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We undertook longitudinal β-amyloid positron emission tomography (Aβ-PET) imaging
as a translational tool for monitoring of chronic treatment with the peroxisome
proliferator-activated receptor gamma (PPARγ) agonist pioglitazone in Aβ model mice.
We thus tested the hypothesis this treatment would rescue from increases of the
Aβ-PET signal while promoting spatial learning and preservation of synaptic density.
Here, we investigated longitudinally for 5 months PS2APP mice (N = 23; baseline
age: 8 months) and AppNL−G−F mice (N = 37; baseline age: 5 months) using
Aβ-PET. Groups of mice were treated with pioglitazone or vehicle during the follow-
up interval. We tested spatial memory performance and confirmed terminal PET
findings by immunohistochemical and biochemistry analyses. Surprisingly, Aβ-PET and
immunohistochemistry revealed a shift toward higher fibrillary composition of Aβ-plaques
during upon chronic pioglitazone treatment. Nonetheless, synaptic density and spatial
learning were improved in transgenic mice with pioglitazone treatment, in association
with the increased plaque fibrillarity. These translational data suggest that a shift toward
higher plaque fibrillarity protects cognitive function and brain integrity. Increases in the
Aβ-PET signal upon immunomodulatory treatments targeting Aβ aggregation can thus
be protective.
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INTRODUCTION

Alzheimer’s disease (AD) has become the most common cause
of dementia, and is imposing a significant burden on health
care systems of societies with aging populations (Ziegler-Graham
et al., 2008). During the past few decades, research on AD
pathogenesis led to the formulation of a model that accumulation
of amyloid beta (Aβ)-plaques and neurofibrillary tangles, the
histologically characterizing hallmarks of AD (Braak and Braak,
1991), triggers a cascade of neurodegenerative events, leading to
disease progression (Sasaguri et al., 2017). Additionally, novel
emerging evidence indicates that neuroinflammation plays an
important role in pathogenesis and progression of AD and
many other neurodegenerative diseases (Zimmer et al., 2014;
Heneka et al., 2015). In AD, activated microglial cells are able to
bind and phagocytize soluble Aβ, and to some degree also the
fibrillary Aβ aggregates, as part of the increased inflammatory
response (Heneka et al., 2015). However, others report that
Aβ-recognition receptors on microglia downregulate during
the progression of AD, such that microglial cells eventually
undergo senescence, characterized by reduced phagocytosis
of Aβ-aggregates (Hickman et al., 2008). With time, the
decreased microglial activity is permissive to expansion of fibrillar
amyloidosis (Heppner et al., 2015; Blume et al., 2018) and a high
proportion of dystrophic microglia were observed in human AD
brain post mortem (Streit et al., 2014). These observations have
led some to speculate that the microglial response is overwhelmed
by the massive Aβ-deposition occurring in advanced AD, such
that their chronic activation has a detrimental impact on disease
progression (Hickman et al., 2008; Lee and Landreth, 2010).

It might follow that treatment with anti-inflammatory
drugs should alleviate AD progression. Pioglitazone is an
anti-inflammatory insulin sensitizer widely used to treat
hyperglycemia in type 2 diabetes via activation of peroxisome
proliferator-activated receptor gamma (PPAR-γ). Treatment
with pioglitazone enables microglial cells to undergo a
phenotypic conversion from a pro-inflammatory toward an
anti-inflammatory and neuroprotective phenotype (Mandrekar-
Colucci et al., 2012; Yamanaka et al., 2012). Furthermore,
activation of PPAR-γ in the brains of AD mice initiate a
coupled metabolic cycle with the Liver X Receptor to increase
brain apolipoprotein E levels, which promotes the ability of
microglial cells to phagocyte and degrade both soluble and
fibrillary Aβ (Mandrekar-Colucci et al., 2012; Yamanaka et al.,
2012). However, another study showed that only low-dose
PPAR-γ agonist treatment, but not the conventional doses,
promotes an Aβ-clearing effect by increasing (LDL Receptor
Related Protein 1 (LRP1) in human brain microvascular
endothelial cells (HBMECs) (Moon et al., 2012). Despite this
compelling preclinical evidence, a meta-analysis encompassing
nine clinical studies did not compelling support a beneficial
effect of PPAR-γ agonist treatment on cognition and memory
in in patients with mild-to-moderate AD (Cheng et al., 2016).
Furthermore, a phase III trial of pioglitazone in patients with
mild AD was discontinued due to lacking efficacy (Geldmacher
et al., 2011). It remains a conundrum why the translation of
PPARγ stimulation into human AD failed, which calls for

further investigation to uncover the basis of the seemingly
false lead. Conceivably, the efficacy of pioglitazone may be
confined to a specific stage of AD, or in cases distinguished by a
particular biomarker.

Given this background, we hypothesized that Aβ-load
and composition would determine the individual efficacy
of PPARγ stimulation effect in the progression of AD
mouse models. Therefore, we undertook serial small animal
positron emission tomography (µPET) with the Aβ-tracer
[18F]florbetaben (Manook et al., 2012; Rominger et al., 2013;
Brendel et al., 2015a,b) in two AD mouse models with distinct
Aβ-plaque composition. The transgenic PS2APP-line develops
dense fibrillary Aβ-plaques with late debit whereas the knock-
In mouse model AppNL−G−F develops more diffuse oligomeric
Aβ-plaques with early debut. Both strains of mice were treated
with pioglitazone or vehicle for 5 months during the phase of
main Aβ accumulation. We conducted behavioral assessments
of spatial learning and confirmed longitudinal PET findings by
immunohistochemical analysis and biochemical analysis, thus
aiming to test the hypothesis that response to pioglitazone would
depend on the type of Aβ-plaques formed in transgenic mice.

MATERIALS AND METHODS

Study Design
Groups of PS2APP and AppNL−G−F mice were randomized to
either treatment (PS2APP-PIO N = 13, all female; AppNL−G−F-
PIO N = 14, N = 10 male, N = 4 female) or vehicle (PS2APP-
VEH N = 10, all female; AppNL−G−F-VEH N = 23 N = 9
male, N = 14 female) groups at the age of 8 (PS2APP)
and 5 (AppNL−G−F) months. In PS2APP mice, the baseline
[18F]florbetaben-PET scan (Aβ-PET) was performed at the age
of 8 months, followed by initiation of pioglitazone treatment or
vehicle for a period of 5 months and a follow-up Aβ-PET scan
at 13 months. In AppNL−G−F mice, the baseline Aβ-PET scan
was performed at the age of 5 month, followed by initiation
of pioglitazone treatment or vehicle, for a period of 5 months.
Follow-up Aβ-PET scans were acquired at 7.5 and 10 months
of age, which was the study termination in AppNL−G−F mice.
Mice were fed ad libitum with food pellets formulated with
pioglitazone at a dose of 350 mg/kg or unaltered control pellets.
The food was available to the mice without restriction.

For all mice, behavioral testing after the terminal PET scan
was followed by immunohistochemical and biochemical analyses
of randomized hemispheres. The TSPO-PET arm of the study
and detailed analyses of neuroinflammation imaging are reported
in a separate manuscript focusing on the predictive value of
TSPO-PET for outcome of PPARγ-related immunomodulation
(Biechele et al., 2022). The sample size estimation of the in vivo
PET study was based on previous experience and calculated by
G∗power (V3.1.9.2, Kiel, Germany), assuming a type I error
α = 0.05 and a power of 0.8 for group comparisons, a 10% drop-
out rate per time-point (including TSPO-PET), and a treatment
effect of 5% change in the PET signal. Shared datapoints between
the study arms are indicated.
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Animals
PS2APP transgenic (Ozmen et al., 2008), AppNL−G−F APP
knock-in (Saito et al., 2014) and wild-type C57Bl/6 mice
were used in this investigation (for details see Supplementary
Material). All experiments were performed in compliance with
the National Guidelines for Animal Protection, Germany, with
approval of the local animal care committee of the Government
of Oberbayern (Regierung Oberbayern) and overseen by a
veterinarian. The experiments complied with the ARRIVE
guidelines and were carried out in accordance with the
U.K. Animals (Scientific Procedures) Act, 1986 and associated
guidelines, EU Directive 2010/63/EU for animal experiments.
Animals were housed in a temperature and humidity-controlled
environment with a 12-h light–dark cycle, with free access to food
(Ssniff) and water.

Aβ-PET Acquisition and Reconstruction
[18F]florbetaben radiosynthesis was performed as previously
described (Rominger et al., 2013). This procedure yielded a
radiochemical purity exceeding 98% and a specific activity
of 80 ± 20 GBq/µmol at the end of synthesis. Mice were
anesthetized with isoflurane (1.5%, delivered via a mask
at 3.5 L/min in oxygen) and received a bolus injection
[18F]florbetaben 12 ± 2 MBq in 150 µL of saline to a tail
vein. Following placement in the tomograph (Siemens Inveon
DPET), a single frame emission recording for the interval 30–
60 min p.i., which was preceded by a 15-min transmission
scan obtained using a rotating [57Co] point source. The
image reconstruction procedure consisted of three-dimensional
ordered subset expectation maximization (OSEM) with four
iterations and twelve subsets followed by a maximum a posteriori
(MAP) algorithm with 32 iterations. Scatter and attenuation
correction were performed and a decay correction for [18F] was
applied. With a zoom factor of 1.0 and a 128× 128× 159 matrix,
a final voxel dimension of 0.78× 0.78× 0.80 mm was obtained.

Small-Animal PET Data Analyses
Volumes of interest (VOIs) were defined on the MRI mouse
atlas (Dorr et al., 2007). A forebrain target VOI (15 mm3) was
used for group comparisons and an additional hippocampal
target VOI (8 mm3) served for correlation analysis with spatial
learning. We calculated [18F]florbetaben standard-uptake-value
ratios (SUVRs) using the established white matter (PS2APP;
67 mm3; pons, midbrain, hindbrain and parts of the subcortical
white matter) and periaqueductal gray (AppNL−G−F ; 20 mm3)
reference regions (Brendel et al., 2016; Overhoff et al., 2016;
Sacher et al., 2019).

Water Maze
Two different water maze tasks were applied due to changing
facilities between the investigations of PS2APP and AppNL−G−F

cohorts. We used a principal component analysis of the
common read outs of each water maze task to generate
a robust index for correlation analyses in individual mice
(Biechele et al., 2020). The principal component of the
water maze test was extracted from three spatial learning
read-outs (PS2APP: escape latency, distance, platform choice;
AppNL−G−F : escape latency, frequency to platform, time spent

in platform quadrant). Thus, one quantitative index of water
maze performance per mouse was generated for correlation
with PET imaging readouts. The experimenter was blind to the
phenotype of the animals.

Water Maze in PS2APP Mice
PS2APP and age-matched wild-type mice were subjected to
a modified Morris water maze task as described previously
(Sauvage et al., 2000; Busche et al., 2015; Keskin et al., 2017;
Focke et al., 2019) yielding escape latency, distance to the correct
platform and correct choice of the platform as read-outs.

Water Maze in AppNL−G−F Mice
AppNL−G−F mice (treated and vehicle) and 14 age- and sex-
matched wild-type mice (vehicle) underwent a classical Morris
water maze test, which was performed according to a standard
protocol with small adjustments (Bromley-Brits et al., 2011) as
previously described (Sacher et al., 2019). Details are provided in
the Supplementary Material.

Immunohistochemistry
Immunohistochemistry in brain regions corresponding to
PET analyses was performed for fibrillary as well as pre-
fibrillary Aβ, microglia and synaptic density as previously
published (Dorostkar et al., 2010; Brendel et al., 2017a,b). We
obtained immunofluorescence labeling of pre-fibrillary Aβ using
NAB228 (Thermo Fisher Scientific, Waltham, Massachusetts,
United States) with a dilution of 1:500 (Monasor et al.,
2020). For histological staining against fibrillar Aβ, we used
methoxy-X04 (TOCRIS, Bristol, United Kingdom) at a dilution
of 0.01 mg/ml in the same slice as for NAB228 staining.
We obtained immunofluorescence labeling of microglia using
an Iba-1 antibody (Wako, Richmond, United States) with a
dilution of 1:200 co-stained with CD68 (BioRad, Hercules, CA,
United States) with a dilution of 1:100. The synaptic density
was measured using an anti-vesicular glutamate transporter 1
(VGLUT1) primary antibody (1:500, MerckMillipore, Billerica,
Massachusetts, United States). Quantification was calculated as
area-%. Details are provided in the Supplementary Material.

Biochemical Characterization of Brain
Tissue
DEA (0.2% Diethylamine in 50 mM NaCl, pH 10) and RIPA
lysates (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM
Na2EDTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium
pyrophosphate) were prepared from brain hemispheres. The later
was centrifuged at 14,000 g (60 min at 4◦C) and the remaining
pellet was homogenized in 70% formic acid (FA fraction). The
FA fraction was neutralized with 20 × 1 M Tris-HCl buffer at
pH 9.5 and used further diluted for Aβ analysis. Aβ contained in
FA fractions was quantified by a sandwich immunoassay using
the Meso Scale Aβ Triplex plates and Discovery SECTOR Imager
2400 as described previously (Page et al., 2008). Samples were
measured in triplicates.

Statistics
The principal component of the water maze test was extracted
using SPSS 26 statistics (IBM Deutschland GmbH, Ehningen,
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Germany). Prior to the PCA, the linear relationship of the
data was tested by a correlation matrix and items with a
correlation coefficient < 0.3 were discarded. The Kaiser-Meyer-
Olkin (KMO) measure and Bartlett’s test of sphericity were
used to test for sampling adequacy and suitability for data
reduction. Components with an Eigenvalue >1.0 were extracted
and a varimax rotation was selected. Water maze results
were also used as an endpoint in the dedicated manuscript
on serial TSPO-PET in both cohorts (Biechele et al., 2022).
For immunohistochemistry quantifications GraphPad Prism
(GraphPad Software, San Diego, California, United States) was
used. All analyses were performed by an operator blinded to
the experimental conditions. Data were normally distributed
according to Shapiro−Wilk or D’Agostino-Pearson test. One-
way analysis of variance (ANOVA) including Bonferroni post-
hoc correction was used for group comparisons >2 subgroups.
For assessment of inter-group differences at single time points,
Student’s t-test (unpaired, two-sided) was applied. All results
are presented as mean ± SEM. P-values <0.05 are defined as
statistically significant.

RESULTS

Long-Term Pioglitazone Treatment
Provokes a Significant Increase of the
Aβ-PET Signal in PS2APP Mice
First, we analyzed serial changes of fibrillar amyloidosis under
chronic pioglitazone treatment by [18F]florbetaben Aβ-PET in
PS2APP mice and wild-type controls. Vehicle treated PS2APP
mice showed an elevated Aβ-PET SUVR when compared to
vehicle treated wild-type at 8 (+20.4%, p < 0.0001) and
13 months of age (+37.9%, p< 0.0001). As expected, the Aβ-PET
SUVR of wild-type mice did not change between 8 and 13 months
of age (0.831 ± 0.003 vs. 0.827 ± 0.008: p = 0.645). Surprisingly,
pioglitazone treatment provoked a stronger longitudinal increase
in the Aβ-PET signal of PS2APP mice (+21.4%) when compared
to vehicle treated PS2APP mice (+14.1%, p = 0.002). At the
follow-up time point, the Aβ-PET SUVR was significantly
elevated when compared to untreated PS2APP mice (Figure 1;
1.140 ± 0.014 vs. 1.187 ± 0.011; p = 0.0017). Pioglitazone
treatment in wild-type mice provoked no changes of Aβ-PET
SUVR compared to vehicle-treated wild-type mice at the follow-
up time-point (0.827 ± 0.008 vs. 0.823 ± 0.005: p = 0.496;
for images of wild-type mice see Supplementary Figure 1).
Taken together, we found a significant increase in the Aβ-PET
signal, which implied an increase in fibrillary Aβ-levels under
pioglitazone treatment in PS2APP mice.

Aβ-PET Detects a Strong Increase of the
Fibrillar Aβ-Load in AppNL−G−F Mice
During Chronic PPARγ Stimulation
Next, we sought to validate our unexpected findings in PS2APP
mice a mouse model with differing Aβ plaque composition,
namely the AppNL−G−F mouse, which has limited fibrillarity due
to endogenous expression of APP with three FAD mutations

(Saito et al., 2014). Strikingly, the effect of pioglitazone treatment
on the Aβ-PET signal was even stronger in AppNL−G−F mice
than in PS2APP mice. There was a pronounced increase of the
Aβ-PET signal during chronic pioglitazone treatment (+17.2%)
compared to vehicle (+5.3%, p < 0.0001). AppNL−G−F mice
with pioglitazone treatment had a higher Aβ-PET SUVR at
7.5 (+4.6%, p = 0.0071) and 10 (+7.7%, p < 0.0001) months
of age when compared to vehicle-treated AppNL−G−F mice
(Figure 2). The baseline level of Aβ-PET SUVR was non-
significantly lower in treated compared to untreated AppNL−G−F

mice (0.878 ± 0.010 vs. 0.906 ± 0.006, p = 0.1350). In
both mouse models, the Aβ-signal increase after pioglitazone-
treatment compared to baseline scans was pronounced in the
frontotemporal cortex and hippocampal area (Figures 1A, 2A).
In summary, the pioglitazone treatment augmented the Aβ-PET
signal increase in both mouse models; this unexpected result was
more pronounced in the AppNL−G−F model, which expresses less
fibrillary Aβ plaques.

Pioglitazone Triggers A Shift Toward
Increased Aβ-Plaque Fibrillarity in Two
Distinct Mouse Models of Amyloidosis
Given the unexpected in vivo findings, we set about to
evaluate the molecular correlates of the potentiation of Aβ-PET
signal during pioglitazone treatment in AD model mice. The
(immuno)histochemical analysis showed that the observed
increase of the Aβ-PET signal was predominantly explicable
by a change in plaque composition rather than by a change
in plaque density (Figure 3). In both mouse models, the
proportion of fibrillary Aβ stained with methoxy-X04 increased
significantly under pioglitazone treatment compared to vehicle
treated animals (PS2APP: 29.6± 3.5% vs. 15.2± 0.7%, p = 0.0056,
Figure 3C; AppNL−G−F : 9.1 ± 1.6% vs. 4.4 ± 0.4%, p = 0.0001,
Figure 3D). Pioglitazone treatment had no significant effect
on the proportion of pre-fibrillary Aβ stained with NAB228
in PS2APP mice (PS2APP: 65.4 ± 6.1% vs. 67.0 ± 6.9%,
p = 0.865, Figure 3C). In AppNL−G−F mice, however, the
proportion of pre-fibrillary Aβ decreased significantly in treated
animals (AppNL−G−F : 26.7 ± 1.7% vs. 34.5 ± 1.7%, p = 0.0138,
Figure 3E). The effect size of pioglitazone treatment on plaque
morphology was larger in AppNL−G−F mice than in PS2APP
mice, which was reflected by a significantly increased overlay
of methoxy-X04 and NAB228 positive plaques proportions in
relation to untreated mice (PS2APP: 40.4± 3.6% vs. 25.1± 2.1%,
p = 0.0075, Figure 3C; AppNL−G−F : 35.0± 3.4% vs. 12.9± 1.3%,
p = 0.0005, Figure 3E). We attribute this effect to the generally
diffuse nature of the plaque composition of AppNL−G−F mice,
which predominantly contain high oligomeric and low fibrillary
fractions of Aβ (Monasor et al., 2020) (compare Figures 3A,B).

The number of methoxy positive Aβ-plaques were similar
between vehicle and pioglitazone treated groups for PS2APP
(1,016 ± 107 vs. 1,118 ± 121, p = 0.547, Figure 3D) and
AppNL−G−F mice (242 ± 56 vs. 266 ± 33, p = 0.722, Figure 3F).
Notably there was no significant effect of chronic pioglitazone
treatment on the different insoluble Aβ species (Aβ40, Aβ42)
as well as on the level of the soluble Aβ42-isoform observed in
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FIGURE 1 | PPARγ stimulation in PS2APP mice provokes an increase in the Aβ-PET signal. (A) Regional analysis of group-averaged standardized uptake value ratio
(SUVR) images of the Aβ-PET radiotracer [18F]florbetaben in untreated and in pioglitazone-treated PS2APP mice aged 8 and 13 months. Coronal and axial slices are
projected upon a standard MRI template. (B) Plots show cortical SUVR values of [18F]florbetaben in PS2APP and wild-type (WT) mice between 8 and 13 months of
age under vehicle (Veh) or pioglitazone (Pio) treatment. The Aβ-PET signal increased in PS2APP mice during aging, but the increase was more pronounced in
pioglitazone treated mice [F(1, 12) = 12.9; p = 0.0017]. In wild-type animals, no difference was observed between untreated and treated animals during aging [F(1,

13) = 0.490; p = 0.496]. Data are presented as mean ± SEM. P values of Bonferroni post-hoc test result from two-way ANOVA. N = 10–13 PS2APP; N = 7–8 WT.
PET images of wild-type mice are provided in Supplementary Figure 1.

FIGURE 2 | Distinct Aβ-PET signal increase upon PPARγ stimulation in AppNL-G-F mice with limited plaque fibrillarity and without overexpression of APP. (A)
Regional analysis of group-averaged standardized uptake value ratios (SUVR) of the Aβ-PET radiotracer [18F]florbetaben in untreated and in pioglitazone treated
AppNL-G-F animals at the age of 5, 7.5, and 10 months. Coronal and axial slices are projected upon a standard MRI template. (B) Plots show cortical SUVR of
[18F]florbetaben in AppNL-G-F mice between the age of 5 and 10 months under vehicle or pioglitazone treatment. Aβ-PET signal increased in untreated mice during
age but the increase was more pronounced in pioglitazone treated AppNL-G-F mice [F(2, 70) = 20.12; p < 0.0001]. Data are presented as mean ± SEM. P-values of
Bonferroni post-hoc test result from two-way ANOVA. N = 14–23.
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FIGURE 3 | Pioglitazone treatment triggers a change in plaque composition in two different mouse models of amyloidosis. Staining of fibrillary Aβ (methoxy-X04,
cyan) and pre-fibrillary Aβ (NAB228, magenta) in vehicle and pioglitazone treated PS2APP mice (A) and AppNL-G-F mice (B). (C) The plaque area covered by
methoxy-X04 staining was significantly higher [t(9) = 3.612; p = 0.0056], whereas the plaque area covered by NAB228 staining remained equal [t(10) = 0.175;
p = 0.865] in pioglitazone treated PS2APP mice. The overlay of NAB228 and methoxy staining increased under pioglitazone treatment [t(9) = 3.432; p = 0.0075]. (D)
The number of methoxy positive Aβ-plaques did not change under pioglitazone treatment in PS2APP-mice. (E) In AppNL-G-F mice, methoxy coverage [t(11) = 5.802;
p = 0.0001], NAB228 coverage [t(11) = 5.80; p = 0.0001], as well as the overlay of both staining [t(11) = 2.93; p = 0.0138], increased under pioglitazone treatment.
(F) In AppNL-G-F mice, the number of methoxy positive Aβ-plaques did not change under pioglitazone. Data are presented as mean ± SEM; n = 5–13 mice.
Two-sample student’s t-test results: *p < 0.05; **p < 0.01; ***p < 0.001.
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either mouse model (Supplementary Figure 2). Taken together,
our results indicate that the potentiated increase of the Aβ-PET
signal upon pioglitazone treatment reflected a change in plaque
composition from less dense pre-fibrillar amyloid aggregates to
fibrillary Aβ-fractions.

Microglial Activation Is Reduced Upon
PPARγ Stimulation in Both Alzheimer’s
Disease Mouse Models
To confirm changes in the activation state of microglial cells, we
performed Iba1 as well as CD68 immunohistochemical staining
of activated microglia in both mouse models. We observed
that pioglitazone treatment significantly decreased microglial
activation in both mouse models (Figure 4). In PS2APP mice,
PPARγ stimulation provoked a one-third reduction of area
coverage of Iba1-positive microglial cells (area: 9.1 ± 0.6%)
compared to untreated mice (14.0 ± 0.5%, p = 0.0003), and
also a significant reduction of CD68-positive microglial cells area
(7.6 ± 0.4% vs. 9.9 ± 0.3%, p = 0.0018). In pioglitazone treated
AppNL−G−F mice, the area reduction was less pronounced, but
still significant for Iba1-positive microglial cells (9.4 ± 0.2%
vs. 10.6 ± 0.2%, p = 0.0015) and CD68-positive microglial
cells (2.7 ± 0.1% vs. 3.0 ± 0.1%, p = 0.0141) compared to
untreated mice. Thus, we observed a consistent net reduction
of activated microglial coverage in both models; the lesser effect
in AppNL−G−F mice might indicate partial compensation by
triggering of microglial activation due to increased fibrillary Aβ

levels (Sebastian et al., 2020).

Cognitive Function Is Improved by
Chronic Pioglitazone Treatment in
Association With an Increasing Aβ-PET
Rate of Change
Finally, we aimed to elucidate whether the observed longitudinal
changes in the composition of Aβ-plaques affected synaptic
density and hippocampus related cognitive performance.

In PS2APP mice, treatment with pioglitazone resulted in
a significant reduction of the water maze performance index
compared to untreated mice during the probe trial (Figure 5A;
p = 0.0155), whereas in wild-type animals there was no difference
between treated and untreated animals (p > 0.999). The
water maze performance index of pioglitazone treated PS2APP
mice correlated strongly with the rate of increase in Aβ-PET
signal (Figure 5C; R = 0.686; p = 0.0097). In AppNL−G−F

mice, pioglitazone treatment did not result in a significant
change of spatial learning performance (Figure 5B; p > 0.999).
Accordingly, the water maze performance index and the rate of
change in the Aβ-PET signal of pioglitazone treated AppNL−G−F

mice did not correlate significantly (Figure 5D; R = 0.341;
p = 0.254). There was no significant association between the
water maze performance index and the Aβ-PET rate of change
in vehicle treated PS2APP or AppNL−G−F mice.

To explore the basis of water maze results in PS2APP
mice at the molecular level, we performed staining of synaptic
density in the hippocampus. Aβ-oligomers are the primary
neurotoxic forms of Aβ, while Aβ-fibrils have less neurotoxicity

(Hardy and Selkoe, 2002; Haass and Selkoe, 2007; Zott et al.,
2019). Thus, we hypothesized that pre-synaptic density in the
hippocampal CA1-Area would be rescued upon pioglitazone-
treatment. In wild-type mice we did not observe altered changed
VGLUT1 density under pioglitazone treatment (Figure 5E, F;
0.519 ± 0.007 1/µm vs. 0.502 ± 0.008 1/µm, p = 0.810). In
PS2APP mice, however, we found that pioglitazone treatment
significantly rescued spine density in the CA1-region of the
hippocampus compared to untreated animals (Figures 5E,F;
0.497 ± 0.006 1/µm vs. 0.459 ± 0.007 1/µm, p = 0.0012),
supporting the hippocampal-dependent water maze results.

DISCUSSION

To our knowledge, this is the first large-scale longitudinal
PET study of cerebral Aβ-deposition in two distinct AD
mouse models treated with the PPARγ agonist pioglitazone.
We combined in vivo PET monitoring with behavioral testing
and detailed immunohistochemical analysis. Our main finding
was an unexpected potentiation in both mouse models of the
increasing Aβ-PET signal during 5 months of pioglitazone
treatment. This increase occurred despite an improvement of
spatial learning and prevention of synaptic loss in the PS2APP
mice. Immunohistochemistry revealed a shift toward plaque
composition of higher fibrillarity as the molecular correlate of
the Aβ-PET signal in both mouse models. In PS2APP mice
this increase was directly associated with improved cognitive
performance, whereas in AppNL−G−F mice such an effect
was not observed.

Aβ-PET enables longitudinal in vivo detection of Aβ-plaques,
which plays an important role in AD diagnosis, monitoring
disease progression, and as an endpoint for therapeutic treatment
effects (Valotassiou et al., 2018). In our preceding observational
and interventional studies, we validated in AD model mice
the clinically established Aβ-PET tracer [18F]florbetaben relative
to histologically defined indices Aβ deposition (Brendel et al.,
2015a,b). So far, an enhanced or increasing [18F]florbetaben-PET
signal has been interpreted as an indicator of disease progression
or treatment failure (Laforce et al., 2018). Unexpectedly, we
found that pioglitazone potentiated the increasing Aβ-PET
signal in two mouse models compared to vehicle controls; in
both cases, this increase was due to a shift of the plaque
composition toward higher fibrillarity, and away from the more
neurotoxic oligomeric form. However, ELISA measurements of
plaque associated fibrillary Aβ extracted with formic acid did
not indicate a change in the Aβ species composition in brain.
This suggests that Aβ-PET imaging and immunohistochemical
analysis detect treatment effects on Aβ-plaque composition that
do not arise from a shift in the levels of Aβ species, and which
may thus evade detection in studies of CSF or plasma content
(Hansson et al., 2018).

Furthermore, our study provides evidence that rescued
spatial learning deficits and prevented hippocampal synaptic
loss can occur despite an increasing Aβ-PET signal upon
immunomodulation. The combined results might sound
contradictory, but according to the amyloid cascade hypothesis,
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FIGURE 4 | Pioglitazone treatment reduces microglial activation in both AD mouse models. Iba1- (magenta) as well as CD68-(cyan) positive microglial cells in
PS2APP (A) and AppNL-G-F mice (B). (C) The area of Iba1 positive microglial cells [t(8) = 5.95; p = 0.0003] as well as CD68 positive microglial cells [t(8) = 4.58;
p = 0.0018] decreased in treated PS2APP mice. The same effect was observed in AppNL-G-F mice were the area covered by Iba1 positive [t(11) = 4.21; p = 0.0015]
as well as CD68 positive microglial cells [t(11) = 2.91; p = 0.014] were significantly reduced in treated compared to untreated mice. Data are presented as
mean ± SEM; n = 5–7 mice. Two-sample student’s t-test results: *p < 0.05; **p < 0.01; ****p < 0.0001.

Aβ-oligomers rather than Aβ-fibrils are the neurotoxic Aβ-forms
(Haass and Selkoe, 2007; Selkoe and Hardy, 2016). Indeed,
high concentrations of Aβ-oligomers isolated from brain of AD

patients correlated significantly with the degree of cognitive
impairment prior to death (Lue et al., 1999; McLean et al., 1999;
Wang et al., 1999). Furthermore, Aβ-oligomers have been shown
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FIGURE 5 | Improved spatial learning correlates with an increased Aβ-PET rate of change in PS2APP mice. (A) One-way ANOVA revealed a significant difference of
the water maze performance index between pioglitazone treated and untreated PS2APP and wild-type groups [F(3, 34) = 10.37; p < 0.0001; N = 7–13]. Group-wise
comparisons revealed that pioglitazone treated PS2APP mice achieved a higher performance index in the water maze test compared to untreated PS2APP mice
(p = 0.016), whereas wild-type animals showed no significant difference between treatment groups (p > 0.999). (B) One-way ANOVA revealed a significant difference
of the water maze performance index between pioglitazone treated and untreated AppNL-G-F and WT groups [F(3, 34) = 5.825; p = 0.0016]. However, pioglitazone
treated AppNL-G-F mice showed no difference in the water maze performance index when compared to untreated AppNL-G-F mice (p > 0.999) and wild-type
animals again showed no significant difference between treatment groups (p > 0.999). Scatter plots show correlations between the Aβ-PET rate of change
([18F]florbetaben; 1SUVR) during the treatment period and individual cognitive testing scores in (C) PS2APP mice and in (D) AppNL-G-F mice (R indicates Pearson’s
coefficient of correlation) (E) The decrease in synaptic density in the hippocampal CA1-region as assessed by VGLUT1 staining was ameliorated in treated PS2APP
mice when compared to untreated mice (p = 0.0012), whereas no such treatment effect was seen in wild-type animals [p = 0.810; group effect: F(3, 34) = 12.03;
p < 0.0001; N = 7–13]. (F) VGLUT1 staining in the hippocampal CA1-region of representative untreated and treated PS2APP mice (left column) as well as of
representative untreated and treated wild-type (WT) mice (right column). Statistics of group wise comparisons derive from one-way ANOVA with Bonferroni post-hoc
correction: *p < 0.05; ***p < 0.005. Data are presented as mean ± SEM.

to disrupt long-term potentiation at synapses and provoke long-
term depression (Cullen et al., 1997; Hu et al., 2008; Klyubin
et al., 2014). Thus, improved spatial learning and rescued
synaptic density could reflect a therapeutically induced shift of
Aβ to hypercondensed plaques, in keeping with observations of
greater neuritic damage in association with more diffuse plaques
(Ulrich et al., 2014; Wang et al., 2016). Furthermore, strongly in
line with our present data, a recent study argued that microglia
promoted formation of dense-core plaques may play a protective
role in AD (Huang et al., 2021).

The shift in plaque composition was more pronounced in
AppNL−G−F mice than in the PS2APP model. Due to the
expression of the Arctic mutation (Saito et al., 2014), the
Aβ-deposits of the AppNL−G−F line consist predominantly
of Aβ-oligomers (Sacher et al., 2019; Monasor et al., 2020).

However, we observed no improvement in cognition in the
APP knock-in mouse line after pioglitazone treatment. We
attribute the lacking improvement of spatial learning to the
minor deterioration of this model in water maze assessment at
10 months of age (Masuda et al., 2016; Sacher et al., 2019).
Our present observation stand in contrast with previous studies
showing that PPAR-γ agonists reduced Aβ-plaque formation
by increasing Aβ-clearance (Camacho et al., 2004; Mandrekar-
Colucci et al., 2012; Yamanaka et al., 2012). However, those
studies only performed endpoint analyses, in part after short-
term treatment of 9 days (Mandrekar-Colucci et al., 2012);
the current work is the first to perform longitudinal in vivo
monitoring of Aβ-deposition over a 5-month chronic PPAR-
γ treatment period. We note that the divergent results could
also reflect the different markers used for immunohistochemistry
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compared to our present differentiated analysis of fibrillar and
less dense pre-fibrillar Aβ components. As such, the decreased
NAB228-positive plaque fraction in our treated AppNL−G−F mice
fits to the earlier reported decrease of the 6E10-positive area in
APPPS1 mice (Mandrekar-Colucci et al., 2012). We note that
the biochemical source of the Aβ-PET signal is still a matter
of controversy, since some studies found no impact of non-
fibrillar plaque components (Catafau et al., 2016) whereas others
postulated a significant contribution of non-fibrillar Aβ to the
Aβ-PET signal (Ikonomovic et al., 2016, 2018, 2020). Recently,
we were able to show that non-fibrillar components of Aβ

plaques indeed contribute to the net Aβ-PET signal (Biechele
et al., 2022). Therefore, increases in the [18F]florbetaben-PET
signal must be precisely differentiated and interpreted with
caution. Development of new PET tracers that selectively target
oligomeric Aβ may realize a more precise discrimination of
neurotoxic Aβ plaque manifestation (Sehlin et al., 2016; Fang
et al., 2019) and its impact on disease severity.

In line with previous pioglitazone studies (Mandrekar-Colucci
et al., 2012; Yamanaka et al., 2012), we observed a decrease
in microglial activity (Biechele et al., 2021), thus confirming
the immunomodulatory effect of the drug. Since earlier studies
have shown that fibrillary Aβ-deposits activate microglial cells
(Sebastian et al., 2020) which then migrate toward the fibrillar
deposits (Füger et al., 2017), resulting in an increased number of
activated microglial cells surrounding Aβ-plaques (Blume et al.,
2018), the inactivation and migration effects could cancel each
other out. Based on our findings in both AD models, we conclude
that, by increasing plaque fibrillarity, the immunomodulatory
effect of pioglitazone overweighs the potential triggering of
activated microglia. Modulating microglial phenotype to restore
their salutogenic effects may prove crucial in new therapeutic
trials (Lewcock et al., 2020). In several preclinical and clinical
trials, pioglitazone proved to be a promising immunomodulatory
approach for treatment of AD, especially in patients with
comorbid diabetes (Liu et al., 2015; Cao et al., 2018). However, a
large phase III trial of pioglitazone in patients with mild AD was
discontinued due to lacking efficacy (Geldmacher et al., 2011).
Our data calls for monitoring of the effects of PPARγ agonists by
Aβ-PET, which may help to stratify treatment responders based
on their individual rates of Aβ plaque accumulation. Based on
our results, we submit that personalized PPARγ agonist treatment
might be effective when the patient has capacity to successfully
shift toxic pre-fibrillar Aβ toward fibrillar parts of the plaque.

We note as a limitation that PPARγ receptor agonists
represent a rather unspecific class of drugs since PPARγ

is involved in various pathways in addition to peroxisome
activation, notably including glucose metabolism and insulin
sensitization [48]. Future studies should address if the observed
effects on Aβ plaque composition are also present for
more selective immunomodulation strategies such as NLRP3
regulators [49]. Two different water maze examinations were
performed in the present study due a switch of the laboratory.
Hence, although we calculated a similar water maze performance
index by a PCA of the main read-outs of each examination,
the obtained results and the sensitivity to detect spatial learning
deficits are not comparable between both Aβ mouse models.

CONCLUSION

In conclusion, chronic pioglitazone treatment provoked a
longitudinal Aβ-PET signal increase in transgenic and knock-
in mice due to a shift toward hypercondensed fibrillar Aβ

plaques. The increasing rate of Aβ-PET signal increase with
time was accompanied by ameliorated cognitive performance
and attenuated synaptic loss after pioglitazone treatment. It
follows that increasing Aβ-PET signal need not always indicate
a treatment failure, since it is the composition of Aβ plaques
that determines their neurotoxiticy. In summary, our preclinical
data indicate that a shift toward increasing fibrillar amyloidosis
can be beneficial for the preservation of cognitive function and
synaptic integrity.
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