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With the advances in machine learning for the diagnosis of Alzheimer’s disease
(AD), most studies have focused on either identifying the subject’s status through
classification algorithms or on predicting their cognitive scores through regression
methods, neglecting the potential association between these two tasks. Motivated
by the need to enhance the prospects for early diagnosis along with the ability to
predict future disease states, this study proposes a deep neural network based on
modality fusion, kernelization, and tensorization that perform multiclass classification
and longitudinal regression simultaneously within a unified multitask framework. This
relationship between multiclass classification and longitudinal regression is found to
boost the efficacy of the final model in dealing with both tasks. Different multimodality
scenarios are investigated, and complementary aspects of the multimodal features are
exploited to simultaneously delineate the subject’s label and predict related cognitive
scores at future timepoints using baseline data. The main intent in this multitask
framework is to consolidate the highest accuracy possible in terms of precision,
sensitivity, F1 score, and area under the curve (AUC) in the multiclass classification
task while maintaining the highest similarity in the MMSE score as measured through
the correlation coefficient and the RMSE for all time points under the prediction task,
with both tasks, run simultaneously under the same set of hyperparameters. The overall
accuracy for multiclass classification of the proposed KTMnet method is 66.85 ± 3.77.
The prediction results show an average RMSE of 2.32 ± 0.52 and a correlation
of 0.71 ± 5.98 for predicting MMSE throughout the time points. These results are
compared to state-of-the-art techniques reported in the literature. A discovery from
the multitasking of this consolidated machine learning framework is that a set of
hyperparameters that optimize the prediction results may not necessarily be the same
as those that would optimize the multiclass classification. In other words, there is a
breakpoint beyond which enhancing further the results of one process could lead to the
downgrading in accuracy for the other.

Keywords: Alzheimer’s disease, multitask learning, prediction, longitudinal regression, progression, neural
network
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INTRODUCTION

Extensive research has focused lately on using different
machine learning techniques for the diagnosis and prognosis
of AD. However, a retrospective of previous studies on
multimodal datasets reveals some inconsistencies in modeling
the relationship between the many features captured from the
different recording modalities. Although several linear methods
have been previously reported in the literature with the ability
to linearly fuse the information from different modalities (Perrin
et al., 2009), several authors have also suggested different non-
linear approaches to fuse the multimodal biomarkers (Wang
et al., 2012, 2018c; Huang et al., 2016; Tong et al., 2017).

The relatively low accuracy of the classification and regression
techniques in delineating converter from non-converter groups
and Mild Cognitive Impairment (MCI) from Cognitively Normal
(CN) draws our attention to the diversity and heterogeneity
of the potential features that could be extracted from the
multimodal and multiclass AD datasets (Pellegrini et al., 2018).
For example, Wei et al. (2016) proposed a classification method
to distinguish non-converter MCI (MCI-NC) from converter
MCI (MCI-C) by using an SVM classifier over features that
are a combination of FreeSurfer-derived MRI features and
nodal features derived from the thickness network. In another
recent study (Lin et al., 2020), the authors developed an
extreme learning machine (ELM grading method to efficiently
fuse multimodal data and predict MCI-to-AD conversion
within a 3-year duration. In Huang et al. (2021), subjects
are classified as healthy controls, subjective cognitive decline
(SCD), or amnestic mild cognitive impairment (aMCI) based
on SVM and features extracted from white matter. The ability
to detect subtle changes that could lead to a more accurate
classification of MCI stable from MCI converter remains
extremely challenging. This is why most machine learning
models opt for binary classification as an initial step for
determining relevant indicators of the model how to best separate
these two very difficult MCI subgroups (Tolonen et al., 2018;
Gupta et al., 2020).

With the advent of deep learning and their multilayer
structure at elucidating lingering abstract steps of machine
learning, especially as it pertains to the extraction of relevant
features in multimodal multiclass classification and regression
processes, there is great interest in their application to brain
research in general and complex neurodegenerative diseases
like Alzheimer’s disease (Liu et al., 2016; Sarraf and Tofighi,
2016; Zhang et al., 2017; Amoroso et al., 2018; Choi and
Jin, 2018; Fisher et al., 2018; Lu et al., 2018; Wang et al.,
2018a). In Jo et al. (2019), an extensive review for applying
deep learning in neuroimaging data is provided, with a
focus placed on the diagnosis and prognosis of AD and
its prodromal stages. In Kang et al. (2020), a CNN-based
classifier with a specific regularization technique is proposed
to distinguish early MCI vs. CN subjects using structural
MRI and diffusion tensor imaging (DTI) as input to their
CNN-based model. Liu et al. (2018b) proposed a cascaded
CNN that makes use of multimodal patch-based features from
different regions of the brain. Using MRI and PET images, their

deep 3D-CNN algorithm could achieve good binary accuracy
in differentiating AD vs. CN, progressive MCI vs. CN, and
stable MCI vs. CN.

Autoencoders have also been explored for their ability to
extract high-level complex patterns embedded in the features
to enhance classification accuracy (Suk and Shen, 2013; Liu
et al., 2016). For example, in Jha and Kwon (2017), a sparse
autoencoder is used for binary classification of AD from
cognitively normal (CN) subjects. The use of Recurrent Neural
Networks has been proposed by Wang et al. (2018b) to predict
a future stage of the patient using historical clinical records.
A related study (Liu et al., 2018b) proposed a combination
of CNN and Recurrent Neural Network (RNN) for feature
extraction and classification. Considering the large size of PET
images, instead of using 3D CNN, they employed 2D CNN
to extract features from 2D PET slices. The extracted features
were then used through gated recurrent units (GRU) for the
classification of AD and MCI subjects from the CN group.

With significant efforts made for predicting cognitive scores
to track disease progression and for anticipating a diagnosis label
at future timepoints to determine a future stage of the disease,
the correlation between categorical and numerical variables
brings the potentially open question of whether jointly learning
based approaches could leverage the learning performance of
both classification and regression tasks. Liu et al. (2018c)
proposed the use of a CNN model for joint regression and
classification tasks. Using their deep multitask multichannel
learning (DM2L) framework, they reached an accuracy of 51.8%
in a four-class classification process. In another study by Zhu
et al. (2016a), multimodal feature fusion has been explored
through a sparse multitask learning process to predict ADAS-
Cog, MMSE, and AD stages simultaneously. Another attempt
by Shi et al. (2018) is made to perform both tasks of binary
and multiclass classification, where a two-stage stacked deep
polynomial network is used, obtaining an accuracy of 55.34%
in multiclass classification with higher accuracies obtained for
binary classification. The multitarget regression approach can
also be categorized in this domain of application. In Zhen et al.
(2018), the authors encoded the inter-target correlation and the
relationship between the input and output space via low-rank
learning. In a study by Zhang and Shen (2013), a multi-modal
multi-task (M3T) learning framework is used for the prediction
of multiple clinical variables of MMSE and ADAS-cog from a
multimodal dataset. With similar objectives (Zhu et al., 2014),
utilized a matrix-similarity-based loss function combined with
group lasso to select the best features for both classification and
regression tasks.

In this study, a novel neural network architecture, structured
as a Kernelized and Tensorized Multitask network (KTMnet)
is proposed for processing two joint tasks of classification and
longitudinal prediction simultaneously. This network uses dense
layers to first extract features from each modality separately,
then uses Gaussian kernel layers and tensorization over the
modality fused feature space to non-linearly map the data from
a low-dimensional space to a high-dimensional space. Empirical
results show enhanced performance in comparison to all related
methods reviewed in this article, especially when delineating the
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challenging group of MCI (converters and non-converters) from
CN in a multiclass classification scenario.

MATERIALS AND METHODS

Subjects
The clinical data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). A total number of 1,117
individuals consisting of 632 males and 485 females were
considered for this study. The average age is 73.84 with total
average years of education of 16.04. The average MMSE score
of the population is 27.44 at baseline and 27.06, 26.82, and
26.02 at the next 6 and 12, and 24 months, respectively. At
each follow-up visit, participants were labeled as AD, MCI (Mild
Cognitive Impairment), and CN, and those participants from
the MCI stage that converted to AD are labeled as the MCI
to the AD group. The demographics of the subjects are given
in Table 1.

Problem Description
In longitudinal AD studies, disease progression can be gauged
via screening the categorical or numerical labels of participants
through time. The categorical labels in ADNI are AD, MCI
(including the converter and non-converter groups), and CN.
On the other hand, there are also numerical measurements
needed to assess cognitive impairment, which augment the in-
depth analysis of the data. Mini-Mental State Examination or
MMSE is the best-known clinical AD predictor that is accepted
and used worldwide. While predicting the diagnosis labels is
accomplished through classification methods and predicting the
numerical value of neuropsychological test scores is performed
through regression models, the underlying features for both
tasks are constructed from similar sets of measurements. This
relationship between these two types of modeling methods
motivated researchers to train these highly interrelated tasks of
regression and classification through multitask learning.

To model the progression of AD, a time frame of 24 months
has been considered to assess the conversion prospects of
the MCI group into AD. Therefore, only those subjects that
completed a baseline scan (M0) and showed up for a follow-up
visit 6 months later (M6), 12 months later (M12), and 24 months
later (M24) were considered. Studying longitudinal AD cohorts
could improve our understanding of AD pathogenesis. While
most patients that have been diagnosed as belonging to the
intermediate stage of MCI have been known to progress toward
the AD stage, there is some evidence that some of them might
stabilize at the MCI stage. However, the different conversion
slopes for the different individuals suggest that this stable group
is converting into AD in a much longer time frame. Figure 1
shows the number of subjects in each category of AD over the
24-month duration.

The average longitudinal changes of neuropsychological test
scores for the 4 subgroups are shown in Figure 2. It is observed
that for AD and MCI-C populations, the mean of the cognitive
test score for these groups has decreased over time by 13 and

12.7%, respectively. This suggests a continuous decline in health
status and thus the need for predicting cognitive decline as
early as possible.

Problem Formulation
The proposed Kernelized and Tensorized Multitask network
(KTMnet) shown in Figure 3 is structured to estimate the
progression of Alzheimer’s disease by predicting the categorical
and numerical labels simultaneously. Let yr be the sets of
longitudinal neuropsychological test scores (MMSE) for the
regression task (Task 1) and yc be the sets of categorical labels
for the classification task (Task 2). The input space for both
tasks is the multimodal features of

{
xm1 , xm2 , xm3 , xm4 , xm5

}
,

in which the vector xmi comprises the extracted measurements
from modality i. Note that these input features are extracted
from MRI, PET, CSF, cognitive tasks, and the risk factors
at baseline. Hence, vectors yr andyc for this study can be
established as yr = [ScoreM0, ScoreM6, ScoreM12, ScoreM24]

′

and yc = [AD, MCI − C, MCI − NC, CN]
′

, where MCI-C and
MCI-NC define the MCI converter and non-converter
groups, with the prime symbol (’) defining the transpose
function. The risk factor parameters considered are
age, years of education, sex, and APOE4. The overall
objective function, in this case, could be modeled as an
algorithm in which yr = Er(xm1 , xm2 , xm3 , xm4 , xm5) and
yc = Ec(xm1 , xm2 , xm3 , xm4 , xm5) with Er and Ec being the
corresponding estimators. The architecture of the proposed
KTMnet method is shown in Figure 3.

The proposed network consists of a series of operations
defined through Eqs. (1, 2). Feature representation, modality
fusion, and tensorization have been incorporated in an end-
to-end artificial neural network to harness the advantage of
performing regression and classification tasks jointly in a unified
framework. The multitask framework aims to make use of
the features extracted from each modality through modality
fusion and tensorization to secure optimal accuracy for both
prediction and multiclass classification when such tasks are run
simultaneously. First, the feature vectors of each modality would
be extracted by Fmiand then all the features from different
modalities will be fused by function f . Next, a 3D tensorization
(T) is applied to the fused feature vector to represent higher-
order relations between features. Finally, tensor features will be
extracted by F and fed to the regressor function fr and classifier
function fc.

Task 1 : ŷr = fr(F
(
T
(
f
(
Fm1

(
xm1

)
, Fm2

(
xm2

)
, Fm3

(
xm3

)
,

Fm4

(
xm4

)
, Fm5

(
xm5

))))
(1)

Task 2 : ŷc = fc(F
(
T
(
f
(
Fm1

(
xm1

)
, Fm2

(
xm2

)
,

Fm3

(
xm3

)
, Fm4

(
xm4

)
, Fm5

(
xm5

))))
(2)

The loss function used to calibrate jointly the longitudinal
regression and classification tasks is as follows:

Loss = α×MSE
(
yr, ŷr

)
+ β× l

(
yc, ŷc

)
(3)
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TABLE 1 | Demographic characteristics of subjects used in this study.

Parameter Value Total Alzheimer MCI-C MCI-NC Control

Subjects Number 1,117 157 191 441 328

Gender f/m 485/632 73/84 75/116 184/257 153/175

Age Year (mean ± std) 73.84 ± 7.07 76.77 ± 6.99 73.86 ± 7.47 70.85 ± 7.19 75.01 ± 5.71

Education Year (mean ± std) 16.04 ± 2.78 14.63 ± 3.15 16.09 ± 2.74 16.09 ± 2.63 16.36 ± 2.68

MMSE Number (mean ± std) 27.43 ± 2.46 23.24 ± 1.96 27.23 ± 1.75 28.30 ± 1.59 29.15 ± 1.01

CDR Number (mean ± std) 1.25 ± 1.36 3.98 ± 1.51 1.62 ± 0.92 1.24 ± 0.74 0.03 ± 0.13

Label f/m stands for the number of females in comparison to males. Age, years of education, MMSE, and CDR of subjects in each category are presented by
mean ± standard variation of that variable.

FIGURE 1 | Number of subjects in each of the four subgroups of AD at different time points.

A B C

FIGURE 2 | The average trajectories of (A) RAVLT, (B) MMSE, and (C) ADAS11 score for subjects for four different classes of AD.

in which y is the target value and ŷ is the value predicted by the
network. The MSE is the mean square error for the regression
task defined as:

MSE =
1
N

N∑
i=1

(yri − ŷri)2 (4)

And the categorical cross-entropy of l
(
yc, ŷc

)
is defined as:

l
(
yc, ŷc

)
= −

1
N

N∑
i=1

[
yci log ŷci +

(
1− yc

)
log(1− ŷc)

]
(5)

where N is the number of observations and c is the number of
categories assigned to the class label.

Network Architecture
This network architecture relies on convolutional neural layers
to jointly perform the processes of tensorization and feature
extraction. Given the schematic diagram of the network shown
earlier in Figure 3, the main properties of the proposed network
are as described in the following subsections.

Modality Fusion
The relational correlation of features within each modality and
between the different modalities remains an important subject
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FIGURE 3 | Design architecture of the proposed KTM network.

in developing robust prediction algorithms. The importance of
using and fusing relevant information from different modalities
to improve classification is well documented in the literature, and
some studies have shown significant improvement in comparison
to relying on a single modality. For this reason, modality fusion
has also been considered in the proposed network to incorporate
the advantages of intra-modality and inter-modality feature
representation. First, the network starts by transforming the raw
features into a primary single modality representation space using
fully connected layers. Two fully connected layers of L0 and L1
are then used to transform the extracted features from MRI, PET,
CSF, neurocognitive measurements, and risk factor parameters
into an initial intra-modality feature-space representation. Let
n_mod be the length of the input feature vector of named
modality mod, then L0 is the input layer for each modality with
n_mod nodes. These single modality features are then processed
via two fully connected layers of L1 and L2 with [2 × n]_mod
and n_mod nodes followed by linear activation function layers.
The intermodality feature space is then initiated by integrating
the previous fully connected layers in L3, which concatenates the
outputs of the L2 layer to create the new feature vector.

Tensorization
Complementary and shared information found in features from
different modalities is an essential part of reliably modeling
the progression of neurodegenerative diseases. However,
concatenating the features from different modalities and
processing them using a simple network will not consider
the inhomogeneity of the multimodal dataset. Therefore, it
is reasonable to transform the feature space into a higher
dimensional receptive field to enable the network to find more
meaningful relationships. A non-linear mapping function can

map linearly inseparable data from a low-dimensional space
into a high-dimensional space where it becomes possible to
linearly separate the mapped data. The Gaussian kernel function
is a representative function that is commonly used and is also
adapted in neural networks (Srisuphab and Mitrpanont, 2009;
Fei et al., 2016).

Tensorization is thus defined as transforming or mapping the
lower-order data to higher-order data to improve the process
of generalization afforded at this higher-order (Debals and De
Lathauwer, 2015; Novikov et al., 2015). This means that when
the data is not providing a satisfactory feature representation in a
lower-dimensional space, transferring it to a higher dimensional
space may improve the data analysis with the potential for
retrieving hidden information in that same data. As an example,
a vector can thus be reshaped into a 2D matrix or a 3D tensor of
any arbitrary shape with width, height, and depth of W×H× D
dimensions. Similarly, a matrix can also be reshaped into a
higher-order tensor, by reshaping each column to a tensor of
order K and stacking the results along the K+ 1 dimension.

In this new architecture, a dense layer with a Gaussian kernel
is used for kernelization and a convolutional neural network is
used for tensorization, and both are used to extract higher-order
features from fused multimodal features. In this way, a tensor
with the size of 10 × 10 × 20 is generated using the following
procedure:

– L4 uses Gaussian dense layer to assist tensorization.
– L5 reshapes the 100-node output vector of layer L4 to create

a 2D 10× 10 tensor.
– L6 performs 2D transpose convolutional filtering with a

kernel size of 3 × 3, a stride of 1, padding type of “same,”
and linear activation function along with:
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– 10 kernels with a dilation rate of 1.
– 10 kernels with a dilation rate of 2.
– Concatenation of the outputs from the two above dilation

layers.

Feature Extraction
In this step, predictive features are extracted from the generated
tensor. Since the feature extraction part is also based on 2D
convolutional filtering with the network being trained in an end-
to-end fashion, there is not a strong distinction for separating the
network into the tensorization part and feature extraction part.
The extracted features at the end of this stage make up the tensor.
For this reason, 2D convolutional filtering is performed in L8 by
using 64 filters with a kernel size of 4× 4 and applying the ReLU
activation function. A dropout rate of 10% is implemented to
randomly deactivate the connection between the neurons during
the training phase to overcome any potential for overfitting.

Classification and Longitudinal
Regression
This last component of the network is dedicated to classification
and regression. For this reason, L9 flattens the output of the L8
layer to build a vector with the size 4,096 × 1. The output of
the L12 layer is connected via two fully connected networks with
an L1 regularizer to the two output layers (i.e., yr and yc) in
L10. Four nodes are assigned for the regression part, which has
a ReLU activation function, and four nodes are assigned for the
classification part with a Softmax activation function.

Optimizer Selection
In deep learning, choosing the right optimization method is key
to tuning an accurate model. During the training, weights are
iteratively updated until the network converges to a minimum
cost function. Small learning rates will keep updating the weights
with smaller steps, which could consequently lead to a minimal
loss function. Updating the weights by taking large scales comes
with the risk of skipping over the optimal weights. Still, some
measure of caution should be taken when assuming smaller steps,
as there is a risk of being trapped into some local minima.

For the proposed network, after testing several common
optimization methods for training, the adaptive Adam algorithm
has been selected as the optimization method. Adam, developed
by Kingma and Ba (2014), is one of the most common
and adaptive optimizers used in deep learning applications,
which adaptively approximates lower-order moments to yield
an efficient and easy-to-tune solution. The adaptive learning
rate is estimated by retaining an exponentially decaying
average of previously squared gradients along with keeping the
exponentially decaying averages of past gradients. Using this
optimization approach with a learning rate of 0.001 and with
exponential decay rates for the moment estimates β1 and β2 of
0.9 and 0.999, respectively, resulted in a robust trained network
that consolidates high precision, sensitivity, F1 score, and area
under the curve (AUC) in the multiclass classification task with
high similarity in predicted vs. actual MMSE scores at all-time
points in the prediction task.

Regularization and dropouts were used to minimize the
likelihood of overfitting in layers L4, L8, and L9. Feature
dimensionality reduction is exploited to implicitly select and
extract features between L1 and L2 and between L9 and L10.
While all network layers from L1 to L10 are extracting features,
the main part of the tensorization process is assumed to take
place in layers L5 through L8 based on transposed and dilated
convolutional filtering.

In summary, the proposed structure of the network
accomplishes both classification and longitudinal regression tasks
by enabling the network to utilize the complementary/shared
information in the extracted features space. Integrating these
two challenging tasks within a unified framework elevated
the accuracy and robustness of the model by taking into
consideration the inter-relatability between tasks in a multitask
process. For training the network, an end-to-end learning
process has been used to learn from both feature representation
and modality fusion simultaneously to address both regression
and classification tasks.

PREPROCESSING AND EXPERIMENTAL
SETUP

Preprocessing
The procedure for predicting disease progression requires
considering additional constraints. Subsequently, only the
subjects that have a baseline scan and who showed up for a follow-
up visit at 6, 12, and 24 months later, were considered in this
longitudinal data collection.

The following preprocessing steps are performed in this
analysis:

– Exclude all subjects whose cognitive score or diagnosis label
has not been reported.

– Exclude the Aβ, P-tau, or Tau values, reported out of range
(e.g., > 1,300 or < 80 for Tau).

– Remove the predictive biomarkers of ADAS13, MoCA, and
CDR, which are found to be highly correlated with the status
or label of the subjects. This was done so as not to bias
favorably our longitudinal regression results which involve
predicting future MMSE scores.

– Perform mean centering and normalization of training and
test data using mean and variance of training data (z-score).

At the end of these preprocessing steps, a total number of 1,117
subjects, among them 328 CN, 191 MCI-C, 441 MCI-CN, and 157
AD subjects were considered for this study. Table 2 provides an
overview of the multimodal features used in this study.

Experimental Setup
Empirical evaluations were conducted on the Intel Xeon E7
with NVIDIA QUADRO M6000 GPU. The proposed network
is implemented in Python with the Keras library (Chollet et al.,
2015) using the TensorFlow backend (Abadi et al., 2016). For
hyperparameter selection, a split of 15% of the data has been
dedicated to threefold cross-validation trials, where the set
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of hyperparameters (including α and β in equation 3) that
achieved the minimum bias and variance has been selected. The
hyperparameters are the number of kernels used in L9, L10, L11
in the range of {256, 128, 64, 32, 16, and 8} and β in the range of
{10, 20, and 200} in which grid search has been performed. After
hyperparameter selection, similar to the approach utilized in Suk
and Shen (2013), Liu et al. (2018b), and Cao et al. (2018), 10-fold
cross-validation trials were performed on the remaining 85% of
data to avoid the occurrence of bias within a lucky partitioning.
In each round of training set, 10% of data has been utilized as a
validation set for monitoring the training process to prevent the
network from overfitting. A batch size of 150 and the maximum
number of epochs of 200 were set for this process and the training
is stopped by monitoring the loss of validation with 30 patience
epochs. We performed two sets of experiments to analyze the
contribution of this work for each of the prediction tasks for
evaluation purposes.

Task 1: Regression Task for Prediction of Disease
Progression
In the following experiments, the first task of our KTMnet model
is the longitudinal prediction of trajectories of the MMSE score.
The neuroimaging modalities of MRI and PET, the cerebrospinal
fluid (CSF) biomarkers, genetic information, and cognitive
assessment tests have been used to create the multimodal data.
Since the state-of-the-art algorithms used different performance
metrics, to benchmark our method with other methods, network
performance is measured by the following common metrics:

The Root Mean Square Error is defined as follows:

RMSE =

√√√√ 1
N

N∑
i=1

(Yi − Ŷi)2 (6)

The R correlation coefficient with the formula given below:

R
(
Y, Ŷ

)
=

∑
i=1(Ŷi − Ȳ) (Yi − Ȳ )√∑

i=1(Ŷi − Ȳ)2
√∑

i=1(Yi − Ȳ)2
(7)

With Ŷ defining the predicted values, Y being the real values,
N is the number of observations and Ȳ is the average of the real
values in Y. The RMSE metric measures the standard deviation
of the residuals between the predicted and actual targets,
while the correlation coefficient metric measures the weight
of similarity between them. Low RMSE and high correlation
coefficient are desirable, conveying how well the predictive model
is approximating the targets.

Task 2: Classification Task for Prediction of Disease
Status
For the classification task, the subjects were grouped according
to the diagnosis label defined by ADNI as AD, EMCI, LMCI, and
CN. The diagnosis label has also been tracked and labeled 24th
months after their first visit and subjects are then labeled as MCI
converter group (MCI-C) if they have been diagnosed as MCI
at baseline and their diagnosis status has progressed into AD.
The MCI Non-Converter group (MCI-NC) label is assigned to

TABLE 2 | Summary of multimodal features used for training and testing
the KTMnet dataset.

Source Features

MRI Ventricular volume, Hippocampus volume, Whole Brain
volume, Entorhinal Cortical thickness, Fusiform, Middle
temporal gyrus, and intracranial volume (ICV)

PET FDG, Pittsburgh Compound-B (PIB), AV45

Cognitive test Rey Auditory Verbal Learning Test (RAVLT Immediate,
RAVLT Learning, RAVLT Forgetting, RAVLT Perc Forgetting),
Functional Activities Questionnaires (FAQ), Everyday
Cognition (Ecog) scales: (EcogPtMem, EcogPtLang,
EcogPtVisspat, EcogPtPlan, EcogPtOrgan, EcogPtDivatt,
EcogPtTotal,EcogSPMem, EcogSPLang, EcogSPVisspat,
EcogSPPlan, EcogSPOrgan, EcogSPDivatt, and
EcogSPTotal)

CSF Amyloid Beta (ABETA), Phosphorylated Tau Protein (PTAU),
and Total Tau Protein (TAU)

Risk factors Age, gender, years of education, and APOE4

subjects whose diagnosis label did not change after 24 months.
The network is trained to perform a 4-way classification (along
with the longitudinal regression task) to predict the subjects’ class
labels after 24 months. In this second test using the features at
baseline, the aim was to predict the probability of converting from
MCI to AD, 24 months ahead of time.

RESULTS

Prediction Results
The prediction results for the MMSE test scores at baseline and
at time points of 6 months, 12 months, and 24 months are
summarized in Table 3. In this table, SVR is the conventional
Support Vector Regression model. Since models reported in
the literature and referenced in this table were using different
numbers of features, preprocessing methods, and data modalities,
we have taken a similar approach as Abrol et al. (2021) and
compared our results with baseline models of SVR, Elastic Net,
and Random Forest that were trained and tested using the same
data that used to train and test the KTMnet model. The proposed
model demonstrated an average RMSE of 2.32 ± 0.52 and a
correlation of 0.71 ± 5.98 for predicting MMSE throughout the
24 months after baseline. Figure 4 shows the scatter plots of
predicted MMSE values vs. the actual target values at time points
T0, T6, T12, and T24.

Multiclass Classification Results
In this experiment, the results of the multiclass classification
considering the four groups of AD, MCI-C, MCI-NC, and CN
are shown in Table 4 with a comparison to other competing
methods in the literature. In this multiclass classification process,
it is important to investigate the classification performance
of the network for each category of subjects. The total
classification accuracy achieved by our proposed KTMnet
method is 66.85 ± 3.77. In classifying the AD group from all
other classes, the proposed network achieved a precision of
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TABLE 3 | Comparison of longitudinal regression performance of the proposed network in contrast to other methods reported in the literature.

T0 T06 T12 T24

Study Data Subjects RMSE Corr RMSE Corr RMSE Corr RMSE Corr

Zhu et al.
(2016a)

MRI + PETa 202 1.80 ± 0.13 0.57 ± 0.23 − − − − − −

Liu et al.
(2018c)

MRI + DEMa 1,984 2.37 0.57 − − − − − −

Cao et al.
(2018)

MRIb 755 2.37 ± 0.19 0.57 ± 0.05 − − − − − −

Lei et al. (2017) MRIb 445 1.75 ± 0.20 0.75 ± 0.08 2.31 ± 0.29 0.79 ± 0.10 2.48 ± 0.40 0.79 ± 0.12 3.00 ± 0.38 0.83 ± 0.06

Zhang and
Shen (2013)

MRI + PET + CSFb 186 2.11 ± 0.35 0.65 ± 0.27 − − − − − −

Elastic net Multimodal∗b 1,117 1.84 ± 0.35 0.71 2.58 ± 0.34 0.54 2.91 ± 0.53 0.51 3.64 ± 0.56 0.50

SVR Multimodal∗b 1,117 1.75 ± 0.44 0.42 2.02 ± 0.53 0.54 2.52 ± 31 0.54 3.12 ± 0.41 0.51

Random forest Multimodal∗b 1,117 1.74 ± 0.78 1.98 ± 0.45 0.67 2.36 ± 0.36 0.73 3.15 ± 0.28 0.70

Tabarestani
et al. (2020)

Multimodal∗b 1,620 1.62 ± 0.24 0.82 1.78 ± 0.22 0.86 2.24 ± 0.24 0.80 2.38 ± 0.21 0.81

KTMnet Multimodal∗b 1,117 1.79 ± 0.12 0.66 ± 0.81 2.10 ± 0.15 0.71 ± 0.92 2.42 ± 0.28 0.71 ± 0.41 2.97 ± 0.45 0.75 ± 3.10

*Multimodal here refers to using MRI, PET, DEM, CSF, and cognitive measurements without the inclusion of ADAS11, ADAS13, and CDRSB.
a Imaging data.
bTabular data.

70.49% ± 9.33, a sensitivity of 57.21 ± 9.41, an F1 score of
62.72 ± 10.11, and an AUC of 94%. In classifying the MCI-
C group, the network reached a precision of 45.33 ± 7.22, a
sensitivity of 50.79 ± 9.42, an F1 score of 47.72 ± 7.62, and
an AUC of 83%. In classifying the MCI-NC group, the network
reached a precision of 69.72 ± 8.63, a sensitivity of 67.57 ± 7.00,
an F1 score of 68.16 ± 5.06, and an AUC of 84%. In classifying
the CN group, the network reached a precision of 77.89 ± 6.62,
a sensitivity of 79.78 ± 9.74, an F1 score of 78.10 ± 5.89,
and an AUC of 94%.

Figure 5 illustrates the receiver operating characteristic (ROC)
curves showing the capability of the network in discriminating
between the four groups. This graph outlines the classification
performance over all sets of possible thresholds. By varying the
threshold, the observations are assigned to certain classes and
the True Positive Rate on the y-axis is plotted against the False
Positive Rate in the x-axis. Figure 6 shows the confusion matrix
for contrasting the correct and incorrect predictions. The CN
population was the easiest population for the model to deal with,
showing the lowest amount of false-positive in the MCI-NC and
MCI-NC groups, and absolutely no miss-classification in the AD
group. In contrast, the MCI-C represented the most challenging
one, where the model confused several samples with the MCI-NC
and AD groups. This raised the number of false-positive and false
negatives in both the MCI-NC and AD groups and consequently
degraded the precision and sensitivity in these two groups. There
is currently no clear reason why some patients will stabilize in the
MCI stage and others will transition into the AD stage.

Design Exploration
Three ablation experiments are conducted to evaluate the
effectiveness of tensorization. In the first experiment, the
tensorization and feature extraction modules (layers L4 through
L9) have been removed and data were directly passed from

layer L3 to layer L10. In the second experiment, the tensorization
modules (layers L4 through L9) have been replaced by a dense
layer which transforms the data from layer L3 to a dimension
of 100 × 1, and the output of this dense layer is passed onto
the layer L10. The third and last experiment is to keep the
layer L4 and to pass the results of this layer to layer L10.
This configuration keeps the Gaussian kernel dense layer but
removes the next tensorization layers. Table 5 summarizes the
experimental results for the tasks of classification and regression.
For each experiment, training is stopped by monitoring the loss
value of the validation set with 30 patience epochs. Considering
the results obtained in this study, the proposed KTMnet obtained
the best results among different variations of the network
structure. T-test has been performed between the prediction
results of the proposed model and different model structures
discussed in this subsection to measure the statistical significance
of the results and the resulting p-values which were all less than
0.05. The most competing network (in terms of metrics) was the
second configuration, where the network was taking advantage
of a simple fully connected layer with the dimension of 100 × 1.
This means that the Gaussian layer (in the third experiment)
without tensorization and feature extraction modules (L5 to L9)
becomes less useful. Need to mention that similar experiments
to the second experiment have been conducted to explore the
effectiveness of adding various hidden layers with different
neuron sizes. In terms of RMSE and correlation coefficients
metrics, all other configurations have resulted in almost the same
performance. P-values between these sets of configurations were
greater than 0.05 (showing no significant improvements between
these results). Therefore, to keep the manuscript concise and
easier to follow, only the results of adding a dense layer of size
100 × 1 have been reported in Table 5. Another interesting
observation is that KTMnet converged faster and stopped with
a smaller number of epochs.
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FIGURE 4 | Scatter plots of predicted MMSE values.

TABLE 4 | Comparison of 4-way multiclass classification performance of methodologies reported in the literature using ADNI dataset.

Study Data Subjects Validation method Accuracy

Liu et al. (2015)a MRI 758 10-fold 46.30 ± 4.24

Liu et al. (2015)a MRI + PET 331 10-fold 53.79 ± 4.76

Zhu et al. (2016a)a MRI + PET 202 10-fold 0.619 ± 1.54

Liu et al. (2018c) MRI + PET + DEMa 202 Independent test 51.80

Zhu et al. (2016b) MRI + PET 202 10-fold 61.06 ± 1.40

Zhang and Shen (2013) MRI + PET + CSF 805 10-fold 53.72 (max)

SVM MRI + PET + CSF + COG + DEM 1,117 10-fold 58.49 ± 4.01

Random forest MRI + PET + CSF + COG + DEM 1,117 10-fold 60.28 ± 2.83

KTMnet MRI + PET + CSF + COG + DEM 1,117 10-fold 66.85 ± 3.77

aDEM stands for Demographic information (Age, Gender, and Education).

DISCUSSION

The deep learning network developed in this study, together
with its unique architecture, is designed to perform both
tasks of multiclass classification and regression simultaneously,
predicts disease progression by tracking the MMSE test scores
at four consecutive future time points in a time window
spanning 24 months and assessing their categorical labels as
(AD, MCI-C, MCI-NC, and CN). This objective has been
accomplished through extracting and fusing the complex inter-
and intra-modality features, extracting hidden features by

using tensorization that projects the feature space into a
higher-dimensional space, and eventually modeling the feature
representation through non-linear transformations.

In the reported literature, binary classification of AD patients
(including the converter and non-converter groups) has been
taken into consideration (Moradi et al., 2015; Hojjati et al.,
2017; Liu et al., 2017; Spasov et al., 2019). In these studies,
attention was more focused on correctly classified subjects by
measuring and reporting the metrics of sensitivity and specificity.
However, the more challenging multiclass classification of AD
cohorts using multimodal screening tests has not been fully
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FIGURE 5 | Comparison of ROC curves of the KTMnet for AD vs. MCI-C vs.
MCI-NC vs. CN.

FIGURE 6 | Confusion matrix of the KTMnet model.

explored for the diagnosis and prognosis of AD. This topic
becomes even more challenging when progression is assessed in
a population of subjects without any preliminary information
about their baseline disease category. In a multiclass classification
scenario, where there is no auxiliary information to reduce
the number of false-positive and false-negative samples, the
probability of over and under diagnosis will be increased, making
it more important to use additional metrics for performance
evaluation purposes. Table 6 summarizes specific studies that
performed multiclass classification or longitudinal regression
tasks for meaningful comparisons.

A noteworthy observation made on this model was the see-saw
effect encountered during hyperparameter searching. Although
we received better results in comparison to other methods

reported in the literature, the classification and regression tasks
were not in sync with each other. To be more specific, the
regression task was falling from its optimum point when the
parameters were tuned to increase classification accuracy, and
the reverse was also true when the parameters were tuned for
increasing prediction accuracy. This new study suggests that
when adjusting the hyperparameters to maximize the results of
a first given task (e.g., classification), may not necessarily yield a
maximized accuracy in the second task (e.g., prediction), proving
a breakpoint from which the same set of hyperparameters is
to optimize both prediction and multiclass classification in a
multitask framework. Other important issues that complicate
this multitask process relate to (1) the imbalance in the number
of subjects in each of the subgroups considered (NC, MCI-C,
MCI-NC, AD), (2) the fact that the process involves multiclass
classification involving the aforementioned 4 subgroups, and
the prediction that is performed at all-time points of the
longitudinal study.

Another set of experiments was conducted to test the full
potential of the proposed network (this time as a single task
model). By removing one of the two dense layers in L10, the
network had its full degree of freedom to optimize its parameters
for only one of the regression or classification tasks. When trained
for regression task only, the results show an RMSE of 1.74± 0.13,
2.09± 0.14, 2.46± 0.19, and 3.10± 0.26 for T0, T6, T12, and T24,
respectively, with an average mean RMSE score of 2.35 ± 0.53
for all four time points. The results are close to the results
obtained from the network when it was trained and tested in a
multitasking mode. To analyze the significance of the difference
between the regression results of the single task and multitask
model, the p-value between the predicted MMSE scores of the
regression-only model with its counterpart predicted MMSE
scores from the KTMnet model has been calculated. The p-values
for all time points were bigger than 0.05, showing no significant
difference when the model is optimized to only perform the
regression task.

Similarly, another set of experiments has been repeated, aimed
at the task of classification. This time, when the model has been
set up as a single-task classification model, the model achieved
an accuracy of 65.53 ± 3.75 which is again close to the multitask
KTMnet accuracy, which is 66.85± 3.77. This demonstrates that,
although the KTMnet model shows a see-saw effect when being
optimized as a multitask model, seemingly unable to reach an
ideal point in which both regression and classification tasks are
each optimized to their full potential performance, the multitask
learning approach is indeed helpful. The first supporting reason

TABLE 5 | Comparison of different configurations of the proposed model discussed as design exploration study.

T0 T06 T12 T24 Acc

Experiment RMSE Corr RMSE Corr RMSE Corr RMSE Corr

Design exploration 1 5.93 ± 1.29 0.52 ± 0.32 6.02 ± 1.17 0.50 ± 0.43 5.855 ± 1.30 0.51 ± 0.21 6.45 ± 1.08 0.52 ± 041 60.98 ± 3.07

Design exploration 2 1.84 ± 0.15 0.62 ± 0.27 2.46 ± 0.22 0.61 ± 0.18 2.50 ± 0.25 0.58 ± 0.25 3.17 ± 0.32 0.69 ± 0.38 64.42 ± 4.37

Design exploration 3 2.19 ± 0.20 0.56 ± 0.76 2.39 ± 0.35 0.62 ± 0.31 2.63 ± 0.29 0.62 ± 0.43 3.25 ± 0.32 0.70 ± 035 63.16 ± 5.13

KTMnet 1.79 ± 0.12 0.66 ± 0.81 2.10 ± 0.15 0.71 ± 0.92 2.42 ± 0.28 0.71 ± 0.41 2.97 ± 0.45 0.75 ± 0.31 66.85 ± 3.77
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TABLE 6 | Summary of prediction tasks accomplished in the literature.

Method Multitask Classification
type

Class name Regression type Modality Subjects

Natarajan et al. (2014) No Multiclass AD-MCI-CN − MRI 397

RELM (Natarajan
et al., 2014)

No Multiclass AD-MCI-CN − MRI 214

Zhu et al. (2016b) No Multiclass AD/MCI/CN and AD/MCI-C/MCI-NC/CN) − MRI—PET 202

JRMI (Zhu et al.,
2016a)

Yes Multiclass AD/MCI/CN and AD/MCI-C/MCI-NC/CN Single time point MRI—PET 202

DM2L (Liu et al.,
2018c)

Yes Binary and
multiclass

AD/MCI/CN and AD/pMCI/sMCI/CN Single time point MRI—Demographic 1,984

DW-S2MTL (Suk
et al., 2016)

No Binary and
multiclass

AD/MCI/CN and AD/pMCI/sMCI/CN − MRI—PET—CSF 805

SMKMTL (Cao et al.,
2018)

No Binary AD/MCI-C/MCI-NC/CN Multiple cognitive scores MRI 788

SAE (Liu et al., 2015) No Multiclass AD/MCI-C/MCI-NC/CN − MRI and (MRI + PET) 758–331

SMTL (Lei et al.,
2017)

No − AD/MCI/CN 4 time points MRI 445

MSMT (Nie et al.,
2017)

No − CN/MCI/AD 4 time points Multimodal 818

CNN (Liu et al.,
2018a)

No Binary AD/pMCI/sMCI/CN − MRI + PET 397

M3T (Zhang and
Shen, 2013)

Yes Binary MCI-C/MCI-NC and AD/CN and MCI/CN 2y changes of MMSE MRI + PET + CSF 186

MSJL (Zhu et al.,
2014)

No Binary AD/CN, MCI/CN, MCI-C/MCI-NC Single time point MRI + PET + CSF 202

FIGURE 7 | Boxplot for RMSE of mixture category of subjects using different combinations of modalities. Here C1 stands for MRI + PET + RF, C2 stands for
MRI + PET + RF + COG, C3 stands for MRI + PET + RF + CSF, C4 stands for MRI + PET + RF + COG + CSF.

for this last assertion is that when the model is designed to
only do a single task of regression or classification, it is not able
to pass the local optima and achieve better results than with a

multitask model. Another supporting factor is the fact that to
get classification and regression results from a single task model,
two separate models need to be trained, which almost doubles
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FIGURE 8 | Boxplot for accuracy of multiclass classification achieved through
the proposed network based on a different combination of modalities. Here
C1 stands for MRI + PET + RF, C2 stands for MRI + PET + RF + COG, C3
stands for MRI + PET + RF + CSF, C4 stands for MRI + PET.

the number of computations that are needed to perform both
tasks separately.

The initial expectation from this experiment was that
diagnostic labels and cognitive tests should be able to substitute
for one another, i.e., they should be able to transform the
feature space when being used as targets for a specific model.
However, this was not the case in this study. While setting up
the experiments, we also tested for the applicability of the model
to predict other cognitive tests. Among all these three cognitive
scores of (MMSE, RAVLT, and ADAS11) the best results were
obtained with multitasking MMSE with diagnosis labels. Thus,
we focused on reporting the results of this setup only.

Moreover, different combinations of modalities have been
investigated to provide for more meaningful comparisons
with other reported studies. Results provided in Figure 7
demonstrate the influence of the different combinations of
modalities in predicting the MMSE scores. Four different
modality combinations have been considered, where RF signifies
risk factor, with C1–C4 referring to the various combinations of
the different modalities as indicated in the legend of Figure 7.

Moreover, the accuracy of the multiclass classification for
predicting the progression of AD in a period of 24 months in
terms of their categorical labels is shown in Figure 8. It should
be noted that for the sake of uniformity, all the results reported
in this study are generated using the same network shown in
Figure 3. Therefore, the network that has been analyzed to yield
the results shown in Figures 7, 8 used the hyperparameters
(optimizer, dropout rate, decay rate, hidden layer size, and so
on) that have been optimized exclusively with respect to the five
modalities considered (MRI, PET, CSF, COG, and DEM).

CONCLUSION

In this study, a novel neural network structure with multitask
learning, modality fusion, kernelization, and tensorization has
been proposed to predict and classify the different stages

of Alzheimer’s disease in a multiclass population. Using the
features collected at baseline, this newly developed network
is shown to predict the cognitive status (through the MMSE
scores) of the patients in a 24-month longitudinal study
involving the AD/MCI-C/MCI-NC/CN groups [taking into
consideration the converter (C) and non-converter groups (NC)
in the MCI category]. Multitask learning has been explored to
enhance prediction performance by incorporating the common
relationship or interrelatedness between the regression and
multiclass classification tasks. Furthermore, the power of
modality fusion, kernelization, and tensorization have also been
investigated to efficiently extract important features hidden in
the lower-dimensional feature space without being distracted by
those deemed irrelevant.

Empirical evaluations on the longitudinal multimodal
ADNI dataset were conducted in this study to evaluate the
model’s performance. The results reveal that the proposed
KTMnet framework not only predicts the cognitive scores
with relatively high accuracy but can also enhance the
multiclass classification accuracy for early stage diagnosis
and prognosis of the MCI conversion group. It is emphasized
here that although we are aware of the overlap that exists
in the MMSE scores in between subject groups, making the
prediction of MMSE scores difficult, we still removed from
consideration in the training phase the predictive biomarkers
of ADAS13, MoCA, and CDR, which are found to be highly
correlated to MMSE. Their inclusion otherwise would have
favored the proposed machine learning design and could
have biased the accuracy for both prediction and multiclass
classification.

In relation to Figure 2, for each cognitive test (RAVLT,
MMSE, ADAS11) and each subgroup, this study shows that
there may be a learning effect at 12 months, which continues to
24 months for CN and MCI-NC; however, for the AD and MCI-C
groups, the learning effect seems to be overtaken by the disease
effect beyond year 1.
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