity (i.e., the
observed age-related changes in previous study) (Zuo et al,
2010b; Wang et al.,, 2014; Jiang and Zuo, 2016; Zhao et al,,
2020). The aging curves (i.e., derived with longitudinal data)
remain elusive for the global CSA. According to the theory of
neuronal oscillation (Buzsdki, 2009), different frequency bands
are responsible for different types of connections and different
levels of computation: slow oscillators favor long connections
(low-level computation) while fast oscillators facilitate local
integration (high-level computation). Therefore, combining the
previous findings, the author hypothesized that the global CSA
will show a universal aging pattern while (relatively speaking)
higher frequency bands have more complex aging curves and
(relatively speaking) more local metrics age more extensively
across the frequency bands.

2. MATERIALS AND METHODS
2.1. Participants and MRI Data

Twenty-four cognitively unimpaired older individuals with a
parental or multiple-sibling history of AD were selected from
the PREVENT-AD cohort (age range: 58-77 yrs; mean age: 66
yrs; 8 men). More details of these participants’ demographics
can be found in Supplementary Table 1 including years of
education and APOE-€4. While cognitive measures such as the
Mini-Mental State Examination (MMSE) are not the focus of
the current study, they are accessible from the PREVENT-AD
(https://openpreventad.loris.ca). These participants are all from
the observational cohort in PREVENT-AD and each received
five longitudinal observations including the first annual visit
(baseline) and follow-up visits at the 12, 24, 36, 48 months
after the baseline visit. A final list of all the participants is
available (subject ID: 1635604, 1776737, 2599481, 2823276,

2963960, 3165520, 3301724, 4040157, 4052945, 4943065,
5187625, 5692079, 5730499, 5979345, 7237992, 7550757,
7755697, 7760229, 7863867, 8120729, 8478383, 9088372,

9827494, 9909448). At each visit, all participants received a
high-resolution (1 mm isotropic voxels) structural imaging scan
with T1-weighted MP-RAGE sequence (TR = 2,300 ms, TE
= 2.98 ms, TI = 900 ms, FA = 9°, FoV = 256 x 240 x 176
mm, Phase Encode: A-P, BW = 240 Hz/px, GRAPPA 2) and
two 5-min identical-setting rsfMRI scans (4 mm isotropic
voxels) with EPI sequences (TR = 2,000 ms, TE = 30 ms,
FA = 90°, FoV = 256 x 256 mm, Number of Slices: 32, Eyes
Status: closed).

2.2. Data Preprocessing

All preprocessing steps for both structural and fMRI images were
implemented using the Connectome Computation System (CCS
accessible at https://github.com/zuoxinian/CCS). This pipeline
integrates multiple analytical software packages to achieve
imaging processing of multi-modal MRI data with MATLAB
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implementations of three computational modules: data cleaning
and preprocessing, individual connectome mapping and
connectome mining, and knowledge discovery. The details of
CCS can be found in its seminal software publication (Xu et al.,
2015; Xing et al., in press). The present study only describes
the image processing steps used. The structural image went
through the following preprocessing steps: (1) spatially adaptive
non-local means denoising, (2) rough inhomogeneity correction,
(3) spatial normalization into the MNI standard brain space, (4)
inhomogeneity correction, (5) intensity normalization, (6) brain
extraction by non-local intracranial cavity extraction (NICE), and
(7) gray and white matter segmentation, surface reconstruction.
RstMRI image preprocessing included (1) dropping off the
first 5 EPI volumes, (2) removing and interpolating temporal
spikes (i.e., despike), (3) correcting acquisition timing among
image slices and head motion among image volumes, (4)
normalizing the 4D global mean intensity to 10,000, (5)
regressing out head motion artifacts and other spurious
noise by using ICA-AROMA (Pruim et al., 2015a,b), and (6)
removing linear and quadratic trends from the rsfMRI signals to
mitigate the scanner-related (e.g., magnet instability or thermal
noise) influences.

In the present study, the author constrains the data analyses
to the cerebral cortex considering the advantages of surface-
based functional brain mapping (Zuo et al, 2013; Coalson
et al., 2018). All the structural and functional data were
converted into the CIFTI-based grayordinate framework (Dickie
et al., 2019). Spatial smoothing was not performed regarding
the global nature of the present CSA analyses. Specifically,
the preprocessed rstMRI data are converted onto a left-right
symmetric cortical surface grid, namely Conte69_LR32k. This
surface template was reconstructed with the HCP-customized
FreeSurfer pipeline based upon 69 healthy adults and comprises
32,492 vertices per hemisphere with an approximate 2 mm inter-
vertex distance (Glasser et al., 2016). A group-level surface mask
was established by including every vertex showing rfMRI signals
from all the two rsfMRI scans of the 24 participants across
the cortex.

2.3. CSA Metric Computation

To characterize the global CSA in the human brain across
different spatial scales, the author calculated three widely used
metrics: ALFF (Zang et al., 2007), ReHo (Zang et al., 2004),
and VMHC (Zuo et al, 2010b). These metrics have been
defined and described in detail in the recent study on test-
retest reliability evaluation (Zuo and Xing, 2014; Chen et al,
2015). Specifically, the three metrics were calculated for three
frequency bands: slow-5 band (0.02-0.03 Hz), slow-4 band (0.03-
0.08 Hz), and slow-3 band (0.08-0.22 Hz), derived by the
DREAM module in CCS (Buzsaki and Draguhn, 2004; Gong
et al., 2021).

The CSAs ALFF at a single vertex was derived (~ within 2 mm
distance) (Zuo et al., 2010a). The CSAs ReHo characterizes the
local functional connectivity across the cortical mantle (Zuo et al.,
2013). To quantify the ReHo vertex-wise, Kendall’s coefficients
of concordance (KCCs) of the rfMRI time series among the
4-step neighboring (~ 61 vertices within 16 mm distance)

vertices were calculated. The CSAs VMHC was derived as the
temporal correlation (Fisher-z transformed) between the rstMRI
timeseries from a pair of symmetric vertices between the two
hemispheres (> 16 mm distance) (Zuo et al., 2010b). The author
notes that these metrics measure CSAs across different spatial
scales (i.e., from regional, local activity to distributional, distant
connectivity) while they are also different in computational
aspects: ALFF reflects the amplitude of the signals but ReHo and
VMHC reflect correlations although all these are reflects of the
underlying neural connections. For each rsfMRI scan, both the
mean and SD of the raw maps for each metric are calculated
within the group mask. These mean and SD values are then
averaged across the two rsfMRI scans and considered as global
CSA measurements at the three metrics and across the three
frequency bands.

2.4. Aging Curve Modeling

For accurate estimation of the aging curves distinguishing
longitudinal and cohort effects (Sgrensen et al, 2021),
generalized additive mixed models (GAMMs) include
participant intercept as a random effect to model within-
subject variability and sex, cohort, years of education as
covariates (refer to Equation 1). Specifically, consider the
current dataset of n = 24 participants indexed i = 1,---,n,
assume an outcome of the global CSA y;; has been measured

m; = 5 times in participant i, with timepoints indexed by
j = L---,m; and let a;; denote the age of participant i at the
jth timepoint.

¥§ = Bo + f(ay) + boi + €4 (1)

where f(a;;) models the effect of aging, By is the intercept,
bo; is the random intercept for participant i, and €; is a
random noise term. Both by; and €; are assumed to be
normally distributed but represented for between-participant
(e.g., sex, education, and cohort) and within-participant residual
variability. Specifically, the cohort is the decimal number of
years between birth date and January 1, 1970. The f(a;) is a
smoothing function constructed with cubic B-splines (the knot
number = 5). This setting was sufficient for adequate degrees
of freedom across both spline terms from fittings of the model
but also sufficient for reasonable computational efficiency. These
GAMMs were used to characterize aging effects on the global
CSA metrics with their aging curves. Given a CSA metric
(ReHo, ALFF, VMHC) and a frequency band (slow-5, slow-
4, slow-3), GAMMs can model it as a function of age using
penalized smoothing splines with smoothing parameters, i.e.,
f(a), selected by restricted maximum likelihood. The GAMM:s
were implemented with gamm function from the mgcv package
and relevant statistical reports were generated in R software
(https://www.r-project.org).

3. RESULTS

As hypothesized, the global CSA measurements exhibited
universal aging effects across different metrics but distinct
profiles at different frequency bands. Overall, no statistically
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FIGURE 1 | Global mean measurements of cortical spontaneous activity (CSA) are regressed against age. Three CSA metrics including ALFF (the top row), ReHo (the
middle row), and VMHC (the bottom row) are plotted for each individual and modeled into the aging curves with the 95% ClI (the shadow areas). The aging curve
modeling is applied to three different frequency bands including slow-5 (the left column), slow-4 (the middle column), and slow-3 (the right column). edf, effective
degree of freedom; *p < 0.05; “*p < 0.01; “**p < 0.001.

significant effects of education were observed on the
CSA measurements while cohort and sex demonstrated
metric- and frequency-dependent effects on the global CSA
measurements (refer to Supplementary Figures 1-4 for
more details).

The global mean ALFF measurements increased as a function
of age (i.e., aging-related changes) for all the three frequency
bands (the top panel in Figure 1, refer to full details of the

statistical reports in Table 1). In slow-5, the aging curve was
almost linear, which was indicated by the effective degree of
freedom (edf) for describing the model complexity (edf =
1.0,p < 6.5x107%). Younger cohorts were associated with higher
ALFF (p < 0.013) and male participants showed higher ALFF
than female participants (p < 0.011). In slow-4, the aging curve
exhibited a weak two-stage non-linear profile where the aging
velocity was higher in old participants (edf = 2.8,p < 5.6 x
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TABLE 1 | Generalized additive mixed models (GAMMSs) on aging curve models for global mean measurements of cortical spontaneous activity (CSA).

ALFF ReHo VMHC
Freq band Slow-3 Slow-4 Slow-5 Slow-3 Slow-4 Slow-5 Slow-3 Slow-4 Slow-5
s(age).p 4.89E-05 5.63E-05 0.0064 0.15444 0.0130 0.2757 0.1093 0.0189 0.4222
s(age).edf 4.1988 2.8201 1.0000 2.20418 0.9999 0.9999 0.9999 1.0000 0.9999
Cohort.p 0.0058 0.0002 0.0127 0.05542 0.0027 0.0847 0.0823 0.0023 0.1269
Education.p 0.2734 0.5491 0.8797 0.712199 0.8512 0.9705 0.8950 0.8654 0.9412
Sex.p 0.0095 0.0200 0.0100 0.18635 0.3738 0.1252 0.1658 0.3825 0.1599

10~2). Cohort (p<21x 10~%) and sex (p < 0.021) effects were
similar to those in slow-5. In slow-3, the aging curve exhibited
a strong two-stage non-linear profile where the aging velocity
turned sharply at the age of 75 (edf = 4.2,p < 5.0 x 107>) while
cohort (p < 5.9 x 1073) and sex (p < 9.6 x 1073) had effects
on ALFF in this frequency band. The global variability of ALFF
measurements across the cortical mantle exhibited highly similar
aging-related changes to the global mean ALFF (Figure 2, refer
to Table 2 for details).

The global mean ReHo and VMHC measurements increased
as aging only for slow-4 (the middle and bottom panels
in Figurel and Table1). These aging curves were linear
(PreHo < 0.013,pymuc < 0.019). These two connectivity
metrics were not different between men and women but higher
in younger cohorts (preto < 2.8 X 1073’PVMHC < 24 x
1073). The global variability of the two CSA connectivity
measurements exhibited similar aging changes to their global
means (refer to Table 2 for details). As an exception, the global
VMHC variability of slow-5 was larger in younger cohorts
(p < 0.05).

4. DISCUSSIONS

In this report, the author observed a global aging pattern
of CSA, which is universal for not only its amplitude but
also its connectivity. These metrics share increases profiles
during aging but exhibit specific frequency and spatial profiles.
Higher frequency bands show more non-linear curves and
the amplitude exhibits more extensive and significant aging-
related changes than the connectivity. Age-related differences
in CSA have been widely studied in older adults using cross-
sectional design (Huang et al., 2015; Farras-Permanyer et al.,
2019). The findings are diverse across spatial areas or networks
and different age groups, leaving barries in their clinical
translation. This may reflect the challenges of both the cross-
sectional nature of the samples and the limited reliability of
the functional connectivity metrics. The present study uses
longitudinal design and delineates the aging-related changes of
whole-brain CSA using highly reliable rfMRI metrics. It provides
strong evidence that CSA is aging globally, which is not only
inspiring for more insightful understandings of the healthy
aging brain function but also sheds the light on its clinical
utility for various neruodegeneration disorders by providing a
normal reference.

A longitudinal design is a more powerful method for
developing or aging research (Thompson et al, 2011), and
has been considered as brain aging rather than the individual
variations in brain age as revealed by cross-sectional design
(Vidal-Pineiro et al., 2021). It has been rare for fMRI studies
to have longitudinal data while structural or morphological
MRI studies have reported the discrepancies of the findings
between cross-sectional and longitudinal research (Ronnlund
et al, 2005). In the present study, the author demonstrated
the aging curves of the global CSA by taking the advantage
of the open resource provided by the PREVENT-AD cohort.
This seems to represent the first aging curve study using the
richest longitudinal data (five repeated measurements) of the
human brain function. As expected, the aging curves converged
into a unified profile of increasing global amplitude, local and
homotopic connectivity with age. The author speculates that
it may indicate the underlying compensation mechanism on
normal aging or neurodegeneration processes, calling for a
confirmatory brain-mind association study in the future. It might
also be novel for the current observation that the aging curves are
dependent on space and frequency profiles, reflecting an aging
rule of brain organization (Fox and Raichle, 2007; Zhang and
Raichle, 2010).

Global metrics of the whole brain are commonly considered
as measures of no interest, and, thus, overlooked for a long time,
in most previous studies (e.g., Zhu et al., 2021) with very few
exceptions (Zuo et al., 2010b). As the present findings support,
the author argues that these global metrics are meaningful
for modeling aging curves of the human brain function. The
amplitude measure has been demonstrated with high test-retest
reliability and validity of reflecting the organizational gradient
and hierarchy of the human brain oscillations (Gong et al,
2021). Aging increases the CSA amplitude, and this may
indicate the increasing need for energy to compensate for aging
effects. Such aging-related increases are more complex and
non-linear for the fast brain oscillations (e.g., slow-3 band),
implying the higher-order cognitive function aged more severe
in the late aging stage (Buzsaki and Draguhn, 2004; Raz and
Rodrigue, 2006). The connectivity measures including both
ReHo and VMHC also increase as aging but only in the slow-4
band. ReHo has been related to the functional hierarchy (i.e.,
segregation or integration of the information) (Jiang and Zuo,
2016) and the brain metabolism (Aiello et al., 2015; Bernier
et al,, 2017). The aging profiles of ReHo may, therefore, indicate
degraded functional hierarchy of the intrinsic brain activity
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FIGURE 2 | Global variability measurements of CSA are regressed against age. Three CSA metrics including ALFF (the top row), ReHo (the middle row), and VMHC
(the bottom row) are plotted for each individual and modeled into the aging curves with the 95% CI (the shadow areas). The aging curve modeling are applied to three
different frequency bands including slow-5 (the left column), slow-4 (the middle column), and slow-3 (the right column). edf: effective degree of freedom; *p < 0.05;
**p < 0.01; **p < 0.001.

TABLE 2 | Generalized additive mixed models (GAMMSs) on aging curve models for global variability measurements of CSA.

ALFF ReHo VMHC
Freq band Slow-3 Slow-4 Slow-5 Slow-3 Slow-4 Slow-5 Slow-3 Slow-4 Slow-5
s(age).p 0.0002 0.0001 0.0221 0.3570 0.0001 0.3204 0.1412 7.05E-06 0.3696
s(age).edf 3.4016 1.6285 0.9999 1.0000 1.0000 1.0000 2.9067 1.0000 1.0000
Cohort.p 0.0060 0.0002 0.0312 0.5336 0.0004 0.3208 0.1877 0.0002 0.0485
Education.p 0.4914 0.8217 0.7634 0.7454 0.6698 0.7575 0.8018 0.7700 0.6068
Sex.p 0.0331 0.0841 0.0139 0.2185 0.4688 0.2182 0.6023 0.2331 0.6635
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and its metabolic correspondence. From a perspective of
functional homotopy, aging VMHC enhanced inter-hemispheric
integration (cooperation) or weakened inter-hemispheric
segregation (competition). The specificity of connectivity aging
to slow-4 frequency band might be associated with the aging
processes of some specific cognitive function such as working
memory or language. This warrants future aging CSA-mind
association studies. To summarize, these findings of the three
global metrics converge into an aging model of the increasing
amplitude and connectivity of the CSA.

Several limitations must be bared in mind while these
global measures could be promising to serve individualized
and personalized medicine. First, the sample size is relatively
small while the longitudinal samples are substantial, and thus,
a large group of participants is required to increase the
generalizability of these GAMMs. Second, the participants are
not fully healthy due to their family history of AD. This may
cause the obvious cohort effects while enlarging the aging effects
of interests. Third, only global features are examined in the
present study, however, the observed aging curves should be
interpreted with caution regarding their relationship with the
more region-specific aging-related changes. This is because the
regional aging-related changes could be highly variable across
different spatial locations, leading to non-significant whole-
brain aging curves. Meanwhile, mean curves of aging changes
of metrics are not necessarily directly reflect the aging curves
of mean metrics, especially for the non-linear aging-related
changes. This deserves high-resolution vertex/region-wise, e.g.,
Shirer et al. (2012), CSA analyses of aging-related changes for
future study.
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