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Predicting age from resting-state 
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Introduction: Brain age prediction has been shown to be clinically relevant, 

with errors in its prediction associated with various psychiatric and neurological 

conditions. While the prediction from structural and functional magnetic 

resonance imaging data has been feasible with high accuracy, whether the 

same results can be achieved with electroencephalography is unclear.

Methods: The current study aimed to create a new deep learning solution for 

brain age prediction using raw resting-state scalp EEG. To this end, we utilized 

the TD-BRAIN dataset, including 1,274 subjects (both healthy controls and 

individuals with various psychiatric disorders, with a total of 1,335 recording 

sessions). To achieve the best age prediction, we used data augmentation 

techniques to increase the diversity of the training set and developed a deep 

convolutional neural network model.

Results: The model’s training was done with 10-fold cross-subject cross-

validation, with the EEG recordings of the subjects used for training not 

considered to test the model. In training, using the relative rather than the 

absolute loss function led to a better mean absolute error of 5.96 years in 

cross-validation. We found that the best performance could be achieved 

when both eyes-open and eyes-closed states are used simultaneously. The 

frontocentral electrodes played the most important role in age prediction.

Discussion: The architecture and training method of the proposed deep 

convolutional neural networks (DCNN) improve state-of-the-art metrics in the 

age prediction task using raw resting-state EEG data by 13%. Given that brain 

age prediction might be a potential biomarker of numerous brain diseases, 

inexpensive and precise EEG-based estimation of brain age will be in demand 

for clinical practice.
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Introduction

The human aging process occurs on many levels. In particular, 
the impact of aging on the brain can be observed throughout the 
human lifespan. The structural connectivity between the 
hemispheres and functional connectivity (FC) between distinct 
regions in the brain increase during aging (Madden et al., 2020). FC 
represents the spatial–temporal correlations between brain networks 
observed in a task or resting state conditions (Di and Biswal, 2015). 
At a certain point around 65 years of age, a gradual decline in FC is 
observed in normal aging (Siman-Tov et al., 2017; Madden et al., 
2020). According to Siman-Tov et al. (2017), brain maturation after 
the age of 65 has a pronounced impact on connection strength across 
regions, making some connections weaker, which coincides with the 
early stages of numerous cognitive dysfunctions.

Some people with mental health conditions are more prone to 
experience neurological and cognitive dysfunctions early on. For 
instance, there is growing evidence of FC abnormalities in 
individuals with depression, bipolar disorder, schizophrenia, as 
well as neurodegenerative conditions (Bresnahan et al., 1999; Oh 
et al., 2019; Albano et al., 2022; Metzen et al., 2022). For example, 
major depressive disorder has been linked to a more prevalent and 
hyper-connected default mode network (Tang et al., 2022; for a 
meta-analysis, see Kaiser et al., 2015). Critically, recent studies 
have highlighted variability between chronological age and 
accelerated brain aging in people with mental disorders and early 
life stress (Dunlop et al., 2021; Herzberg et al., 2021). The severity 
of abnormal fluctuations in FC compared to scans of healthy 
individuals can be used to identify internalized processes, such as 
abnormal brain aging, that do not match chronological age 
(Dunlop et  al., 2021). These alterations in cortical dynamic 
properties have been linked to cognitive dysfunctions observed 
across neuropsychiatric conditions (Dunlop et al., 2021). This 
finding has led to the hypothesis that the age of the brain may 
serve as a biomarker to diagnose certain mental and 
neurodegenerative conditions early on.

Previous research has observed age-related brain changes 
using various methods, such as electroencephalography (EEG), 
MRI, functional MRI (fMRI), and positron emission tomography 
(PET) (Bresnahan et al., 1999; Dimitriadis and Salis, 2017; Zoubi 
et  al., 2018; Dunlop et  al., 2021; Rajkumar et  al., 2021). It is 
important to note that while MRI-based methods have high 
spatial resolution imaging, they lack the temporal precision of 
EEG. EEG is also by far the safest and most widely available 
imaging method (Rajkumar et al., 2021). For example, unlike PET, 
EEG is safe to administer, as it does not include any radiation 
risks. Additionally, compared with fMRI, EEG is significantly 
cheaper and easier to use. EEG methods are widely used to record 
brain activity during the state of rest (rsEEG); cognitive and motor 
actions, also known as event-related potentials; and sleep. 
According to Dimitriadis and Salis (2017), reproducible patterns 
of accelerated brain age can be observed across various frequency 
bands in resting conditions, indicating the importance of intrinsic 
brain oscillations.

Much attention has been drawn to low-frequency alternations in 
FC observed in rsEEG in people with mental health disorders 
(Metzen et al., 2022). For example, studies in depression have shown 
abnormal values of FC dynamics in the prefrontal-limbic regions and 
abnormalities in the alpha power band at rest (Jaworska et al., 2012; 
Metzen et al., 2022). Therefore, understanding the EEG FC dynamic 
and capturing the mechanism behind accelerated brain aging in 
people with mental conditions could potentially shed light on 
accurate diagnosis, in-time intervention, and early remission onset.

Overall, a limited number of studies have assessed rsEEG 
recordings to predict brain age (Dimitriadis and Salis, 2017; Zoubi 
et  al. (2018). Both studies relied on quantitative EEG features 
processed by traditional machine learning algorithms. Zoubi et al. 
used a general linear model, while Dimitriadis and Salis employed 
support vector regression to evaluate brain age prediction. 
However, approaches based on automated feature generation such 
as deep convolutional neural networks (DCNNs) have shown 
better results than traditional machine learning.

DCNNs have shown promising results in pattern recognition 
and computer vision applications (Sharma et al., 2018; Yamashita 
et al., 2018; Alzubaidi et al., 2021). This is due to their ability to 
automatically extract significant spatiotemporal features that best 
represent the data from its raw form without preprocessing or 
human decisions necessary for selecting these features (Zeiler and 
Fergus, 2013; Olah et  al., 2017). Owing to these properties, 
convolutional networks have supported advances in solving many 
medical problems, including the diagnosis of brain tumors by MRI 
(Çinar and Yildirim, 2020; Irmak, 2021) and lung diseases by X-ray 
images (Bharati et al., 2020; Singh et al., 2021). They have also been 
used to solve the image segmentation problem (segmenting 
non-overlapping image areas that have unique features) of medical 
images, highlighting experts’ areas of interest (Feng et al., 2020). 
Recently, DCNNs have been used to identify biomarkers and 
diagnose mental disorders using computer tomography and MRI 
images (Vieira et al., 2017; Noor et al., 2020). Finally, deep learning 
has been successfully used to solve tasks related to predicting 
mental diseases from resting-state EEG recordings (Oh et al., 2019; 
Li et al., 2020; Sun et al., 2021; Sundaresan et al., 2021) and to 
predict the sex of the brain (Van Putten et al., 2018; Bučková et al., 
2020). Thus, deep learning is a promising technology for extracting 
information from a complex data source, such as human brain 
EEG, without the need for manual feature engineering.

Computer vision researchers frequently face the problem of 
insufficient data to train deep learning models. Data augmentation 
is as a typical approach to solving this issue. It has been used in the 
overwhelming majority of computer vision studies, and it extends 
the training dataset with synthesized data obtained by applying 
various transformations to existing samples (Shorten and 
Khoshgoftaar, 2019). Unfortunately, the majority of deep learning 
studies involving EEG data disregard this method, which results 
in the under-performance of the models. It is possible to increase 
the size of the original EEG dataset with data augmentation by an 
order of magnitude, endowing the model with the property of 
generalization and thereby improving its quality.
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One issue that has limited progress in this area is that sample 
sizes of typical EEG studies are relatively small (e.g., N < 100 
subjects), especially for machine learning algorithms. To obtain a 
larger dataset, machine learning researchers sometimes use separate 
EEG epochs (segments of EEG records 2–5 s long) for analysis. The 
lack of data also leads to the use of a cross-validation method 
instead of testing on a separate hold-out dataset. However, this 
approach increases the risk of using random cross-validation, which 
can lead to inflated metrics. Since a deep learning model often 
memorizes the session’s fingerprint and, consequently, the subject, 
with all the metrics used (e.g., age or diagnosis), a cross-subject 
cross-validation method would be beneficial in addressing this risk.

In sum, only two studies have harnessed resting-state EEG 
recordings for age prediction; Zoubi et al. (2018) reported a mean 
absolute error ( ( )2,  ) 6.87 0.37 ,=MAE in years of R and 
Dimitriadis and Salis (2017) showed 

( ) ( )2 0.60  , 0.48  .=R eyes open eyes closed We  believe it is 
possible to improve these results since neither study used deep 
learning techniques. Based on recent developments, we propose 
the following aims: (1) to prove that a DCNN can be effectively 
used for brain age prediction from resting-state EEG recordings; 
(2) to exploit deep learning techniques and assess their effects; (3) 
to use an impartial data-leak-free cross-subject cross-validation 
method for training and testing on a large-scale Two Decades–
Brainclinics Research Archive for Insights in Neurophysiology 
(TD-BRAIN) database containing more than a thousand EEG 
sessions (Van Dijk et  al., 2022); and (4) to explain what 
information coming from raw EEG data is essential for the DCNN 
and investigate its performance.

Materials and methods

Dataset

The current study is based on the TD-BRAIN EEG database, 
which is a clinical lifespan database containing resting-state raw 
EEG recordings complemented by relevant clinical and 
demographic data from a heterogeneous collection of psychiatric 
patients collected between 2001 and 2021 (Van Dijk et al., 2022). 
An initial dataset consisted of 1,274 patients (620 females), aged 
38.67 ± 19.21 (range 5–88) years, with a total of 1,346 EEG sessions. 
The sample contained both healthy participants (N = 47) and 
patients with major depressive disorder (MDD; N = 426), attention 
deficit hyperactivity disorder (ADHD; N = 271), subjective memory 
complaints (SMC; N = 119), and obsessive–compulsive disorder 
(OCD; N = 75). For 70 participants, more than one session recorded 
at different times were available. The time interval between the 
repeated sessions was from 2 months to 14 years (mean interval, 
1.16 years; the distribution of the intervals is presented in 
Supplementary Figure 1). Given the considerable time difference 
between sessions and that participants’ ages changed from session 
to session, we treated each session individually. For each session, 
the participant’s metadata included their age at the time of 
recording. After the removal of sessions with missing metadata and 

artifact rejection, the final dataset consisted of 1,335 sessions (719 
females, aged 5–88 years, with a mean age 38.8 ± 19.1 years) of eyes-
open (EO) and eyes-closed (EC) blocks. The preliminary studies 
showed that the results did not significantly differ between the 
dataset consisting of only individual recording sessions and the 
repeated sessions dataset; thus, the latter was used for the final 
analysis. In addition to raw EEG recordings, the TD-BRAIN 
database contains autonomic measures such as electro-
cardiography (ECG), electromyography (EMG), and 
electrooculography (EOG), which are used in cleaning artifacts 
from raw EEG data.

Psychophysiological data included 26-channel (10–10 
electrode international system, Ag/AgCl electrodes) EEG 
recordings with a sampling rate of 500 Hz (low-pass filtered at 
100 Hz before digitization) and a skin resistance level kept below 
10 kΩ in a standardized EEG laboratory setup. The EEG was 
referenced offline to averaged mastoids (A1 and A2) with a ground 
at AFz. Vertical and horizontal eye movements were recorded with 
electrodes placed 3 mm above the left eyebrow, 1.5 cm below the 
left bottom eyelid, and 1.5 cm lateral to the outer canthus of each 
eye, respectively. The EEG data were recorded during the resting 
state with 2 min of eyes-opened and eyes-closed conditions (4 min 
in total). During the eyes-open condition, subjects were asked to 
rest quietly with their eyes open while focusing on a red dot at the 
center of a computer screen. During the eyes-closed condition, 
subjects were instructed to close their eyes and sit still.

EEG signal preprocessing

We utilized established automatic preprocessing (BrainClinics 
Resources, 2022) to remove noise and other artifacts (e.g., eye 
blinks or muscle activity) from the raw EEG recordings. First, data 
were bandpass-filtered between 0.5 and 100 Hz, and the notch 
frequency of 50 or 60 Hz was removed. Next, bipolar EOG was 
calculated and extracted from the EEG signal using the method 
proposed by Gratton et al. (1983). In the final stage, the following 
artifacts were detected using various algorithms: EMG activity, 
sharp channel-jumps (up and down), kurtosis, extreme voltage 
swing, residual eye blinks, extreme correlations, and electrode 
bridging (Alschuler et al., 2014). If an artifact was found in the 
EEG recording, then a mark was put on an additional channel, 
which was used to remove the segment.

In the TD-BRAIN dataset, EEG recordings are 2 min in 
length, in turn indicating a considerable probability of the 
appearance of artifacts, especially in the EO state. To obtain a 
high-quality sample, all records were divided into segments of 
identical duration with an overlap and step equal to 1 s. At the 
same time, the segment was removed from the sample if there was 
information about the presence of artifacts on the channel 
received at the preprocessing phase. Experimentally, an optimal 
splitting duration of 5 s was determined, which allowed us to 
obtain a model of the best quality as well as a significant amount 
of clean data (198,648 segments) (see the “Optimal segmentation 
of EEG recordings” section for further details).

https://doi.org/10.3389/fnagi.2022.1019869
https://www.frontiersin.org/journals/aging-neuroscience


Khayretdinova et al. 10.3389/fnagi.2022.1019869

Frontiers in Aging Neuroscience 04 frontiersin.org

Machine learning analysis: Cross-subject 
cross-validation

To correctly assess the model quality, we  used 10-fold 
cross-subject cross-validation with separate validation and 
testing datasets. The cross-validation procedure was repeated 
10 times. At each iteration, the whole dataset was divided into 
10 parts, whereby eight parts were used for training the 
network, one for validation during training, and one for 
testing the final model. An example of splitting is shown in 
Figure 1. During training, it was essential to correctly divide 
the data, since the quality of the model depended on the 
chosen data split. We placed all EO and EC session segments 
corresponding to the same subject in the same fold; thus, the 
model was used to detect patterns among different EEG 
recordings and not memorize sessions.

Machine learning analysis: Data 
augmentation

To increase the training dataset size and improve the model’s 
quality, we  applied the following transformations with 
experimentally identified parameters to preprocessed EEG 
recordings as the data augmentation technique:

 • with a probability of 50%, apply gaussian noise to the input 
tensor with random standard deviation drawn from a 
uniform distribution [0, 1] μV;

 • with a probability of 70%, apply random dropout of Bk 
consequent time-points in k  EEG channels of the input 
tensor data, where k and Bk are drawn from uniform 
distributions [1, 8] and [1, 1800], respectively;

 • with a probability of 50%, apply random amplification of 
the input tensor with a multiplier Mch  drawn from a 
uniform distribution [0.8, 1.2] for each EEG channel ch ;

 • with a probability of 50%, shrink or stretch the time axis 
with a factor uniform distribution [0.8, 1.2];

 • with a probability of 50%, invert the time flow for all 
EEG channels.

Machine learning analysis: Model

We used a DCNN with a segment of the EEG recording as an 
input. The segment was transformed into a stacked tensor 
(Figure 2) to increase the receptive field of the first convolutional 
layer. The transformation takes a tensor with dimensions (1, 26, 
500*5) as an input for a 26-channel 5-s EEG segment. Then, using 
a cyclic permutation of channels from top to bottom and 
concatenating them, a new tensor of dimensions (4, 26, 500*5) 
was made. The central part of the model is comprised of four 
blocks, consisting of a convolutional layer, a batch normalization 
function, and an activation function. The convolutional layer 
processes the signal with learning weights and resizes the input 
tensor. The batch normalization technique (Ioffe and Szegedy, 
2015) is used to speed up the training of the model and to add 
regularization by normalizing the data. The sigmoid linear unit is 
used as an activation function across the convolution layers to add 
nonlinearity, ensure robustness against noise in the input data, 
and achieve faster back propagation convergence (Elfwing et al., 
2018). After the main blocks, global average pooling is applied to 
the tensor, transforming the multidimensional tensor into a 
one-dimensional vector. A linear layer at the end of the model is 
applied to the vector, whose output is a scalar responsible for the 

FIGURE 1

Example of splitting for 10-fold cross-validation.

https://doi.org/10.3389/fnagi.2022.1019869
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predicted age. Age prediction is performed by applying the model 
to all artifact-free segments of the EEG session for the eyes-open 
and eyes-closed tasks, averaged according to Expression 1:

 
Age

Age

Ns
i
N

s
i

s

s

= =∑ 1

 
(1)

where Agesi ≥ 0  is a predicted age for session 
s EO EC i Ns∈{ } =, , ..1 , and Ns  is the number of segments in 
session s .

Machine learning analysis: Model training

The main loss function in solving the regression task was Mean 
Absolute Error, MAE (2). It is suited to the problem of predicting age 
and is easily interpreted; MAE  was used as one of the metrics. The 
absolute loss function is not always beneficial (see section “Brain age 
prediction as a classification problem”). Therefore, we applied the 
mean absolute logarithmic error (MALE), the function that is the 
ratio of the logarithm of a true value to the predicted one (3). It is less 
sensitive to the scale of the data and allows for the prediction of 
smaller values in a more efficient manner.
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where N is a sample size, and y  and y


 are target and 
predicted vectors of values, respectively.

During cross-validation, the random partitioning of the 
sample and the initialization of the weights of the neural network 

can lead to different values in metrics. Therefore, we used the 
upper 95% confidence interval (CI95% ) of the sample of test 
metrics from all iterations (4). Some previous studies do not 
report the MAE  metric but do report the coefficient of 
determination R2( )  metric (5); thus, we also calculated it for a 
comparison of the results. R2  indicates the model fit and is, 
therefore, an indicator of how well outliers are likely to 
be predicted by the model through a proportion of the target 
value variance explained by the model. Thus, using the two 
metrics together shows not only how the model makes 
predictions on average but also how well it describes 
data variance:
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where x  is a mean metric value, std  is a metric standard 

deviation, y
y

N
i i=

∑ , N is a sample size, 1.96 is the approximate 

value of the 97.5 percentile point of the standard normal 
distribution, Ncv  is the number of the cross-validation folds, and 
the rest of the notation is the same as in Formulas 2  and 3.

The model was trained with pytorch and catalyst (Kolesnikov, 
2018) libraries using the Adam optimization algorithm (Kingma 
and Ba, 2017) with a starting learning rate of 43 10−⋅  and a batch 
size of 512 segments. As well, we used the “reduce on plateau” 
scheduler with the patience of three epochs to obtain the 
maximum quality of the network and the “early stopping” 
technique after 10 epochs without validation metric improvement 
to prevent model overfitting. The training was performed on four 
Nvidia A10G GPUs and took 5 h on average.

FIGURE 2

DCNN model structure. The convolutional layers of the central part of the model have stride (1, 3) and the following kernel sizes: (7, 64), (7, 32), (7, 
16), and (7, 8). The number of channels changed from 16 to 128, doubling each time. For the EEG segments (first two on the left), the x-axis (time) 
is in milliseconds.
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Results

Age correlations with EEG band power

To be sure that the EEG signals contained information 
that could be  correctly extracted by the deep learning 
algorithms prior to brain age prediction, we calculated the 
zero-order correlations between age and EEG band power 
(alpha: 8–12 Hz, beta: 12–30 Hz, delta: 1–4 Hz, theta: 4–7 Hz) 
separately for each EEG electrode. The power of the bands 
was calculated separately for eyes-closed and eyes-open 
conditions. The results are presented in Figure 3.

EEG power was shown to be associated with age for all 
narrow bands for nearly all electrodes. The highest 
correlations were found for the absolute delta band power and 
the lowest correlations for the absolute beta band power, with 
an overall decline in EEG power with age across all bands. 
The presence of significant correlations allowed us to move 
on to building the deep learning model.

Optimal segmentation of EEG 
recordings

The abundant presence of artifacts in resting-state EEG 
recordings can deteriorate the quality of the resulting neural 
network. A frequently used approach is to divide two-minute 
recordings for eyes-open and eyes-closed states into segments of 
several seconds, subsequently removing the segments with 
artifacts from consideration.

With this approach, the task of choosing the optimal duration 
of one segment arises. As the duration of a segment increases, it 
becomes easier for the neural network to regress the target 

variable, as it processes each segment independently of the others. 
At the same time, deleting a longer segment due to an artifact 
deprives the neural network of more information compared to a 
shorter segment. We partially leveled out the latter complexity by 
using segments intersecting with a step of 1 s. We formulated this 
task as an optimization problem (6) and (7):

 
SegLen CrossValMAE X Noptimal cv= ( ) =( )( )Φ , 10

 
(6)

 
X SegLen DataSplit SegLen overlap( ) = =( ), 1 ,

 
(7)

where CrossValMAE NcvΦ,( )  is the cross-validation MAE 
score (in years) calculation for a neural network Φ  with Ncv  fold 
iterations; Φ  is the neural network function; 
and DataSplit SegLen overlap,( ) is an algorithm splitting records 
into segments of length SegLen  with overlap seconds.

To solve this problem, we trained 10 independent models 
on segments of duration from one to 10 s (in the case of 1 s, 
there was no overlap between segments) and evaluated their 
quality and the sample size after artifact removal (Figure 4). 
For reliability, the optimal segment length was chosen based 
on the upper bound of the 95% MAE confidence interval, 
which was calculated by cross-validation. The calculated 
optimal duration of 5 s was used for further experiments. This 
allowed for the removal of all segments with artifacts while 
keeping the total number and duration of segments in training 
at sufficient levels.

Thus, the final prediction of the brain age of a subject was 
carried out by predicting the age for all five-second artifact-free 
segments from both EC and EO sessions with subsequent 
averaging of the obtained values.

FIGURE 3

Correlations between age and EEG band power. FDR-corrected significant correlations are marked with a black dot. Color represents the strength 
of the (non-parametric) Spearman’s correlation coefficient.
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Influence of eye state

We carried out a series of experiments to study the influence 
of eye state during EEG recording on age prediction. Three 
DCNNs were trained independently on the following different 
datasets: only data with open eyes, only data with closed eyes, and 
data with both conditions. Each of the models predicted these 
datasets separately (Table 1).

As a result, we observed almost identical single-eye-state 
model performance on the known modality data [the MAE 
was 6.39 (for open eyes) and 6.33 (for closed eyes) years]. At 
the same time, the eyes-closed model experienced more 
difficulty with the opposite-eye-state data relative to the eyes-
open model (MAE = 7.43 years vs. 7.13 years). Thus, the open 
eyes condition was slightly more informative for the DCNN 
in predicting brain age than closed eyes. At the same time, the 
best performance was achieved using both eye states 
simultaneously. Both modalities acted as additional data 
augmentations and provided the DCNN with better 
performance and generalization ability.

Accuracy of brain age prediction

The results of the present study confirmed the presence of 
brain age information in the resting-state EEG recordings, which 
a deep convolutional neural network effectively extracted. To our 
knowledge, the proposed DCNN architecture predicts human 
brain age with the best-known quality achieved in the resting-
state EEG recordings with MAE = 5.96 (std = 0.33) years and 
R2 = 0.81 (std = 0.03). All experiments were conducted using 

robust 10-fold cross-subject cross-validation on a subset of the 
TD-BRAIN dataset containing resting-state EEG with open and 
closed eyes.

Table 2 shows the results of the work compared to previous 
works on the topic. The Pearson correlation coefficient for the 
samples of true and predicted values was 0.9.

The “roll and shift” method and data augmentation played 
a noticeable role in DCNN quality. The first technique allowed 
the first layer of the network to obtain more information from 
the signal, and the second improved the model’s ability to 
generalize. An increase in the size of the input tensor, and the 
application of various transformations to the segments of the 
EEG signal, led to an MAE metric improvement of 2.5% [from 
6.11 (std = 0.5) to 5.96 (std = 0.33) years, Table  2]. Applying 
these methods together seems especially useful, as the network 
should not only be  more precise but also possess better 
generalization ability.

FIGURE 4

Dependence of model quality on a segment duration (x-axis). 
The bar chart (left y-axis) shows the number of segments after 
removing artifacts. The line chart (right y-axis) shows the upper 
bound of the 95% confidence interval for the MAE (in years) 
metric of the model.

TABLE 1 Performance of models predicting brain age trained for 
different eye states. 

Training data
Testing data: MAE (std; years)

Eyes open 
and closed Eyes open Eyes closed

Eyes open and closed 5.96 (0.33) 6.30 (0.37) 6.14 (0.43)

Eyes open 6.44 (0.44) 6.39 (0.37) 7.13 (0.45)

Eyes closed 6.5 (0.47) 7.43 (0.52) 6.33 (0.44)

MAE is in years.

TABLE 2 Metrics of models predicting brain age.

Model Dataset size, N

Age range and 
distribution [range, 
mean ± std, (years)]

MAE  [mean ± std, 
(years)]

2R

Dimitriadis and Salis (2017) 194 [18, 67], 37.7 ± 10.2 - 0.60 (EO) 0.48 (EC)

Zoubi et al. (2018) 468 [18, −], 34.8 6.87 ± 0.69 0.37 (EO)

Current model (MAE) 1,335 [5, 88], 38.8 ± 19.1 5.96 ± 0.33 0.81 (EO and EC)

Current model w/o “stacking 

tensor” and data augmentation

same 6.11 ± 0.50 0.80 (EO and EC)

The table shows the size of the datasets, mean age, and standard deviation (std), as well as the MAE (in years; lower is better) and R2 (higher is better) metrics obtained on the 
corresponding datasets.
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Brain age prediction as a classification 
problem

Although age is a continuous variable, some brain studies 
consider it to be categorical by dividing participants into age 
groups (Bresnahan et al., 1999; Gaudreau et al., 2001; Bonnet and 
Arand, 2007). At the same time, various studies have used 
different boundaries between groups. The current model makes 
it possible to find the optimal partition of an entire age range of 
K  non-overlapping groups as follows: let y y yN= …( )1, ,  and 

( )1ˆ ˆ ˆ, ,= … Ny y y  be the target and predicted age, and b bk1 1, ,… +  
are borders for the age groups C Ck1, ,⊃  such that [ )1, +=i i iC b b  
for 1.. .=i K  We will look for boundaries that increase the 
balanced accuracy score ( ) ( )( )ˆ,Β ΒbAcc y y  described in 
Brodersen et al. (2010), where Β x( )  is the age matching formula, 
such as B x C j( ) =  if x b bj j∈ )+, 1 . We also set restrictions on 
the class sizes C  so that the size of the largest class did not 
exceed the smallest one by a factor of two such that the classes are 
more balanced. Thus, the optimization problem of determining 
the boundaries of age groups has the following form:

 

( ) ( )( )
1 1

1

2

1

1 1
min a

ˆ

.5 m

,

x0

+…

=

+

=… …

Β Β →
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i kik

bAcc y y Argmax

b b b
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(8)

We used the stochastic global search optimization Differential 
Evolution algorithm (Das and Suganthan, 2011) to solve (8). 
Table  3 shows the optimal class boundaries found using the 
mentioned algorithm for K = { }2 3 4 5, , , .

From Table 3 and Figure 5, a very prominent young group 
aged 5–20 is visible: the model predicts it much more accurately 
than the middle age. There is also a group older than 
approximately 50 years age, in which the model consistently errs 
toward a younger age. This seems plausible since the brain 
develops rapidly at a young age, and a couple of years make a 
sizable difference, while in old age, a difference of 5–7 years may 
not be noticeable. These observations led us to conclude that, 
from a physiological point of view, it would be most natural to 
optimize not the absolute error of MAE but rather the relative 
one—for example, MALE.

We trained models with both absolute and relative loss 
functions and compared their mean absolute error metric in the 

obtained age groups for K = 3 . Table 4 shows that DCNN trained 
with relative loss is more valuable for further application. The 
metrics indicated that using the MALE  loss function reduces the 
spread of values in the first two age groups, making it possible to 
predict age more effectively.

Importance of cross-subject validation

We noted the critical role of the cross-validation strategy 
used, since it allows for an objective assessment of the quality of 
the model. First, the selected number of folds allows for a 
sufficiently large test set size of more than a hundred sessions. 
Furthermore, it allows for more accurate estimation of the 
boundaries of the confidence interval in the resulting metric 
when compared to a smaller number of folds. Second, cross-
subject separation eliminates data leakage. It guarantees the 
distribution of all information from one session, including open 
and closed eyes, only inside the training, validation, or testing set. 
This deprives the neural network of the ability to memorize and 
use “session fingerprints” for age prediction. The model extracts 
patterns from the data familiar to different sessions and subjects, 
ultimately leading to better generalizability. To illustrate the 
possible data leakage effect, we replaced the cross-subject split 
rule with a random split. The model trained on 10-fold cross-
validation with random mixing of session information between 
folds achieved MAE = 2 03.  years and R2 0 97= . . Such metrics 
look optimistic, but, unfortunately, would not be replicated with 
new or hold-out EEG sessions.

Prediction of brain disorders correlated 
with age

In the present study, the DCNN models are trained and tested 
on the heterogeneous sample with both health participants and 
participants with several disorders. To decrease the possibility that 
the used algorithms identified the probability of a certain disease 
rather than the age we trained the multiclass DCNN model to 
predict the TD-BRAIN’s disease status of participant. For the 
purpose of the analysis, the original indications and formal 
diagnosis were grouped into 13 classes. Overall, the prediction 
accuracy of the multiclass model was low. The weighted average 
prediction accuracy for all classes was 39% (a detailed description 

TABLE 3 Table of age groups found using the evolutionary algorithm.

K Age groups boundaries, [bi, bi+1] Age group sizes, Ci Balanced accuracy, bAcc

2 [5,38),[38,88] [632,703] 0.897

3 [5,20),[20,46),[46,88] [281,528,526] 0. 819

4 [5,15),[15,32),[32,52),[52,88] [209,342,413,371] 0.764

5 [5,18),[18,34),[34,47),[47,56),[56,88]] [246,290,297,213,289] 0.631

Square brackets indicate that the end of the range is inclusive; parentheses indicate that the end is exclusive.
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of the multiclass prediction analysis can be  found in 
Supplementary Table 1).

Model explanation

While DCNNs have had a significant impact on various tasks, 
explaining their predictions remains a challenging. One approach 
is to assign an attribution value, also called “relevance” or 
“contribution,” to each input feature of a network. Given a specific 
target neuron c , the goal of the attribution method is to 
determine the contribution R R R Rc c c

N N= 

∈

1
..  of each input 

feature xi  to the output Sc . The problem of finding attributions 
for deep networks has been tackled in several previous works 
(Simonyan et al., 2013; Zeiler and Fergus, 2013; Springenberg 
et al., 2014; Bach et al., 2015; Montavon et al., 2017; Zintgraf et al., 
2017). In the examined regression task, there is a single output 

neuron Sc  responsible for the age prediction. When the 
attributions of all input features are arranged to have the exact 
shape of the input sample, we discuss attribution or sensitivity 
maps (Figure 6A).

We exploited the Integrated Gradients method proposed by 
Sundararajan et al. (2017) in conjunction with the Smooth Grad 
method (Smilkov et al., 2017), which sharpens the sensitivity map. 
Attribution maps were obtained at a segment level and aggregated 
along the time dimension, providing a feature importance score with 
[channel, sex, eye-state] resolution for each segment. The average 
feature-importance illustration on a topological head map shows its 
concentration around the Cz channel and slightly to C1 on the left 
with a slight difference between the eye states and sex of a subject 
(Figure 6B).

More detailed results can be obtained from Figure 7, where 
almost no difference in the feature importance between sexes can 
be observed, although with some difference in eye states.

FIGURE 5

Example of three age groups obtained by the evolutionary algorithm. The true age is marked on the x-axis, and the y-axis shows the difference 
between the predicted and true age. Orange and blue dots show the prediction errors of the models, trained using the MAE and MALE loss 
functions, respectively.

TABLE 4 The MAE for the models trained with different loss functions.

Age range Sample size, N Absolute loss training [MAE, (years)] Relative loss training [MAE, (years)]

[5,20] 281 2.45 2.39

[20,46] 528 5.78 5.54

[46,88] 526 8.01 8.34

Full dataset 1,335 5.96 5.98

The table shows the found age groups and their size, with the corresponding MAE (in years; lower is better) metrics of two models.  
Square brackets indicate that the end of the range is inclusive; parentheses indicate that the end of the range is exclusive. 
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Open eyes shifted to the right, providing slightly more 
valuable information for the DCNN compared to closed eyes 
in some but not all channels—Cz, C3, FCz, FC3, etc. The 

most notable differences between feature importance were 
found for the Fp1 and Fp2 electrodes (D = 3.5 and D = 2.8, 
respectively).

A B

FIGURE 6

(A) Example of an attribution map for one EEG segment. (B) Feature importance based on integrated gradient attribution for different sexes and 
eye states aggregated over all EEG segments.

FIGURE 7

Density plots for male and female sexes and different eye states for each EEG channel. Channels are presented in descending order of total 
attribution with larger (more interesting) values to the right on the x-axis. Channel is marked with “*” when the absolute difference “D” between 
medians for eyes open and closed attribution is greater than 2 * IQR for the eyes-closed condition.
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Discussion

In the present study, we aimed to develop a deep learning 
model for brain age prediction based on the EEG data from the 
TD-BRAIN dataset (Van Dijk et al., 2022). In line with the existing 
literature (Anderson and Perone, 2018), the preliminary 
correlational analysis showed that aging processes are associated 
with decline in the power of EEG frequency bands, allowing us to 
train DCNN models. According to our results, brain age 
information can be extracted from EEG signals with a DCNN 
with high accuracy when optimal characteristics of the signals and 
proper data augmentation procedures are used.

Optimal characteristics for DCNN brain 
age prediction

In the present study, we  used the data augmentation 
techniques to increase the accuracy of the prediction. While such 
techniques have been proven successful in the analysis of visual 
information, in the EEG data, with the network of 
intercommunicating sources of activity, the implementation of 
data augmentation may potentially affect the analysis more 
heavily. However, in the present study, we used the synthetic noise 
for data augmentation. It was distributed randomly, irrespective 
of any individual EEG characteristics. The main purpose of the 
data augmentation is to minimize the distance between the 
training and test datasets, increasing the variability in the train 
dataset and helping to solve the overfitting problem (for a more 
detailed discussion of data augmentation in EEG, see He et al., 
2021). To avoid the potential pitfalls related to data augmentation 
(e.g., false positive or false negative results), we have used the 
10-fold cross-subject cross-validation technique. We have also 
demonstrated a crucial role for correct cross-subject cross-
validation—when applied inappropriately, it can lead to serious 
inflation of the prediction accuracy. The other important result of 
the study is the introduction of a relative loss function, which 
works better than the absolute function. According to our results, 
while the open-eyes condition was slightly more informative for 
the DCNN in predicting brain age than the eyes-closed condition, 
for the present task, the best performance was achieved when both 
eye states were used simultaneously, divided into five-
second epochs.

Accurate brain age prediction from EEG 
is feasible

This work improves the best-known MAE for brain age 
prediction based on resting-state EEG by 13% (from 6.82 to 
5.97 years), and R2  by 35% from (0.60 to 0.81). Our results also 
indicate that prediction accuracy can differ for different age 
groups, with the highest accuracy for the participants 15–20 years 
old. Why was R2  increased more than MAE? Presumably, Zoubi 

et al. (2018) had many outliers and/or their model predicts them 
poorly. Dimitriadis and Salis (2017), unfortunately, did not report 
MAE. One important difference between our research and 
previous work is related to the bigger sample size utilized for the 
current analysis. It has been recently shown that bigger samples in 
neuroscience studies are needed for obtaining more stable and 
reproducible findings (Marek et al., 2022). The improvement in 
results can be also related to wider age range (the presence of 
young people under the age of 18) in our dataset. While in our 
study we achieved prediction accuracy higher than in the rest of 
the published EEG literature, MRI-based brain age prediction of 
MAE is significantly higher. In a recent study, Leonardsen and 
colleagues (Leonardsen et al., 2022) achieved MAE = 2 47.  years. 
However, in their study, the deep learning CNN model was 
trained on a much bigger sample (N = 53,542), leaving the 
possibility that EEG-based prediction can also be increased with 
a larger sample. One advantage of EEG brain age prediction 
compared to MRI brain age prediction is that EEG signals contain 
high-frequency brain activity, which is crucial for communication 
within the brain (Fries, 2015). Whether the modality (MRI or 
EEG) or the sample size is the more important factor in age 
prediction accuracy is a matter of future studies.

Brain age prediction as a potential 
biomarker

The present analysis was done on a heterogeneous dataset 
consisting of both healthy participants and participants with 
various disorders. The fact that the disorders are not evenly 
distributed across the age groups within the dataset leaves open 
the possibility that the DCNN model could have captured not only 
information regarding the age of the participant, per se, but also 
the probability of having a particular disease. Although the 
additional analysis showed that the DCNN models could not 
accurately predict the type of disease from the same EEG data, the 
disorders as potential confounders cannot be completely ruled out.

Currently, a promising application of machine learning for age 
prediction is associated with the delta between prediction from 
brain characteristics and chronological age (brain-predicted age 
difference, brain-PAD). The brain-PAD has been previously 
associated with multiple illnesses. More extreme brain-PAD has 
been observed in patients with depression (Schmaal et al., 2020), 
cognitive impairment (Elliott et al., 2021), dementia (Wang et al., 
2019), Alzheimer’s disease (Gaser et al., 2013), and schizophrenia 
(Rokicki et al., 2020). In a recent large-scale MRI study, higher 
brain-PAD was linked to age-related changes in glucose level, 
insulin-like growth factor-1, level of glycated hemoglobin, and 
negative lifestyle habits such as smoking or excessive alcohol 
consumption (Leonardsen et al., 2022). However, the effect size of 
the association between MRI-based brain-PAD and various 
health-related problems was relatively small, suggesting cautious 
causal interpretation. When compared to EEG, it must be noted 
that MRI brain-PAD was calculated from structural rather than 
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functional data. While structural and functional brain 
characteristics are definitely correlated (e.g., white matter 
connectivity predicts EEG functional connectivity; Chu et  al., 
2015), the aging processes can affect them differently. This fact can 
play a crucial role when it comes to correlating brain-PAD with 
neurological and psychiatric disorders because of their functional 
rather than anatomical nature (Finn and Constable, 2016). 
Critically, high-frequency brain oscillations contain information 
about the dynamic synchronization between different brain areas, 
forming functional brain networks (Fries, 2015). Alterations 
within brain networks are now seen as the major source of 
different disorders (Bassett and Bullmore, 2009; Van Den Heuvel 
and Fornito, 2014). One way to further increase both the 
sensitivity and specificity of EEG brain age prediction and 
brain-PAD as a functional biomarker can be to account for the 
network information available in EEG synchronization patterns.

Feature importance and the model 
explanation

In our study, we  have also shown that building activation 
maps for EEG signals from the DCNN model is feasible. The 
activation maps have previously shown its utility in the image 
recognition tasks, including medical image recognition (Hesamian 
et al., 2019). An advantage of the activation maps as a tool for 
feature-importance analysis is that it can be used by a neuroscience 
researcher even without strong data analytical skills. The result of 
the model explanation in our data showed different results 
compared to the feature-importance analysis by Zoubi et  al. 
(2018), where the left parieto-temporal area (TP9 electrode 
according to the 10–10 System) was shown to be  the most 
important factor for age prediction. The difference in most 
essential regions may be  attributed to the difference in 
approaches—the current study used a DCNN as an automated 
feature extractor, while the study conducted by Zoubi et al. used a 
stack-ensemble of classical machine learning algorithms over 
hand-crafted features. Different machine learning methods can 
approach the same problem in different ways. Another important 
aspect to be noted is that while both our analysis and the analysis 
by Zoubi and colleagues were based on a mix of healthy and 
clinical samples, the disorders in the two different clinical groups 
did not match. The generalizability of the results across different 
samples should be verified in future research on normative EEG 
and EEG from a broad range of disorders.

The observed higher importance of open eyes rather than 
closed eyes may be related to the higher vigilance state, activation, 
and information processing (Barry et al., 2007; Wong et al., 2016). 
Indeed, we  observed a significant difference in the feature 
importance in the frontal regions, potentially associated with eye 
movements and eye state. It should be noted that closed versus 
open eye conditions are accompanied with an overall change in 
the EEG frequency spectrum, most notably in the frontal areas. 
The individual differences in the eyes-closed/eyes-open spectral 

changes can be associated with multiple reasons, e.g., sleep-related 
problems. Overall, the model explanation analysis showed that the 
activation maps can be  used in addition to more widespread 
methods that estimate feature importance for deep learning 
models. The detailed analysis of the neurophysiological 
characteristics of age-related EEG sections, highlighted by the 
activation maps method, and its comparison to the results of other 
methods should be addressed in future research.

Further work and limitations

Overall, in our study, we  have shown that high-accuracy 
prediction is feasible with resting-state EEG. We believe this to 
be an important improvement due to the much higher availability 
and lower cost of EEG technologies. Given that brain-PAD is seen 
as an important potential biomarker of numerous neurological and 
psychiatric conditions its inexpensive and precise EEG-based 
estimation likely to be in demand for clinical practice in areas such 
as automatic diagnostics and treatment predictions. For example, 
such projects have now been developed for depression studies 
(Zhang et al., 2020). It would be reasonable to conduct further 
research in several directions as follows: first, identifying factors 
that allow DCNNs to determine the age of the human brain, 
studying these factors, and verifying them from a 
neurophysiological point of view; second, creating a neural network 
with a high generalizability, making it possible to predict the age of 
the human brain using data collected in new conditions (different 
site, different equipment, etc.); third, exploring whether there 
would be benefits to using EEG-informed fMRI (i.e., combining 
EEG with higher spatial resolution fMRI data). Finally, the model 
is trained to predict age, but it can also be valuable for transferring 
identified features from one domain (age prediction in the current 
study) to another domain (neuropsychiatric disorders). This could 
allow for the identification of new brain-state biomarkers and the 
prediction of treatment outcomes for mental disorders.

An important limitation of the current study is the specific 
dataset used. The current deep learning model was built on EEG 
data predominantly from patients with different disorders. The 
accuracy of the prediction must be verified from normative EEG, 
as well as EEG from people with different types of disorders to 
ensure the generalizability of the obtained results. However, to our 
knowledge, the large-scale, normative resting-state EEG of a wide 
age range has not yet been conducted. Moreover, existing datasets 
are mostly limited to participants of European ancestry. Creating 
a large-scale open dataset with a diverse sample is a necessary step 
for the further development of EEG brain age prediction models. 
Another limitation relates to the interpretability of the obtained 
deep learning model. In the present study, we  showed the 
feasibility of an activation map approach to finding the exact 
features that deep learning models use for brain age prediction. 
However, the nature of these features was beyond the scope of the 
current study. We  plan to address the neurophysiological 
properties of activation maps in future research.
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Conclusion

To sum up, according to our results, the deep convolutional 
neural networks can show higher accuracy in brain age prediction 
using resting-state EEG signals than other approaches. The DCNN 
with the introduced loss function outperforms previously used 
methods by 13% if suitable data augmentation techniques and 
proper cross-validation procedures for avoiding inflated 
prediction accuracy are applied. However, in our study, we trained 
the DCNN on a heterogeneous sample with both healthy 
participants and participants with different disorders. To ensure 
the generalizability of the obtained results, the brain age prediction 
accuracy must be verified in larger and more diverse samples in 
future research.
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