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Dementia affects millions of individuals worldwide, yet there are no effective treatments.
Alzheimer’s disease, the most common form of dementia, is characterized by amyloid
and tau pathology with amyloid accumulation thought to precipitate tau pathology,
neurodegeneration, and dementia. The Religious Orders Study and Memory and Aging
Project (ROSMAP) cohort is a unique resource with quantitative pathology from multiple
brain regions, RNA sequencing, and longitudinal cognitive data. Our previous work
applying machine learning to the RNA sequencing data identified lactoferrin (LTF) as
the gene most predictive of amyloid accumulation with a potential amyloidogenic
mechanism identified in vitro and with cell-culture models. In the present study, we
examined which pathologies and genes were related to cognitive status (dementia,
mild impairment, and no cognitive impairment) and rate of cognitive decline. Tau
load in the anterior cingulate and ADAMTS2, encoding a metallopeptidase, were the
respective regional pathology and gene most associated with cognitive decline, while
PRTN3, encoding a serine protease, was the key protective feature. ADAMTS2, but
not PRTN3, was related to amyloid and tau load in the previous study while LTF was
not related to cognitive decline here. These findings confirm a general relationship
between tau pathology and dementia, show the specific importance of tau pathology
in the anterior cingulate cortex and identify ADAMTS2 as a potential target for slowing
cognitive decline.

Keywords: Alzheimer’s disease, cognition, machine learning, transcriptomics, pathology

INTRODUCTION

Dementia currently affects 50 million people worldwide and is projected to affect 152 million by
2050 due to an aging population (World Health Organisation, 2017). The most common form of
dementia is Alzheimer’s disease (AD), but despite extensive research and multiple clinical trials,
there are still no disease-modifying therapies. Further target validation with greater mechanistic
understanding is urgently required to identify new therapeutic opportunities. Multi-omics studies
of human post-mortem brain tissue and RNA sequencing (RNA-seq), in particular, promise much
in understanding neurodegenerative mechanisms, but the data is complex, and the key findings
reported from various studies to date have mainly been discordant.
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One of the challenges in using human data is that elderly
donors each have a unique combination of lifestyle, medical
history, and neuropathology. Thus, larger cohort sizes with both
clinical and biological information are required. The Religious
Orders Study and Memory and Aging Project (ROSMAP)
are two combined longitudinal studies that have recruited
∼3400 nuns, priests, brothers (ROS), and laypersons (MAP)
and have carried out ∼1500 brain autopsies (De Jager et al.,
2018). This autopsy data has shown the presence of 236
different combinations of pathology in the ROSMAP cohort,
showing that most elderly people have multiple pathologies
present and that these do not follow a fixed pattern (Boyle
et al., 2018). In addition, the contribution of each pathology
to cognitive impairment varies between individuals with AD
pathology, accounting for approximately 50% of cognitive
decline overall but ranging between 22 and 100% for an
individual (Boyle et al., 2018). The same group also found
that only 41% of the variation in cognitive decline could be
explained by neuropathology (Boyle et al., 2013) and that
∼33% of dementia cases could not be directly attributed to any
neuropathology (Boyle et al., 2019). These studies also showed
that some individuals with substantial AD pathology did not have
cognitive decline.

Previous neuropathology studies in the ROSMAP cohort have
only used a binary AD diagnosis variable in their analyses despite
available quantitative tau and amyloid data from multiple brain
regions (Boyle et al., 2018). Instead, we have included quantitative
regional AD pathology data to find whether pathology in a
particular brain region drives cognitive decline. Furthermore,
while previous studies have employed parametric linear models,
the relationship between AD pathology and cognitive decline
may not be linear (e.g., amyloid may accumulate until a
certain threshold before triggering a sudden acceleration of tau
pathology). We thus apply non-parametric machine learning
algorithms to the ROSMAP quantitative neuropathology data to
identify the regional pathology most related to cognitive decline.

The ROSMAP bulk tissue RNA-seq dataset includes over
600 samples and has been used in numerous studies (Felsky
et al., 2018; Mostafavi et al., 2018; Olah et al., 2018; Tsatsanis
et al., 2021). However, the data was first processed a decade ago
using the sequence aligner Bowtie which has been superseded
(Dobin et al., 2013; Baruzzo et al., 2017). In addition, most
of the past studies have used parametric methods such as
differential expression with few applying machine learning (ML).
While ML is commonly used for classification with a focus
on metrics such as accuracy, other powerful methods (Wenric
and Shemirani, 2018) have been explicitly developed for feature
selection (e.g., identifying the genes that best differentiate AD
from controls). Boruta is a robust feature selection method
used to identify all of the input variables that are “important”
in predicting an outcome such as AD diagnosis or cognitive
score (Kursa and Rudnicki, 2010; Kursa, 2014). Boruta works
by introducing “shadow features” (randomly shuffled copies of
the input variables) and then comparing the performance of the
true values of the input variables with these “shadow features”
in a classification or regression model (random forest used
here). It runs iteratively and outputs a list of the input variables

ranked by Z-score showing the input variables that consistently
outperformed the highest ranked shadow feature.

We previously re-processed the ROSMAP data through an
updated pipeline and applied Boruta to the ROSMAP cohort to
identify genes related to AD pathology (Tsatsanis et al., 2021). We
identified lactotransferrin (LTF) as a key predictor of AD status
and amyloid pathology load before placing a direct interaction
between lactoferrin (encoded by lactotransferrin) and β-amyloid
precursor protein (APP) in vitro with a potential mechanism
for lactoferrin to promote amyloidogenic processing of APP
and β-amyloid accumulation shown in cell-based models. We
also ran differential expression analysis where LTF was ranked
2360th. The low ranking in the differential expression compared
to Boruta combined with the laboratory validation of lactoferrin
indicates that Boruta may detect genes overlooked by differential
expression. In the previous study, we focused on the genes related
only to AD pathology. Therefore, in the current study, we have
again applied ML to the same ROSMAP cohort to identify the
key genes and pathologies associated with the clinical diagnosis
of dementia and the rate of cognitive decline.

MATERIALS AND METHODS

This study was undertaken following permission from the Rush
Alzheimer’s Disease Center and data accessed via the AD
Knowledge portal. ROSMAP comprises two active longitudinal
cohort studies that have recruited individuals aged 65 and
over with no known dementia in order to gather extensive
clinical information prior to a comprehensive neuropathological
examination at death. RNA-seq data from the dorsolateral
prefrontal cortex was available for 638 subjects (De Jager et al.,
2018). As 98.4% of the cases were from a non-Hispanic White
background, the remaining 1.6% was excluded in order to reduce
a source of genetic variation. The cohort of 589 from our
previous study was reduced to 542 to include only individuals
with complete cognitive data.

The subjects were first divided based on their final consensus
clinical diagnoses irrespective of their AD pathology diagnosis.
There were 172 (39% AD pathology) with no cognitive
impairment (NCI), 147 (54% AD pathology) with mild cognitive
impairment (MCI), and 223 (82% AD pathology) with dementia.
Second, the subjects were divided based on their slope of episodic
memory decline and slope of global cognitive decline. These
variables represent the “estimated person-specific rate of change”
in the cognition variables over time. It comes from a linear mixed-
effects model, which controls for age at baseline, sex, and years of
education (Wilson et al., 2015). The 100 subjects with the slowest
decline were compared to the 100 subjects with the fastest decline
irrespective of their clinical diagnoses.

Tissue Preparation and RNA-Sequencing
Detailed methods of the RNA-seq data preparation have
been published previously (Mostafavi et al., 2018). Briefly,
RNA-seq libraries were prepared using the strand-specific
dUTP method (polyA selection) with sequencing performed
on the Illumina HiSeq with 101-bp paired-end reads and
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coverage of 50 million reads. The input fastq files for the
present study were downloaded from https://www.synapse.org/
#!Synapse:syn8612097. These fastq files had been reverted from
binary alignment matrix (BAM) files produced when the samples
had been first aligned using Bowtie. The BAM files included
the mapped and unmapped reads from the original alignment.
These fastq files were re-processed using our custom pipeline
as follows: quality of the input data was assessed using FastQC
(version 0.11.3) before the reads were mapped to the GRCh38.p10
reference genome using the STAR (version 2.5.2a) aligner
and known GENCODE genes were quantified using RSEM
(version 1.3.0).

RSEM count data were imported into the R project
environment, and analysis was performed using the methods
described previously (Tsatsanis et al., 2021). Reads with
primarily zero counts were filtered out, leaving 20,494 genes
for downstream analyses. Outlier samples were identified using
principal components analysis and hierarchical clustering. Reads
were normalized using the edgeR package with the trimmed
mean of means method (TMM). A principal components analysis
showed that there was a clear batch effect (data not shown).
Counts were log-transformed prior to the removal of the batch
effect using the ComBat algorithm (Johnson et al., 2007). These
batch-corrected counts were used as the input for the machine
learning algorithms.

Boruta
Boruta was run over 10,000 iterations in R (version 4.0.2) for
both classification and regression on the RNA-seq and pathology
data. The classification runs were performed to identify the
input variable relevant to clinical diagnosis (dementia vs. NCI,
dementia vs. MCI, and MCI vs. NCI) and fast decline vs. slow
decline of episodic memory and global cognition. All analyses
were balanced by taking a random sample of the larger group. The
regression runs were performed to identify the input variables
relevant to the slope of global cognitive decline, the slope of
episodic memory decline, and subsequently the genes associated
with ADAMTS2 and PRTN3.

Machine Learning Confirmation and
Validation
The stability of the Boruta results was confirmed by running
three algorithms (“ranger,” “xgbTree,” and “glmnet”) using the
“caret” R package (Kuhn, 2008). All algorithms were run with
repeated k-fold cross-validation (five folds and 20 repeats) as
the sampling method. The “varImp” function from the “caret”
package was then used to extract the feature importance from
each model to compare to the Boruta results. The transcripts
of interest were validated using the bulk RNA-seq and control
single-cell RNA-seq from the AD consensus website1 as well as
a single-cell analysis of the ROSMAP data (Mathys et al., 2019;
Morabito et al., 2020). The bulk RNA data include the ROSMAP
data used here as well as the Mount Sinai Brain Bank (Wang et al.,
2018) and Mayo Clinic Studies (Allen et al., 2016).

1https://swaruplab.bio.uci.edu/consensusAD

Neuropathology Data
The neuropathology analyses were done using the wider
ROSMAP cohort to maximize the available sample size (∼1300
with autopsy data at the time of application). Quantitative
neuropathology methods have been previously published
(Bennett et al., 2003; Mostafavi et al., 2018) and include cortical
density of abnormally phosphorylated tau (eight brain regions),
areal fraction of Aβ (eight brain regions), and counts of neuritic
plaques, diffuse plaques, and neurofibrillary tangles in five
brain regions. All pathology variables are defined and can be
requested via the RADC Research Resource Sharing Hub2.
Only subjects with complete neuropathology data across all
brain regions were used. This resulted in 713 subjects with
complete data for 62 variables being used as the input for the
analysis (Variable descriptions and missing data summarized
in Supplementary Table 4). Results were confirmed using the
same algorithms and sampling methods described above for the
RNA-seq data with the addition of a simple decision tree model
run using the “rpart” algorithm. All analysis code can be found
at: https://github.com/binfnstats/ML_cognition.

RESULTS

RNA-Sequencing Analysis
The Boruta feature selection algorithm was applied to the
ROSMAP bulk tissue RNA-seq data to identify the genes
predictive of cognitive status. There were 46 genes for dementia
vs. NCI, 22 for dementia vs. MCI, and six for MCI vs. NCI
(complete lists in Supplementary Table 1). Boruta ranks the
input variables by Z-score with the top ten genes for dementia vs.
NCI and dementia vs. MCI shown in Table 1. Two genes (PRTN3
and PPDPF) were downregulated in dementia vs. NCI or MCI.

2https://www.radc.rush.edu/

TABLE 1 | Top 10 genes for classifying the subjects into dementia and no
cognitive impairment and for classifying subjects into mild cognitive
impairment and dementia.

Dementia vs. no Dementia vs. mild

cognitive impairment cognitive impairment

Gene symbol z-score Direction* Gene symbol z-score Direction*

PRTN3 7.51 Down PRPF4 7.59 Down

SLC4A11 6.60 Up ADAMTS2 5.82 Up

MEIS3 6.06 Down RPSAP15 5.81 Down

AGPAT1 6.05 Down PRTN3 5.33 Down

GSEC 5.93 Down KIF5A 5.13 Up

PPDPF 5.82 Down TACR2 4.95 Down

ARHGEF34P 5.58 Up BRD1 4.94 Up

TCP10L 5.51 Down OVCH1-AS1 4.78 Down

IL15 5.49 Up ANKRD30B 4.48 Down

NUMBL 4.90 Down NPPA 4.36 Down

*Higher or lower mean expression in dementia.
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Next, we explored whether there were genes that were
associated with participants exhibiting a more rapid decline
in cognition: particularly of episodic memory. One hundred
subjects with the fastest decline in episodic memory were
compared to the same number of subjects with the slowest
decline using Boruta. There were 63 genes that differentiated
between these two groups with PRTN3, ADAMTS2, and PPM1D
ranked highest (Top ten in Table 2). From a similar analysis
on subjects with the fastest and slowest global cognitive decline
(average across the five cognitive domains assessed in the
ROSMAP study), there were 21 genes common to both lists
(with PRTN3 and ADAMTS2 again ranked highly) (Complete
gene lists in Supplementary Table 1) including seven that
were common to dementia vs. NCI analysis (PRTN3, GSEC,
FAM160A2, ANKRD19P, SLC6A9, SLC4A11, and AQP6).

As a follow-up, we tested whether there were genes that
predicted the slope of episodic memory decline across the
entire cohort. 38 genes predicted the progression of episodic
memory decline, with 23 of these genes also associated with
the fast decliners group (Supplementary Table 1). PRTN3 and
ADAMTS2 were again the top-ranked genes along with several
transporter genes (SLC6A9, SLC38A2, SLC4A11, AQP6).

ADAMTS2 and PRTN3 were consistently ranked highly in
the Boruta analyses. They are both linked to peripheral immune
response and extracellular matrix maintenance (summarized in
Supplementary Table 2) but there is little information on their
role in the human brain. Therefore, a gene association analysis
was done using Boruta to find the genes predictive of ADAMTS2
and PRTN3 levels using all 20493 other genes as input. There
were 205 genes predictive of ADAMTS2 and 98 genes predictive
of PRTN3 levels (Supplementary Table 3), although there were
no overlaps between the two “co-expressed” gene lists or in the
STRING protein-protein interaction database (Supplementary
Figures 1A,B). The genes that were predictive of PRTN3 included
genes associated with calcium-signaling, such as HPCAL1, and
synaptic function. The genes predictive of ADAMTS2 levels
included genes associated with glucocorticoid response (e.g.,
HSD11B2, ELK1, PTPRU) and neuropeptide signaling (e.g., VGF,
SORT1, IRS1) (Hofer et al., 2008; Gutièrrez-Mecinas et al., 2011).

TABLE 2 | Top 10 genes for classifying the subjects into fast episodic memory
decline and slow episodic memory decline and top 10 genes predictive of
episodic memory in the full cohort.

Gene symbol z-score Direction* Gene symbol z-score Cor.*

PRTN3 7.47 Down PRTN3 7.45 +

ADAMTS2 6.22 Up ADAMTS2 6.83 −

PPM1D 5.92 Up ZCCHC10 6.43 +

ENSG00000216895 5.3 Down TAF1D 6.3 +

LINC02172 5.18 Up CCN4 5.76 −

SLC6A9 4.95 Up ZNF334 5.59 +

TMEM72-AS1 4.88 Down HMGN2 5.48 +

PPP4R1 4.8 Up PPP4R1 5.47 −

QDPR 4.57 Up SLC4A11 4.99 −

ZNF334 4.56 Down ANKRD19P 4.96 +

*Higher or lower mean expression in dementia.
*Pearson correlation between gene and slope of episodic memory decline.

Confirmation and Validation of Target
Genes
The high rankings of ADAMTS2 and PRTN3 in the Boruta
analysis were confirmed using other ML algorithms. The
dementia vs. NCI and fast vs. slow analyses of global cognitive
and episodic memory decline were repeated with three other
algorithms (“ranger,” “xgbTree,” and “glmnet”) using repeated
cross-fold validation to see if the target genes were identified
by other ML methods. PRTN3 was ranked 1st by the tree-
based algorithms (“xgbTree” and “ranger”) in all analyses while
(Supplementary Table 4). ADAMTS2 was ranked between 3rd
and 6th by the tree-based algorithms for episodic memory and
global cognitive decline. Both genes were ranked lower by the
linear “glmnet” algorithm.

ADAMTS2 and PRTN3 were validated using the AD
consensus transcriptomics online resource (see text footnote 1)
(Morabito et al., 2020). PRTN3 was lower in symptomatic
AD (AD pathology diagnosis and dementia) compared to
controls and asymptomatic AD (AD pathology diagnosis without
dementia) in the Mayo Clinic temporal cortex data (not
present in the Mount Sinai Brain Bank analysis). ADAMTS2
levels were consistently higher in symptomatic AD relative to
both controls and asymptomatic AD (no difference between
controls and asymptomatic AD) in all datasets (Supplementary
Figures 1C,D).

Two single-cell RNA-seq datasets were used to identify the
cell types producing the transcripts of these two genes. The first
dataset included controls only (aged 67–90) and it showed that
PRTN3 and ADAMTS2 transcripts were mainly expressed by
neurons with lower expression in other cell types (microglial
expression of ADAMTS2 only) (Supplementary Figures 1E,F).
The second dataset included ROSMAP controls and AD subjects
(n = 48) (Mathys et al., 2019), and it showed that PRTN3
was only expressed by excitatory and inhibitory neurons and
was downregulated in AD. ADAMTS2 was expressed in and
upregulated in AD in all cell types (Supplementary Table 5).

Neuropathology Analysis
The ROSMAP neuropathology data includes various indices
of Aβ and tau load across multiple brain regions as well as
other neuropathologies and demographic information. Following
exclusions for missing data, 62 variables from 713 individuals
were used as the input to Boruta (Supplementary Table 6). 34
variables were identified for classifying dementia vs. NCI, 28 for
classifying dementia from MCI, and six for classifying MCI vs.
NCI, with the top 10 variables for each analysis shown in Table 3.
Tau pathology variables were consistently ranked higher than
amyloid variables across all analyses, with tangles in the anterior
cingulate cortex (ACC) ranked highest each time.

As with the RNA-seq analysis, the pathology cohort was split
into the 100 subjects with the fastest or slowest rates of cognitive
decline. There were 27 variables predictive of accelerated episodic
memory decline and 26 for accelerated global cognitive decline
(Top 10 shown in Table 4 with a full list in Supplementary
Table 6). Tau pathology was again the main factor, with eight of
the top 10 variables for each analysis being tau related. Tangles
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TABLE 3 | Top 10 pathology variables predictive of clinical diagnosis.

Rank Dementia
vs. NCI

z-score Dementia
vs. MCI

z-score MCI vs.
NCI

z-score

1 AT8 ACC 17.74 AT8 ACC 8.98 AT8 ACC 13.61

2 AT8 Total 12.12 AT8
InfTemp

8.34 NFT Total 6.29

3 NFT Total 11.86 NP
MidTemp

7.95 AT8
InfTemp

4.92

4 AT8
InfTemp

11.85 AT8
MidFront

7.54 AT8 Hip 4.08

5 AT8
MidFront

11.42 AT8
Angular

7.36 NFT
MidTemp

3.70

6 AT8
Angular

9.49 AT8
SupFront

7.12 NFT
EntoCort

3.67

7 AT8 Hip 9.46 AT8 Total 6.51

8 AT8
SupFront

9.04 TDP stage 5.87

9 NFT
MidTemp

8.32 Parkinson’s
Dx

5.20

10 NP
MidTemp

8.15 CERAD
score

5.16

AT8, Abnormally phosphorylated tau from immunohistochemistry; NFT,
neurofibrillary tangles from silver staining; NP, neuritic plaques from silver staining;
CERAD, Consortium to establish a registry for Alzheimer’s disease score; TDP,
Tar-DNA Binding Protein stage, full variable description in Supplementary Table 4.

TABLE 4 | Top 10 variables for separating the 100 subjects with the fastest
cognitive decline from the 100 subjects with the slowest cognitive decline.

Rank Episodic decline z-score Global decline z-score

1 AT8 ACC 16.28 AT8 ACC 15.20
2 AT8 Total 11.68 AT8 Total 11.36
3 Age 10.65 AT8 SupFront 10.94
4 NFT Total 10.34 Age 10.13
5 AT8 Angular 9.25 AT8 MidFront 9.79
6 AT8 MidFront 8.88 NFT Total 8.16
7 AT8 InfTemp 8.82 NFT CA1Hip 7.86
8 NFT CA1Hip 8.46 AT8 Angular 7.78
9 NP MidTemp 8.41 NP MidTemp 7.73
10 AT8 SupFront 7.75 AT8 InfTemp 7.54

AT8, Abnormally phosphorylated tau from immunohistochemistry; NFT,
neurofibrillary tangles from silver staining; NP, neuritic plaques from silver staining,
full variable description in Supplementary Table 4.

in the ACC were ranked highest in both analyses, while age
was also in the top five for both. The analysis was repeated
across the full cohort for potential associations with the slope
of episodic memory decline and global cognitive decline. 44
variables were found to be important for the progressive loss of
episodic memory and global cognition, with 43 of these common
to both. Tau tangles in the ACC was ranked highest, with the same
pathology in the middle and superior frontal gyri also being in
the top five factors. Age, a diagnosis of Parkinson’s disease, and
middle temporal neuritic plaques were also features in the top 10.

Confirmation of the Neuropathology
Analysis
Three alternative ML algorithms were used to confirm the
Boruta neuropathology results above. Tangles in the ACC was

again the highest-ranked feature in the “xgbTree” and “ranger”
models for all analyses (Supplementary Table 7). AD pathology
measures were ranked lower by the linear “glmnet” algorithm,
and hippocampal sclerosis, a previous head injury as well as
a Parkinson’s disease diagnosis were also ranked highly across
the three types of analyses. A simple decision tree model
(“rpart”) showed that tangles in the ACC alone could be used to
classify the subjects into fast episodic and slow episodic memory
decline (AUC = 0.78), and to a lesser extent, dementia and
NCI (AUC = 0.73).

DISCUSSION

As the previous ML analysis with Boruta using ROSMAP
cohort data identified the gene encoding lactotransferrin or
lactoferrin (LTF) as a key contributor to AD pathology
(Tsatsanis et al., 2021), the aim of this study was to identify the
key genes and pathologies contributing to cognitive decline.
Transcriptomic analysis suggested a role for several genes
in cognitive decline with ADAMTS2 and PRTN3 featuring
prominently, while tau pathology in the ACC was the
most predictive neuropathological index from the ROSMAP
neuropathology data. PRTN3 levels decreased, while ADAMTS2
increased with cognitive decline. There was no overlap in co-
expressed gene lists suggesting that they have independent effects
on dementia pathogenesis.

ADAMTS2 encodes an extracellular matrix protein (a
disintegrin and metalloproteinase with thrombospondin motifs,
2) that is mainly known for cleaving the propeptides of collagen
type I and II. It has been linked to brain diseases such
as schizophrenia and vascular dementia (Romay et al., 2019;
Ruso-Julve et al., 2019) and was predictive of both tau and
amyloid pathology in our previous analysis of the ROSMAP
data (Tsatsanis et al., 2021). While our gene association analysis
suggested that it is involved in stress response and neuropeptide
signaling, there is not a clear mechanistic link to AD pathology.
One possible mechanism for how ADAMTS2 modifies AD risk
could be through dysregulated extracellular matrices, and like
PRTN3, affecting blood-brain-barrier integrity (Anwar et al.,
2021). In a related role, ADAMTS2 can cleave and inactivate
reelin (Yamakage et al., 2019), an extracellular matrix protein that
is important for synaptic plasticity (Bock and May, 2016; Lussier
et al., 2016). Reelin and other extracellular matrix components
are associated with susceptible neurons of the entorhinal cortex
in AD (Santa-Maria et al., 2010) and reduced reelin is linked to
increased AD pathology in animal models (Kocherhans et al.,
2010). Reelin has also been linked to other brain diseases such as
schizophrenia and frontotemporal dementia (Sáez-Valero et al.,
2003; Negrón-Oyarzo et al., 2016). The association between
ADAMTS2 and reelin could explain ADAMTS2’s association
with multiple brain diseases but further mechanistic studies are
clearly required.

PRTN3 encodes the neutrophil serine protease, proteinase-3
(aka myeloblastin). It is mainly expressed by neutrophils where
it shares similar roles to the other neutrophil serine proteases
(cathepsin G and neutrophil elastase). PRTN3 is constitutively
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expressed on neutrophils membrane where a key function is to
restore vascular integrity following infection (Korkmaz et al.,
2010; Kuckleburg and Newman, 2013). There is little information
about PRTN3 in the brain, but it is known to act on protease-
activated receptor (PAR)1 and PAR2 (Kuckleburg and Newman,
2013) which are important mediators of synaptic transmission
(Price et al., 2021). PRTN3 is mainly expressed by neurons
(Mathys et al., 2019) and probably in the synaptic compartment
given the Boruta results, which identified several associated
synaptic genes. PRTN3was also in a module enriched for synapse-
related genes in a previous ROSMAP analysis where it was
also highly negatively correlated (31st of 13,484) with amyloid
(Mostafavi et al., 2018). PRTN3 was not in the Boruta results
of our previous AD pathology study but this does not exclude
a moderate association. Overall, this could mean that higher
PRTN3 levels are protective against amyloid pathology or that the
lower levels of PRTN3 in dementia are a sign of synaptic loss.

The pathology results here support our current understanding
that tau pathology has a greater relationship with cognitive
decline than amyloid pathology (Arriagada et al., 1992) and
that AD pathology is the major pathology type related to
cognitive decline (Boyle et al., 2013, 2018, 2019). Over two-
thirds of the pathology variables were identified in at least one
analysis, showing that many pathologies contribute to cognitive
decline. However, tau pathology in the ACC was consistently
the highest-ranked variable for predicting clinical diagnosis as
well as the progression of cognitive decline. Tangles in the
ACC was particularly powerful for differentiating MCI from
NCI, suggesting that it is an important region in the onset of
cognitive decline. Cortical tau pathology was also ranked higher
than hippocampal and entorhinal tau pathology, indicating the
importance of the neocortical spread in dementia.

Within the brain, the ACC is topographically situated above
the corpus callosum and has roles in executive function and
emotional regulation via neural pathways connecting to the
frontal and temporal lobes. It is regarded as a transition
zone between the allocortex, that includes the hippocampus,
entorhinal cortex, and the overlying neocortex. It is significantly
atrophied in AD but only develops amyloid pathology in
Thal Phase 2 once the amyloid deposition has already spread
throughout the neocortex (Thal et al., 2002; Jones et al., 2006).
In the present study, neither amyloid nor tau pathology was
particularly high in the ACC, with tau levels substantially
lower than in the entorhinal cortex and hippocampus. More
generally, tau-associated pathology is substantially lower in the
neocortex than in the medial temporal regions, yet cognitive
decline is strongly related to the spread of pathology to the
neocortex [as in the Braak staging system (Braak and Braak,
1991)]. One explanation is that the ACC and neocortex are
simply more vulnerable to tau pathology than the hippocampus.
Another possibility is that the ACC and neocortex functionally
compensate for the effects of tau pathology in the allocortex,
but this renders it vulnerable to even small amounts of
tau pathology that subsequently develop there. Answering
the question of why the ACC appears to be vulnerable to
the effects of tau pathology is vital to understanding the
pathogenesis of dementia.

While this study provides insights into the mechanisms of
dementia there are some notable limitations. There are challenges
associated with human post-mortem brain tissue studies such
as agonal effects and RNA degradation. However, the large size
of the ROSMAP study and relatively high average RIN (∼7)
increases the chance of identifying true disease effects here.
A further limitation is that the subjects were split into fast
cognitive decline and slow cognitive decline using the ROSMAP
slope of cognitive decline data. Although this was the best
available metric, we did not have the scores from each timepoint
for each individual or the time interval between their final
cognitive assessment and autopsy so the slope may not accurately
reflect cognitive decline for some individuals. Lastly, the size
and scope (quantitative regional neuropathology, longitudinal
cognition, and RNA-sequencing) of the ROSMAP dataset means
that there was no dataset available where we could replicate the
machine learning approach used here. However, both PRTN3 and
ADAMTS2 (as well as other highly ranked genes such as PPDPF,
SLC6A9, SLC4A11) were recently identified as relevant to AD
progression by an independent study using deep learning on the
Mount Sinai Brain Bank and ROSMAP transcriptomic datasets
(Wang et al., 2021).

CONCLUSION

We have shown that tau pathology in the ACC and two genes
(PRTN3 and ADAMTS2) are strongly associated with the rate
of cognitive decline in the ROSMAP cohort. There was overlap
with our previous study where ADAMTS2 was shown to be
predictive of total tau and superior frontal amyloid (Tsatsanis
et al., 2021). Notably, all three key transcripts from our two
studies (LTF, PRTN3, and ADAMTS2) encode proteins associated
with peripheral immune responses, but their functions in the
brain are not well understood. While higher PRTN3 may be
protective, an interaction between immune genes, the amyloid-
related LTF, and the tau-relatedADAMTS2 could provide insights
into how amyloid accelerates tau pathology. Further research is
needed to clarify the roles of these proteins in dementia associated
with AD pathology.
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