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Introduction: Alzheimer’s disease (AD) is a multifactorial disorder diagnosed 

through the assessment of amyloid-beta (Aβ) and tau protein depositions. 

Filamin A (FLNA) could be a key partner of both Aβ and tau pathological 

processes and may be an important contributor to AD progression. The 

main aim of this study was to describe the differences in FLNA levels across 

clinicopathologic groups.

Methods: From parietal cortex samples of 57 individuals (19 with no cognitive 

impairment (NCI), 19 mild cognitively impaired (MCI) and 19 with dementia) from 

the Religious Orders Study (ROS), we quantified total tau, phosphorylated tau 

(pTau), FLNA, synaptophysin, vesicular acetylcholine transporters (VAChT) and 

choline acetyltransferase (ChAT) by Western blot. Aβ42 and neuritic plaques (NP) 

were quantified by ELISA and Bielschowsky silver impregnation, respectively. AD 

staging was determined using ABC method combining Thal, Braak and the CERAD 

staging. From this, clinicopathologic stages of AD were established by subdividing 

subjects with neuropathological AD between preclinical AD, prodromal AD and 

AD dementia (ADD). Receiver operating characteristics analyses were performed 

to predict AD neuropathology from FLNA quantifications.

Results: Insoluble FLNA was significantly and positively correlated with Aβ42, 

NP, Thal stages, ABC scores and AD clinicopathologic stages (p < 0.05 False 

discovery rate-corrected). No correlation of FLNA with tau measures was 

found. Insoluble FLNA levels were significantly higher in the prodromal AD, 

ADD and intermediate ABC groups. This was consistent with significantly 

lower levels of soluble FLNA specifically in prodromal AD. Insoluble (AUC: 

0.830) and soluble FLNA levels (AUC: 0.830) as well as the ratio of soluble 

over insoluble FLNA (AUC: 0.852), were excellent predictors of prodromal AD 

among subjects with MCI from the ROS cohort.

Discussion: We observed opposite level changes between insoluble and soluble 

FLNA in prodromal AD. As this stage coincides with the appearance of cognitive 

symptoms, this may be a key event in the transition from preclinical to prodromal 

AD. Insoluble FLNA could be useful to identify prodromal AD among subjects 

with an MCI, indicating that it might be a hallmark of prodromal AD.
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Introduction

Alzheimer’s disease (AD) is the most frequent cause of 
dementia, with an estimated prevalence in the United States close 
to 6 million (de Pedro-Cuesta et al., 2009; Rajan et al., 2021). The 
neuropathological hallmarks of AD are the presence of neuritic 
plaques (NP) and paired helical filaments (McKhann et al., 1984; 
Jack et al., 2018). The former are largely composed of polymerized 
Amyloid-beta (Aβ) peptides, while the latter are primarily made 
of hyperphosphorylated microtubule-associated protein tau 
assembled into paired helical filaments (PHF; Glenner and Wong, 
1984; Grundke-Iqbal et al., 1986). These Aβ and tau aggregates are 
associated with a gradual synaptic loss, which leads to cognitive 
impairment (Coleman and Yao, 2003; Scheff et al., 2006; Maass 
et al., 2018; Vanhaute et al., 2020).

AD is now recognized as a multifactorial disease, with Aβ and 
tau neuropathologies being its most studied lesions (Herrup, 2015; 
Gong et al., 2018; Samanta et al., 2022). However, other abnormal 
processes may be more important for identifying, monitoring and 
predicting the progression, and curing AD. One such promising 
abnormal process may involve FLNA, which binds to actin 
filaments and cellular membrane proteins. FLNA is needed for cell 
structure and function (Zhou et al., 2021). Abnormal function of 
this protein is thought to contribute to AD neuropathology by 
contributing to both tau and Aβ pathologies. As a first hint of its 
malfunction in AD, FLNA was found to colocalize with PHFs 
(Feuillette et al., 2010). It was then found that Aβ, mostly in the 
form of Aβ42, structurally altered FLNA in AD (Burns and Wang, 
2017). This alteration allowed FLNA to bind to α7 nicotinic 
acetylcholine receptors (α7nAChR) and toll-like receptor-4 
(TLR4), altering their response (Wang et al., 2012, 2017; Burns 
and Wang, 2017). Aβ42 then interacts with the FLNA-bound 
α7nAChR and TLR4 to induce neuroinflammation and tau 
hyperphosphorylation, thereby contributing to disease 
progression in animal models (Burns and Wang, 2017). Reversing 
FLNA structural alteration using the compound PTI-125 reduced 
tau, neuroinflammation and Aβ biomarkers in a phase IIa clinical 
trial (Wang et  al., 2020). FLNA may also contribute to tau 
pathology in the absence of Aβ. From cell culture experiments, 
Tsujikawa et al. (2022) reported that higher FLNA levels increased 
tau protein levels, phosphorylation and insolubility, while its 
reduction was shown to decrease these effects on tau. Collectively 
the above observations indicate that the abnormal function of 
FLNA could be  crucial for inducing the neuropathological 
processes of AD. However, our knowledge of in vivo alterations of 
FLNA across the stages of AD remains elusive.

The primary aim of the present study was to describe the 
FLNA levels over the different stages of AD. A secondary aim was 

to identify which AD-associated features were predicted by FLNA 
levels. To do so, we analyzed post-mortem cortex samples and AD 
staging data obtained from the Religious Orders Study. FLNA, NP, 
Aβ42, total tau and phosphorylated tau (pTau) levels were 
quantified by immunoblotting or ELISA. We used FLNA levels to 
predict Aβ and tau-derived sample levels. We then assessed the 
predictive power of FLNA over general disease progression stages 
in the form of increased insoluble FLNA levels at later stages of AD.

Materials and methods

Participants

Samples from the precuneus cortex (Brodmann’s Area 7) were 
obtained from 60 participants in the Religious Orders Study 
(Bennett et al., 2012). The study was approved by an Institutional 
Review Board of Rush University Medical Center. All subjects 
signed informed consent, Anatomic Gift Act, and repository 
consent. The subjects were distributed across three age-matched 
cognitive profiles: no cognitive impairment (NCI, N = 20), mild 
cognitively impairment (MCI, N = 20) and dementia (N = 20), 
based on a clinical evaluation that was previously described 
(Bennett et al., 2002, 2006). In short, these diagnoses were based 
on a yearly medical visit including a mini-mental state 
examination (MMSE) as well as a standardized neuropsychological 
battery of 19 standardized cognitive performance indicators from 
five cognitive domains, which were, in turn, integrated into 
composite scores (Bennett et al., 2012; Wilson et al., 2015). Three 
participants – one from each cognitive profile group  - were 
excluded from the study due to missing data.

At death, each case was assessed using the revised National 
Institute on Aging–Alzheimer’s Association (NIA-AA) guidelines 
for the neuropathologic assessment of Alzheimer’s disease 
(Montine et al., 2012). This includes the assessment of Aβ deposits 
with Thal’s stages (A; Thal et al., 2002), that of PHF with Braak 
stages (B; Braak and Braak, 1991) and that of NP distribution with 
the Consortium to Establish a Registry for Alzheimer’s Disease 
(CERAD) scores (C; Mirra et al., 1991). Using the chart from the 
revised NIA-AA guidelines, four levels ABC scores, representing 
levels of AD neuropathological changes were obtained: “not,” 
“low,” “intermediate” or “high.” To avoid any confusion between 
clinical and pathological nosological definitions, all mentions of 
AD in this work refer to intermediate or high levels of AD 
neuropathological changes. Intermediate or high levels of AD 
neuropathological changes are consistent with a neuropathological 
diagnosis of AD, as one needed to display at least intermediate 
scores on both Braak (stage III) and one of the Aβ subscales 
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(either Thal stage 3 OR Thal stage 1 with moderate CERAD 
assessment). This is opposed to individuals with not or low levels 
of AD neuropathological changes, for whom AD neuropathology 
is insufficient to account for any cognitive symptom (N = 20; 10 
NCI, 8 MCI and 2 with dementia; Montine et al., 2012). We further 
subdivided the AD group into three clinicopathologic stages based 
on the antemortem clinical groups: preclinical AD (N = 9; all 
NCI), prodromal AD (N = 11; all with MCI) and AD dementia 
(ADD; N = 17; all with dementia). These groups are described in 
Table 1. Notably, subjects with ADD had significant cognitive 
deficits when compared to all other groups. As anticipated from 
previous studies, non-AD subjects had a significantly lower 
frequency of Apolipoprotein E allele ε4 (APOE ε4) carriers 
(Poirier et al., 1993; Bennett et al., 2003).

Preparation of brain homogenates

The cortical samples (~100 mg) were sequentially 
homogenized, sonicated and centrifuged. The first extraction was 
performed in tris-buffered saline (TBS) to generate a TBS-soluble 
fraction, containing mostly cytosolic and extracellular proteins. 
The second extraction was performed in detergents (0.5% sodium 

deoxycholate, 0.5% sodium dodecyl sulfate and 1% Triton X-100) 
to extract membrane-bound proteins (i.e., detergent-soluble 
fraction). Lastly, the detergent-insoluble fraction containing 
proteins from insoluble aggregates was extracted through 
solubilization in formic acid. A detailed method of the protein 
extraction was previously described (Tremblay et al., 2007, 2017; 
Julien et al., 2008, 2009; Bourassa et al., 2019, 2020).

Western blot and ELISA

For Western immunoblotting, 15 μg of total proteins per lane, 
as measured using bicinchoninic acid assays (Pierce/Thermo 
Fisher Scientific, Waltham, MA) were added to Laemmli’s loading 
buffer. The solution was heated to 95°C for 5 min, then subjected 
to sodium dodecyl sulfate polyacrylamide gel electrophoresis. 
Proteins were electroblotted onto PVDF membranes (GE 
Healthcare, Mississauga, ON, Canada). The membranes were then 
blocked in 5% non-fat dry milk and 0.5% bovine serum albumin 
in 10 mM phosphate-buffered saline for 1 h before being 
immunoblotted with the appropriate primary and secondary 
antibodies. Bands were visualized by chemiluminescence 
(Luminata Forte, Millipore, Etobicoke, ON, Canada), then 

TABLE 1 Characteristics of subjects classified by clinicopathologic stages of AD.

Characteristics Non-AD Preclinical AD Prodromal AD AD dementia Statistical analysis

N 20 9 11 17 n/a

Age 86.5 (4.43) 87.1 (7.24) 88.6 (5.71) 87.1 (5.26) F(53) = 0.36; p = 0.78

Men (%) 45 11.1 36.4 29.4 χ2(3) = 3.39; p = 0.34

APOE ε4 carriers (%) 10* 55.6 45.5 41.2 χ2(3) = 8.10; p = 0.04

Years of education 18.5 (3.61) 18.7 (4.12) 17.5 (3.24) 18.1 (2.38) F(53) = 0.29; p = 0.83

MMSE score 25.6 (4.15) 27.2 (1.56) 25.1 (2.98) 15.8 (8.59)* F(53) = 13.3; p < 0.0001

Clinical diagnosis (NCI/MCI/

Dementia)

10/8/2 9/0/0 0/11/0 0/0/17

Postmortem interval, hours 7.14 (4.66) 7.73 (6.87) 8.67 (5.70) 6.99 (4.12) F(51) = 0.27; p = 0.85

Cerebellar pH 6.40 (0.33) 6.25 (0.33) 6.29 (0.27) 6.31 (0.44) F(53) = 0.46; p = 0.71

Prevalence of infarcts (%) 30 22.2 27.3 17.6 χ2(3) = 0.83; p = 0.84

Prevalence of CAA (%) 25 44.4 44.5 47.1 χ2(3) = 3.06; p = 0.38

pS409/410 insoluble TDP-43 7.63 (5.58) 6.40 (4.80) 10.7 (5.01) 9.66 (4.97) F(53) = 1.53; p = 0.22

pS409/410 soluble TDP-43 97.0 (25.6) 100 (28.6) 96.9 (16.7) 84.8 (15.4) F(53) = 1.41; p = 0.25

Thal stages 0/1/2/3/4/5 (N) 7/11/2/2/0/0 0/2/0/3/1/3 0/0/0/7/3/2 0/1/0/5/4/7

Braak stages I/II/III/IV/V (N) 3/4/9/6/0 0/0/3/6/0 0/0/4/7/1 0/0/5/2/10

CERAD stages 4/3/2/1 (N) 14/4/4/0 0/1/6/2 1/1/6/4 0/1/4/12

Episodic memory CS −0.05 (0.87) 0.04 (0.35) −0.42 (0.62) −1.97 (1.17)* F(53) = 17.74; p < 0.0001

Semantic memory CS −0.21 (0.76) −0.28 (0.35) −0.52 (0.60) −1.48 (1.22)* F(53) = 7.63; p = 0.0002

Working memory CS −0.26 (0.44) −0.15 (0.58) −0.71 (0.69) −0.94 (0.92)2 F(53) = 4.30; p = 0.009

Processing speed CS −0.77 (1.08) −0.21 (0.78) −0.94 (0.71) −2.10 (0.87)* F(53) = 10.67; 

p < p < 0.0001

Visuospatial ability CS −0.10 (0.76) −0.41 (0.56) −0.24 (0.68) −1.06 (0.98)3 F(53) = 4.93; p = 0.004

General cognition CS −0.20 (0.57) −0.11 (0.30) −0.52 (0.38) −1.65 (0.87)* F(53) = 20.5; p < 0.0001

Non-AD: either “not” or “low” score of neuropathological change on the ABC scale; AD: either “intermediate” or “high” score on the ABC scale; Preclinical AD: no cognitive impairment 
along with AD; Prodromal AD: AD neuropathology in the presence of a mild cognitive impairment; CAA: cerebral amyloid angiopathy; TDP-43: transactive response DNA binding 
protein 43; *p < 0.05 versus all other groups; 2p < 0.05 versus Non-AD and Preclinical AD; 3p < 0.05 versus Non-AD and Prodromal AD.
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acquired and analyzed with an Amersham imager 680 (GE 
healthcare). Relative optical density values of TBS-soluble proteins 
were normalized to actin. In addition, insoluble FLNA was 
normalized to sample weight, due to the absence of reliable 
housekeeping proteins in the formic acid fraction. The following 
antibodies were used: anti-actin (ABM, Richmond, BC, Canada), 
anti-FLNA (#4762, Cell Signaling Technology, Danvers, MA, 
United States), anti-total Tau (OST00329W, epitope: 323–363 a.a., 
Osences, SA, Australia), anti-pTau (PHF-1, epitope: pS396/404 
gift from Dr. Peter Davies; Feinstein Institute for Medical 
Research, Manhasset, NY), anti-synaptophysin (SVP-38, 
Millipore), anti-VAChT (OSV00002G, Pierce/Thermo Fisher 
Scientific), anti-ChAT (Proteintech, Rosemont, IL) and anti-
phosphorylated transactive response DNA binding protein 43 
(pTDP-43, epitope: pS409/S410, Lumiglo Reserve). Detergent-
soluble fractions were used for quantification of synaptophysin, 
VAChT and ChAT, while detergent-insoluble fractions were used 
for total Tau, pTau and FLNA. In addition, TBS-soluble FLNA 
quantification was obtained. All of these analyses were performed 
in two batches.

Concentrations of Aβ42 were determined in the FA-soluble 
fraction, which was resuspended in guanidine, using high 
sensitivity ELISA (Wako, Japan), as described elsewhere (Tremblay 
et al., 2007). Plates were read at 450 nm using a SynergyTM HT 
multi-detection microplate reader (Biotek, Winooski, VT).

Neuritic plaques were counted following Bielschowsky silver 
impregnation from parietal cortex samples (See Bennett et al., 
2003 for more details). A logarithmic transformation was applied 
on the NP count in order to adjust for the asymmetry of 
the distribution.

Statistical analyses

All statistical analyses were performed using RStudio version 
2021.9.1.372 (RStudio Team, 2020) using a base statistical 
significance threshold of two-tailed p = 0.05. We performed partial 
linear correlations between the levels of FLNA and those of Aβ42, 
pTau, total Tau, NP, synaptophysin, VAChT, and ChAT. Age, sex, 
and study batch were included as covariates in the partial 
correlations. APOE ε4 carrier status was not used as a covariate 
due to the small number of non-AD carriers (N = 2). To improve 
the accuracy of data visualization corresponding to the statistical 
analyses, the figures depict predicted values, which were obtained 
from the protein level residuals from age, sex and study batch 
regressions. The initial protein level mean was added to the 
residuals, resulting in predicted protein levels when removing the 
age, sex and study batch effects. ABC score, its three subscores 
(Thal, Braak and CERAD) and AD clinicopathologic stages were 
considered as ordinal variables for statistical analysis purposes. As 
such, the association between FLNA levels and ABC scores, 
subscores and AD clinicopathologic stages were assessed with 
Spearman’s non-parametric correlations. In these instances, FLNA 
was sequentially adjusted for age, sex and study batch. Inflation of 

the false discovery rate (FDR) due to multiple tests was corrected 
through the adjustment of the p-values by using the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995). Unless 
otherwise specified, p-values presented in the results section are 
FDR-corrected, with full results displayed in 
Supplementary Table 1. Due to small N, Braak stages I and II 
were merged.

Additional partial linear correlations between Aβ-derived 
measures (Aβ42 concentrations and NP counts) and tau-derived 
measures (total Tau and pTau levels) were performed to verify the 
interplay between tau and Aβ neuropathology. Similarly, 
we performed Spearman’s correlations between Aβ stages (Thal 
and CERAD stages) and Braak stages. These control analyses were 
not FDR-corrected.

As a post-hoc to the significant Spearman’s correlations, 
two-tailed Dunnett tests were performed comparing FLNA levels 
at the least severe AD stage to the one at each of the other stages. 
This was meant to allow identification of the stages where FLNA 
levels were significantly different from those found at the earliest 
stage of AD. Additionally, we performed Spearman’s correlations 
on Thal and CERAD stages) and tau measures (total Tau, pTau 
and Braak stages). Adjusted standardized mean differences (SMD) 
were used as measures of effect sizes in group comparisons.

As a supplementary analysis to verify the effect of APOE ε4, 
we performed two ANCOVAs comparing insoluble and soluble 
FLNA in three groups: APOE ε4 noncarriers with AD, APOE ε4 
carrier with AD, and subjects without AD. Tukey post-hoc tests 
were conducted to reveal group differences.

Receiver operating characteristics (ROC) analyses were 
performed to measure the ability of FLNA adjusted for age, sex, 
APOE ε4 carrier status and study batch to identify the subjects 
with AD. Three such analyses were performed: (1) to identify AD 
from the whole sample, (2) to identify prodromal AD from the 
MCI group and (3) to identify preclinical AD from the NCI group. 
p-values for those results were FDR-corrected as a separate set. 
The discriminative ability of predictors was interpreted based on 
Hosmer et al.’s guidelines Hosmer et al. (2013) for the area under 
the curve (AUC). AUC, sensitivity and specificity values were 
compared qualitatively to those obtained using Aβ42, pTau, total 
Tau and NP adjusted for age, sex and study batch. Full results for 
those ROC analyses are displayed in Supplementary Table 2.

Semi-partial linear correlations were performed to verify the 
association between FLNA levels and cognitive variables, 
including all five cognitive domain scores, the general cognition 
domain composite scores and the MMSE score. Cognitive scores 
were adjusted for age and sex and years of education, while FLNA 
was adjusted for age, sex and study batch. Due to the different 
nature of the cognitive variables, FDR correction with the 
Benjamini-Hochberg procedure was performed independently on 
the resulting p-values. Full results are displayed in 
Supplementary Table 3.

In a last set of analyses, partial correlations were performed to 
verify the association between FLNA and phosphorylated soluble 
and insoluble pTDP-43 levels. The effect of the presence of infarcts 
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and cerebral amyloid angiopathy (CAA) on FLNA was also tested 
using ANCOVAs. These results were included in an independent 
set of FDR correction.

Results

Insoluble FLNA correlation with Aβ and 
tau neuropathologies

Previous studies in cellular and animal models including ours 
(Levert et al., 2022, in press; Tsujikawa et al., 2022) revealed that 
upon FLNA overexpression, an increase of tau protein levels and 
phosphorylation, two events reported in early stages of AD, were 
observed (Braak et al., 2011). Based on this, we anticipated that 
FLNA alterations might be associated with tau accumulation and 
hyperphosphorylation prior to the formation of NFTs. In this 
context, the parietal cortex, a region affected at late stages of AD 
seemed ideal for capturing the correlation of the changes of FLNA 
protein levels and solubility with the progression of Aβ and tau 
pathologies (Braak et al., 2006). To verify the association between 

Aβ-associated neuropathology and detergent-insoluble FLNA 
accumulation, we quantified the levels of insoluble FLNA and Aβ42 
in homogenates of parietal cortex samples. FLNA levels was 
determined by western blotting and Aβ42 by ELISA (Figure 1). NP 
count was measured in the same region. We  used Thal and 
CERAD that are based on observations from several brain regions 
as measures of global neuropathology. We found that FLNA was 
significantly and positively associated with Aβ42 concentrations 
(β = 0.406, p = 0.036; Figure  2A), with Thal stages (ρ = 0.318, 
p = 0.042; Figure  2B), and with NP count (β = 0.353, p = 0.042; 
Figure 2C). CERAD stages were not significantly associated with 
insoluble FLNA (Figure 2D). None of the Thal stage groups were 
found to display significantly higher insoluble FLNA levels than 
Thal stage 0.

We then investigated the association between insoluble FLNA 
levels and tau-associated neuropathology using parietal cortex 
levels of pTau and total Tau as well as the Braak stages. No 
significant association was found between insoluble FLNA and 
these tau-derived measures (Figure 3). To ensure the validity of 
our quantifications of tau, we assessed the levels of total Tau across 
the ABC scale and Braak stages. This showed a strong significantly 

A

B

FIGURE 1

Western immunoblotting of insoluble (A) and TBS-soluble (B) Filamin A (FLNA) migrating at approximately 250 kDa. Actin (42 kDa) is shown in 
soluble fractions. Subjects are identified by group. ADD, AD dementia.
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A B

C D

FIGURE 2

Associations between insoluble FLNA and Aβ-derived metrics. Insoluble FLNA (iFLNA) levels are significantly associated with insoluble Aβ42 [iAβ42; 
(A)], Thal stages (B) and neuritic plaques (NP) (C). However, the association with CERAD stages is not significant (D). Predicted insoluble FLNA, 
Aβ42 and NP values shown were calculated by adding the mean to the residual values from age, sex and study batch linear regression. 
Standardized beta and rho values are used to display the strength of associations. *: p < 0.05.

higher level at the “high” stage when compared to the “not” stage 
(p = 0.00006, SMD = 1.77; Supplementary Figure 1A). In contrast, 
“intermediate” and “low” stages had similar total Tau levels to 
those found at the “not” stage. Similarly, total Tau levels were 
specifically higher at Braak stage V, but not at earlier stages 
(Supplementary Figure 1B).

As an additional validation of our AD neuropathology 
measurements, we tested the association of Aβ-derived metrics 
with tau-derived metrics. We found NP count to be positively 
correlated with total Tau (β = 0.494, uncorrected p = 0.0003) and 
pTau (β = 0.524, uncorrected p = 0.0001) levels, while Aβ42 was 
positively associated with pTau (β = 0.401, uncorrected p = 0.004), 
but the association with total Tau (β = 0.340, uncorrected p = 0.017) 
did not survive FDR-correction. Similarly, Braak stages were 
significantly correlated with Thal (ρ = 0.593, uncorrected 

p < 0.0001) and CERAD (ρ = 0.502, uncorrected p < 0.0001) stages 
(Supplementary Figure 2). This confirmed that insoluble FLNA 
levels were indeed exclusively associated with Aβ neuropathology, 
but not with tau despite both tau and Aβ neuropathological stages 
being strongly correlated with one another.

Association of FLNA with stages of AD

Next, we verified the association between insoluble FLNA and 
the general stages of AD using AD clinicopathologic stages and the 
ABC scale. Insoluble FLNA levels were positively correlated with the 
ABC scores (ρ = 0.316, p = 0.042; Figure 4A) and AD clinicopathologic 
stages (ρ = 0.386, p = 0.036; Figure 4B). However, no ABC stage was 
found to have significantly different insoluble FLNA levels when 
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compared to the “not” stage. When compared to the non-AD 
subjects, the prodromal AD (p = 0.037, SMD = 0.94) and the ADD 
subjects (p = 0.036, SMD = 0.80) had significantly higher insoluble 
FLNA levels (Figure 4B). This indicated that the insoluble FLNA 
levels might represent a specific aspect of the clinicopathologic 
progression of AD. This also suggested that a stabilisation of 
insoluble FLNA levels may take place at later stages of AD, as its 
levels were similar in both ADD and prodromal AD stages.

We also investigated the relationship between soluble FLNA 
and the clinicopathologic stages of AD. We  expected soluble 
FLNA to be lower at the prodromal AD stage, where insoluble 
FLNA levels was significantly increased. Indeed, we found a trend 
toward lower soluble FLNA levels at the prodromal AD stage 

when compared to the non-AD (p = 0.096, SMD = 0.76), to the 
preclinical AD (p = 0.073, SMD = 0.99) and to the ADD groups 
(p = 0.053, SMD = 0.89; Figure  4D). We  calculated the soluble 
FLNA to insoluble FLNA ratio. We  found that this ratio was 
significantly lower at the prodromal stage when compared to the 
non-AD (p = 0.028, SMD = 0.98), although no difference was 
found when compared with the other groups (Figure  4F). In 
contrast, there was no significant difference between both soluble 
FLNA levels and soluble/insoluble FLNA ratio across ABC scores 
(Figures  4C,E). Therefore, a decreased soluble FLNA levels 
mirrored higher insoluble FLNA levels at the prodromal AD stage. 
In contrast, in ADD, soluble FLNA levels were normal, reflecting 
the similar levels of insoluble FLNA in ADD and prodromal 

A B

C

FIGURE 3

Associations between insoluble FLNA and tau-derived metrics. Insoluble FLNA (iFLNA) levels were not significantly associated with either insoluble 
total tau [itTau; (A)], insoluble phosphorylated tau [ipTau; (B)] and Braak stages (C). Predicted insoluble FLNA, itTau, and ipTau values shown were 
calculated by adding the mean to the residual values from age, sex, and study batch linear regression. Standardized beta and rho values are used 
to display the strength of associations.
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AD. This was specific to AD clinicopathologic stages, with no 
differences in soluble FLNA levels across the ABC scale, suggesting 
that soluble FLNA may be linked to the clinicopathologic stages 
of AD. The ratio of soluble and insoluble FLNA did not appear to 
hold any advantage when compared to insoluble FLNA.

We found the APOE ε4 allele to significantly impact the 
insoluble FLNA levels in AD when comparing participants 
without AD, ε4 noncarriers AD and ε4 carriers AD participants 
(F = 7.348(54), p = 0.002, Figure 5A). Insoluble FLNA levels were 
significantly higher in AD noncarriers when compared with both 

subjects without AD (p = 0.001, SMD = 1.06) and AD carriers 
(p = 0.034, SMD = 0.76) while FLNA levels did not significantly 
differ between AD carriers and subjects without AD (p = 0.575, 
SMD = 0.30). Similarly, APOE ε4 carriers with prodromal AD did 
not display greater FLNA levels (Figure 5B). By contrast, either 
soluble FLNA and soluble/insoluble FLNA ratio did not 
significantly differ across groups (Figures  5C-F). Separating 
subjects by both APOE genotype and clinicopathologic stages of 
AD hinted at a pronounced increased insoluble FLNA levels of 
APOE ε4 noncarriers at the prodromal stage (Figure 5D).

A B

C D

E F

FIGURE 4

FLNA association with ABC scores and clinicopathologic stages of AD. (A) Insoluble FLNA (iFLNA) significantly correlates with ABC scoring, with the 
“not” score being associated with significantly lower FLNA levels than the “intermediate” score. (B) Insoluble FLNA significantly correlates with 
clinicopathologic stages of AD, with the non-AD displaying significantly lower FLNA levels than the prodromal AD and the ADD. (C) Soluble FLNA 
(sFLNA) levels did not vary across the ABC scale. (D) A trend toward lower levels of soluble FLNA at the prodromal AD stage than at any other 
clinicopathologic stage of AD was found. (E and F) Correlation of the soluble/insoluble FLNA ratio with the ABC stages and clinicopathological 
stages of AD. S/I: soluble over insoluble FLNA ratio. Predicted soluble and insoluble FLNA values shown were calculated by adding the mean to the 
residual values from age, sex and study batch linear regression. Standardized beta and rho values are displayed to the strength of associations.  
†: p < 0.1; *: p < 0.05.
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We next assessed the potential of insoluble FLNA levels as a 
predictor of the AD neuropathological diagnosis. In the present 
sample, insoluble FLNA was an adequate predictor of AD at any 
stage (AUC = 0.722, p = 0.036) and did not predict preclinical AD 
among the subjects with NCI (AUC = 0.522, p = 0.905). However, 
when used specifically to identify subjects with prodromal AD 
among those with an MCI, insoluble FLNA was an excellent 
predictor (AUC = 0.818, p = 0.041; Figure 6A). Similarly, soluble 
FLNA was an excellent predictor of prodromal AD among 
subjects with an MCI (AUC = 0.830, p = 0.041), but not for the 
discrimination of preclinical AD among subjects with NCI nor for 
the discrimination of all-stages AD from the whole sample 
(Figure  6B). The soluble/insoluble FLNA ratio yielded similar 

results, being an excellent predictor of AD in the MCI (AUC = 852, 
p = 0.041) and a poor predictor of AD in the whole sample and in 
the NCI subsample (Figure 6C; see Supplementary Table 2 for 
full results).

Association of FLNA with 
neurodegeneration, cognition, and 
co-pathologies

Insoluble FLNA did not significantly predict cognitive 
performance on any of the scales (Supplementary Table 3). By 
contrast, Aβ42, NP, pTau and total Tau were all strong predictors of 

A B

C D

E F

FIGURE 5

Interaction of APOE ε4 and AD over the levels of FLNA. (A) Insoluble FLNA (iFLNA) is significantly increased in participants with AD that do not carry 
APOE ε4 when compared to AD carriers and non-AD subjects. (B) This contrast is most apparent at the prodromal stage of AD. (C–F) No 
significant effect of APOE ε4 on either soluble FLNA (sFLNA) of soluble over insoluble (s/i) FLNA ratio in AD was found. Predicted soluble and 
insoluble FLNA values shown were calculated by adding the mean to the residual values from age, sex and study batch linear regression. *: p < 0.05; 
**: p < 0.01.
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A B

C

FIGURE 6

Receiver operating characteristics curves for the identification of AD with FLNA. (A) Insoluble FLNA is an adequate predictor of AD in the whole 
sample, an excellent predictor in the mild cognitively impaired (MCI). Insoluble FLNA is an inefficient predictor in the non-cognitively impaired 
(NCI). (B) Soluble FLNA does not predict AD in the whole sample nor in the NCI. Soluble FLNA is an excellent predictor of AD in the MCI. (C) The 
ratio of soluble over insoluble FLNA is an adequate predictor of AD in the whole sample, an excellent predictor in the MCI, and does not predict 
AD neuropathology in the NCI. Insoluble, soluble and soluble over insoluble FLNA levels were corrected for age, sex, and study batch. *: p < 0.05.

global cognition and memory, with weaker associations with other 
cognitive domains. The correlation of insoluble FLNA levels with 
synaptic markers and cognitive performance was examined. 
Insoluble FLNA was not found to be correlated with detergent-
soluble synaptophysin, a presynaptic vesicular protein whose 
reduced levels reflect neurodegeneration (Wiedenmann and 
Franke, 1985). It did not significantly correlate with detergent-
soluble VAChT and detergent-soluble ChAT either 
(Supplementary Table 1, data not shown).

Lastly, we  investigated the association of vascular and 
pTDP-43 co-pathologies with soluble and insoluble FLNA. Neither 
soluble pTDP-43, insoluble pTDP-43, infarcts or CAA were 
significantly associated with either soluble or insoluble FLNA 
(data not shown).

Discussion

This study describes the association between AD 
neuropathology and FLNA levels in post-mortem parietal cortex 
samples. Results show significant positive associations between 
most Aβ metrics and insoluble FLNA levels. In contrast, our 
analyses did not display any significant association between 
insoluble FLNA levels and tau measurements. Specifically, 
we found greater insoluble FLNA levels at the ABC intermediate 
stage as well as in the prodromal AD and ADD stages. We found 
this to be dependent on the APOE ε4 allele, where noncarriers 
displayed increased insoluble FLNA levels while ε4 carriers did 
not. The highest insoluble FLNA average levels, found at the 
prodromal stage, were mirrored by lower soluble FLNA levels. 
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However, soluble FLNA levels were normal at the ADD stage. 
These alterations of both insoluble and soluble FLNA levels were 
found to be  excellent predictors of prodromal AD within all 
subjects with an MCI. Complementary analyses yielded no 
significant association between insoluble FLNA with presynaptic 
marker synaptophysin, cholinergic markers ChAT and VAChT, 
and cognitive scales.

Insoluble FLNA is associated with 
amyloid, but not with tau pathology

We found that the insoluble FLNA levels were significantly 
positively correlated with most Aβ-derived metrics. Associations 
with the quantifications of insoluble Aβ42 and NP from the parietal 
cortex samples as well as with Aβ-derived Thal staging were of a 
medium-to large effect size (ρ and R between.391 and.451). In 
contrast, none of the tau-derived metrics – Braak stages, pTau and 
total Tau – were found to be significantly associated with insoluble 
FLNA levels. This was the case despite strong insoluble FLNA 
associations with general AD progression scales – ABC and AD 
clinicopathologic stages – as well as between tau and Aβ-derived 
metrics. Those results indicate that a transition of FLNA to an 
insoluble form occurs over the course of AD with a trajectory 
similar to the progression of Aβ neuropathology. However, this 
loss of solubility is unlikely to be  causally linked with tau 
neuropathological mechanisms, while it may be  specifically 
associated with Aβ mechanisms. A similar phenomenon was 
observed with U1-70k, another protein that colocalizes well with 
tau aggregates, but its accumulation is not well correlated with tau 
levels (Diner et al., 2014). We hypothesize that FLNA insolubility 
and tau hyperphosphorylation and aggregation are distinct events 
influenced by Aβ-borne FLNA abnormalities. Wang et al. (2012) 
identified that the normal function of FLNA is altered in AD, 
detaching itself from actin filaments and enabling Aβ42 to activate 
neuroinflammation and tau hyperphosphorylation pathways. The 
same research team attributed this change of function to an 
alteration of the structure of FLNA caused by Aβ42, with the vast 
majority of FLNA found in the post-mortem AD brain being in 
its altered state (Burns and Wang, 2017; Wang et  al., 2017). 
Following its structural alteration due to Aβ, we propose that 
FLNA would be  more prone to a transition towards an 
insoluble state.

Highest FLNA levels at the intermediate 
stages of AD

Insoluble FLNA levels were significantly higher at the 
intermediate stage of AD neuropathologic changes on the ABC 
scale when compared to the “not” stage. Similarly, insoluble FLNA 
levels were higher in both the prodromal AD and ADD stages 
when compared to the non-AD subjects. Insoluble FLNA levels 
reached their highest values at the mid-stages of Thal (stage 3; 

Figure  1C), ABC (intermediate stage; Figure  3A) and AD 
clinicopathologic stages (prodromal AD; Figure  3B), with no 
further increase in later stages. In addition, soluble FLNA levels 
were specifically lower in prodromal AD when compared to all 
other AD clinicopathologic stages. Because of this, we hypothesize 
that a compensatory mechanism might be engaged at later stages 
of AD, allowing the stabilization of insoluble FLNA, which would 
result in an increase of soluble FLNA over time. A second 
explanation may be that FLNA-stricken neurons have degenerated 
at the ADD stages, driving down insoluble FLNA levels. FLNA 
protein levels are tightly linked to dendritic morphology. The 
transition of FLNA to an insoluble state could be a compensatory 
mechanism to limit dendritic remodeling, which is observed at 
early stages of AD (Scheibel and Tomiyasu, 1978; Masliah et al., 
1991). At later stages of AD, a transition from insoluble to soluble 
FLNA could take place as a means as an attempt for reestablishing 
normal dendritic morphology.

A previous study by Tsujikawa et al. (2022) did not find any 
AD-associated changes of FLNA levels. However, the sample size 
of the current study is three and a half times the size of the one 
that was used in this study (N = 57 vs. N = 16). In addition, the 
authors did not consider “intermediate” AD neuropathologic 
change as sufficient for an AD neuropathological diagnostic, with 
one of the five control subjects likely reaching the criteria for this 
stage (Braak stage III, moderate CERAD stage, Thal stage 
undisclosed). From the present study, it appears that this 
intermediate stage needs to be considered when examining FLNA 
alterations in post-mortem brain.

In a previous study, a co-localization between FLNA and NFTs 
was noted (Feuillette et al., 2010). However, such a co-localization 
did not imply that there was a link between FLNA and tau 
aggregation. Such a link was demonstrated in a recent study 
reporting that FLNA contributed to tau aggregation in PSP. Based 
on this, we examined whether there was a correlation between 
FLNA and tau insolubility during the progression of AD. No 
correlation was found indicating that in AD, FLNA and tau 
aggregation could be two independent processes. This does not 
exclude the possibility that FLNA could contribute to the increase 
of tau protein levels and phosphorylation as observed in cellular 
and animal models. Consistent with this, a similar increase of 
FLNA and tau protein levels was noted in the whole homogenates 
of AD hippocampus (Hondius et  al., 2016). All the above 
observations could also indicate that FLNA needs co-factors for 
inducing tau aggregation, which could vary in different brain 
regions affected by tau pathology in tauopathies. Such a possibility 
is supported by the fact that the composition of tau isoforms and 
the structure of tau filaments vary in tauopathies. For example, tau 
filaments in AD composed of the 6 tau isoforms are 
conformationally distinct from tau filaments composed of 4R tau 
isoforms in PSP.

Insoluble FLNA trajectory was, however, heavily affected by 
the APOE genotype. APOE ε4 carriers across all clinicopathologic 
stages of AD displayed similar insoluble FLNA levels to those of 
participants without AD (10% ε4 carriers). Noncarriers at the 
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ADD and prodromal AD stages, however, displayed the highest 
amounts insoluble FLNA. Therefore, it may be possible that APOE 
ε4 enables an AD pathological pathway that does not involve 
FLNA. This shows that FLNA alteration might not be a necessary 
condition for the induction of tau neuropathology in APOE ε4 
carriers. This highlights that APOE ε4 noncarriers may experience 
larger FLNA alterations than were estimated in the whole sample.

FLNA is an effective marker to identify 
prodromal AD within the MCI

We found that both soluble and insoluble FLNA levels were 
excellent predictors of prodromal AD from within all MCI 
participants. The ratio of soluble over insoluble FLNA yielded 
similar results and did not appear to generate any additional 
feature. However, only insoluble FLNA levels were an adequate 
predictor for all-stages AD from within the whole sample. In 
contrast, NP count and insoluble Aβ42 were excellent predictors of 
AD at all stages, including the identification of preclinical AD 
from all subjects with NCI. Both total Tau and pTau levels were 
either adequate or poor predictors of ABC-determined 
AD. However, we  suspect that, as previously mentioned, the 
sampling region was a determining factor for the lack of 
effectiveness of tau quantification as a predictor of early stages of 
AD. In addition, we must acknowledge that the vast majority of 
subjects with at least an “intermediate” level of neuropathological 
changes at the ABC staging system display significant NP and Aβ 
plaque distribution throughout the cortex (Montine et al., 2012). 
This means that using these measures for the identification of AD 
is biased, as NP and Aβ plaque detection is used in the participant 
categorization system. In addition, as mentioned previously, 
we identified that APOE ε4 carriers did not display AD-associated 
alterations of FLNA levels. Despite this, FLNA performed well as 
a predictor of AD from the prodromal stage onward. This hints 
that, in APOE ε4 noncarriers, FLNA alterations could be  a 
hallmark of AD along with Aβ and tau alterations. The elevated 
state of insoluble FLNA at both ADD and prodromal AD as well 
as the lowered levels of soluble FLNA specific to the prodromal 
AD stage hints that FLNA-derived biomarkers have excellent 
potential for the identification of AD from symptom onset. 
Conversely, FLNA was not useful in identifying preclinical 
subjects from the NCI despite harboring AD neuropathologic 
changes at levels similar to the prodromal AD. This hints that 
normal FLNA levels at the preclinical stage of AD might 
be  associated with mechanisms of resilience, maintaining 
cognitive function despite the progression of AD neuropathology.

FLNA is not specifically associated with 
neurodegeneration and cognitive decline

While FLNA alterations coincides with the prodromal AD 
stage, where cognitive decline and neurodegeneration is significant 

(Scheff et al., 2006; Vanhaute et al., 2020), insoluble FLNA was not 
significantly associated with synaptophysin, VAChT, ChAT nor with 
any cognitive measures. This shows that, while the increased 
insoluble FLNA levels are a potential hallmark of prodromal AD, it 
is not a marker of the clinicopathologic progression. We hypothesize 
that this may be due to the tight regulation of FLNA levels, where 
both increases and decreases may result in synaptic changes (Zhang 
et al., 2014). While this may eventually lead to significant synaptic 
loss and cognitive decline, the latter are indicative of a structural, 
cumulative change as opposed to the putatively dynamic nature of 
FLNA levels. In addition, neurodegeneration and cognitive decline 
are much more pronounced at the ADD stage (DeKosky et al., 1996; 
Coleman and Yao, 2003). In contrast, insoluble FLNA levels in ADD 
are not further increased from prodromal AD levels, further 
explaining why FLNA failed to predict cognitive decline 
and neurodegeneration.

Limitations and further studies

Based on the literature and our data, it is possible that FLNA 
could differently contribute to tau pathology depending on the 
brain region. Therefore, the conclusions drawn for the parietal 
cortex might not be  applicable to all regions affected by tau 
pathology in the AD brain. As such, this study specifically shows 
that tau pathology in the parietal cortex is not correlated with 
AD-associated FLNA alterations from this region. Additionally, 
while interpreting the results from this study, one must bear in 
mind that: (1) the criteria used for the definition of MCI are quite 
stringent; results may differ when using the most frequent single-
domain MCI criteria (Petersen et al., 2014, 2018) and (2) while the 
same terminology from the NIA-AA’s research framework was 
used, the biological definition is different. Therefore, participants 
labeled as prodromal AD in our study may not have received the 
same diagnosis in an in vivo biomarker study.

Previous studies have confirmed that FLNA is detectable in 
the plasma (Alper et  al., 2009). The next steps for FLNA 
characterization in AD would be to investigate the effect of AD on 
its presence in the CSF and plasma, which could become in vivo 
biomarkers. These may offer new insight over AD 
neuropathological processes and may be useful in AD clinical 
trial. In addition, replicating this study in a larger sample could 
allow to identify finer features of the trajectory of FLNA 
throughout the progression of AD as well as identifying potential 
associations with neurodegeneration.

Conclusion

In this study, we have found associations between Aβ-derived 
metrics and insoluble FLNA, hinting that FLNA accumulation are 
a downstream effect of Aβ neuropathology. In contrast, 
tau-derived metrics were not associated with insoluble 
FLNA. We have also described a possible trajectory of FLNA level 
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changes in AD. Insoluble FLNA peaked at the intermediary stages 
of AD, with heightened levels also found at the later AD stages. 
These characteristics were more pronounced in APOE ε4 
noncarriers. In contrast, soluble FLNA levels specifically dipped 
at the prodromal AD stage, with all other stages displaying similar 
soluble FLNA levels. Thanks to the unique features of both soluble 
and insoluble FLNA at the prodromal AD stages, both metrics 
were excellent predictors of AD within the MCI subjects. As such, 
our results show that, in APOE ε4 noncarriers, FLNA alterations 
may be a neuropathological hallmark of AD, which may contribute 
to the transition from a preclinical to a prodromal stage of AD.
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