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It is of potential clinical value to improve the accuracy of Alzheimer’s disease (AD)

recognition using structural MRI. We proposed a reparametrized convolutional neural

network (Re-CNN) to discriminate AD from NC by applying morphological metrics

and deep semantic features. The deep semantic features were extracted through Re-

CNN on structural MRI. Considering the high redundancy in deep semantic features,

we constrained the similarity of the features and retained the most distinguishing

features utilizing the reparametrized module. The Re-CNN model was trained in an

end-to-end manner on structural MRI from the ADNI dataset and tested on structural

MRI from the AIBL dataset. Our proposed model achieves better performance over

some existing structural MRI-based AD recognition models. The experimental results

show that morphological metrics along with the constrained deep semantic features can

relatively improve AD recognition performance. Our code is available at: https://github.

com/czp19940707/Re-CNN.

Keywords: reparametrized CNN, Alzheimer’s disease, structural MRI, multiple morphological metrics, deep

semantic features

1. INTRODUCTION

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease (Jagust, 2013) arised from
a progressive neuron and synapse loss, with the resulting brain tissue atrophy. As seen from
the pathological and clinical manifestations of AD, significant atrophy can be observed in early
disease stages in the hippocampus and entorhinal cortex (Pennanen et al., 2004). The brain
tissue atrophy may be visible on high-resolution structural MRI, and structural MRI measures
can discriminate AD from healthy control (NC). Schmitter et al. (2015) utilized the voxel-based
morphometry (VBM) to extract the hippocampus volume to discriminate AD from NC and
achieved an accuracy of 83%. Koikkalainen et al. (2011) used deformation-based morphometry
(DBM) to obtain structural MRI features and reached an accuracy of 86%. Park et al. (2012)
computed cortical thickness (CTH) and sulcus depth (SD) with surface-basedmorphometry (SBM)
and attained an accuracy of 85%. Ma et al. (2020) integrated gray matter volume (GMV), Jacobian
determinant (JDV), CTH, SD, gyrification index (GI), and fractal dimension (FD) to discriminate
mild cognitive impairment (MCI) from NC with random forest and achieved an accuracy of 80%.
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Long et al. (2018) proposed a comparative atlas-based
recognition to recognize MCI from NC, GMV, white matter
volume (WMV), and cerebrospinal fluid volume (CRFV) were
calculated and reported accuracies of 83, 92, and 89% with AAL-
90, BN-246, and AAL-1024 atlas, respectively. These studies
needed to determine the region of interest (ROI) for computing
morphological metrics, and ROIs often included voxel-level and
region-level. It is obvious that neither voxel-level nor region-
level based approaches can cover whole brain pathological
regions. Deep semantic features may play an important role in
AD recognition. Convolutional neural networks (CNNs) were
considered backbone structures. Aderghal et al. (2018) designed
deep CNNs to structural MRI using transfer learning adopted
188 AD and 228 NC subjects and achieved an accuracy of 90%.
Pan et al. (2020) proposed a novel model for structural MRI
combining CNN and ensemble learning for AD recognition,
collected 137 AD and 162 NC subjects, and reached an accuracy
of 84%. Qiu et al. (2020) proposed an interpretable deep learning
framework to structural MRI for AD recognition, chose 188 AD
subjects and 229 NC subjects, and attained an accuracy of 83%.
Lian et al. (2018) proposed a hierarchical fully convolutional
network, employed 358 AD subjects and 429 NC subjects,
and achieved an accuracy of 90%. CNN based models apply a
large number of convolutional kernels for feature extraction,
the produced features are often redundant and correlated. An
adaptive global pooling layer was used to filter the features
(He et al., 2016; Huang et al., 2017; Tan and Le, 2019), and
replaced the feature maps with their mean values to achieve
dimensionality reduction. However, after the pooling layer, the
produced feature’s dimensionality is still high. The accuracy of
structural MRI based AD recognition is hard to be improved
(both morphological based and CNN based) due to the structural
similarity between samples and limited training data. How to
filter the redundant information effectively and extract the most
distinguishing features from structural MRI scans is a challenge.

To improve the accuracy of recognition of structural
MRI in AD, we built an end-to-end deep learning model
Re-CNN on structural MRI for AD recognition. The main
innovations of this article are as follows: (1) combined
deep semantic features with morphological metrics
(derived from VBM) for AD recognition. (2) created a
reparametrized module to impose similarity constraints on
deep semantic features, retained the most distinguishing
features, reduce feature dimensionality, and improve AD
recognition performance.

2. METHOD

In this article, a reparametrized convolutional neural network
(Re-CNN) model was proposed on structural MRI to identify
AD by applying morphological metrics and deep semantic
features. The reparametrized module was designed to constrain
the similarity of deep semantic features, achieving the most
distinguishing features. The morphological metrics were derived
fromVBM (Jing et al., 2018; Zhao et al., 2021), where GMV, white

matter volume, and cerebrospinal fluid volume were computed
using CAT-12.

2.1. Data Collection
We collected data from Alzheimer’s disease neuroimaging
initiative (ADNI) and Australian imaging, biomarker & lifestyle
(AIBL) datasets for our model training and testing, respectively.
ADNI is a longitudinal multicenter study aimed to explore
clinical, imaging, genetic, and biochemical biomarkers for the
early detection and tracking of AD (Mueller et al., 2005).
AIBL is the largest study of its kind in Australia designed to
detect biomarkers, cognitive characteristics, and lifestyle factors
that affect the progression of symptomatic AD. The data from
ADNI were randomly divided into two groups for training and
validation, and AIBL data was used for multi-site testing. The
criterion for subject selection included age≥55, and T1-weighted
MRI scans. Cases were excluded including Alzheimer’s disease
with mixed dementia, non-Alzheimer’s disease dementia, severe
depression, stroke, brain tumors, and history of severe traumatic
brain injury, as well as incident major systemic illnesses. The
inclusion and exclusion criterion was referred to in the baseline
recruitment protocol developed by the ADNI study, and the same
selection criteria were applied to an other study (Qiu et al., 2020).
Finally, 415 NC samples and 351 AD samples were selected from
the ADNI dataset, and 284 NC samples and 70 samples were
selected from the AIBL dataset. The samples statistics overview
is shown in Table 1.

2.2. Structural MRI Scan Processing
All the structural MRI data in this study were in NIFTI
format. We adopted the FSL package (Woolrich et al., 2009)
for data processing, where the FSLReorient2STD toolkit was
used for redirection, BET toolkit for skull removal, and Flirt
toolkit for registration structural MRI to the MNI152 standard
brain template [181*217*181]. After structural MRI scans image
registration, we normalized the intensities of all the voxels. Then
we adjusted the intensity of these voxels and other outliers by
clipping them to the range: [-1,2.5], following the method in Qiu
et al. (2020). It is well known that Alzheimer’s disease leads to
significant structural changes in hippocampus-related regions.
Wen et al. (2020) chose the hippocampus as ROI and proved
a cubic patch [50*50*50] enclosed hippocampus region can be
used for training. In our study, we manually cropped a larger
[80*100*80] patch to make sure it includes all the hippocampus
(left and right).

TABLE 1 | Participant demographics overview of ADNI and AIBL dataset.

Dataset Group N Age Gender

AIBL AD 70 72.7±7.94[93.0,55.0] 27M/43F

NC 284 72.4±6.50[92.0,60.0] 128M/156F

ADNI AD 351 75.6±7.96[91.0,55.0] 192M/159F

NC 415 76.19±6.33[95.0,56.0] 206M/209F

Values are presented as mean±std [range]. M, male; F, female.
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FIGURE 1 | (a) Our reparametrized convolutional neural network (Re-CNN) consisted with two components, (b) CNN model, and (c) Reparametrized module.

2.3. Morphological Metrics
The adopted morphological metrics derived from ADNI and
AIBL in this study included gray matter volume, white matter
volume, and cerebrospinal fluid volume. The morphological
metrics were extracted using CAT-12. First, the structural MRI
scans were manually oriented to place the anterior commissure
aligned to the MNI template. Second, the structural MRI data
was skull stripped and corrected for bias-field inhomogeneity.
Third, the images were segmented into GM, WM, and CSF using
a unified segmentation method, and then normalized into the
MNI space with the DARTEL algorithm. Specially, an integrated
modulation step was applied to preserve volume information at
each tissue voxel. Finally, the segmented scans were smoothed
with an isotropic 4 mm full width half maximum (FWHM)
Gaussian kernel. After that, the GM,WM, and CSF volumes were
extracted from the smoothed images using hammers atlas which
are available within the CAT-12.

2.4. Re-CNN
Our Re-CNN model consists of the CNN model and
reparametrized module (as shown in Figure 1). CNN model
inputs the cropped hippocampus patches and generates
the original deep semantic features, reparametrized module
constrains the similarity of the original deep semantic features
and generates the most distinguishing features. Finally, we
concatenate the deep semantic features and the morphological

metrics together as inputs to a multi-layer perceptron classifier
for AD recognition.

The CNN model includes four convolution modules,
each module containing Conv3D, BatchNorm3D, ReLU, and
MaxPooling3D. The Conv3D is used for local feature extraction,
BatchNorm3D is used for feature normalization, and the ReLU
is used to add nonlinearity. To capture global semantic features,
we use the PadMaxPool3d layer (Wen et al., 2020) to reduce
the dimension of the input, so the pixels on the feature map
have a larger receptive field in the original patches. The CNN
model is shown in Figure 1B. After passing k = 5 convolution
modules, the output size of patches is [128,3,4,3], which means
that we have obtained 128 feature maps with the size of [3,4,3].
The corresponding size of the layer k is calculated as follows:

lk = lk−1 + [(fk − 1) ∗

i=1∏

k−1

si] (1)

Where lk−1 represents the size of the receptive field
corresponding to layer k − 1, fk represents the kernel size
of layer k, Si represents the stride. So each pixel in the feature
map can correspond to the 32*32*32 region on the original map.
A similar size was also used byWen et al. (2020), and they proved
that the size of the receptive field can effectively recognize AD
from NC.
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FIGURE 2 | The feature distribution of hidden space, 1) the feature distribution of conventional CNN, 2) the feature distribution of Re-CNN, 3) the feature distribution

histogram of the two models.

The reparametrized module was designed to obtain the most
differentiating features. First, we flatten the features (size from
[128,3,4,3] to [128*3*4*3]) and send them into two different fully
connected layers fm and fs. The outputs of fm and fs can be viewed
as mean value α and variance σ of the distribution of the features,
respectively, then the features were randomly sampled according
to α and σ . Assuming there are distributions in the hidden space,
the reparametrized process can be expressed by the following
formula:

Z = ε ∗ σ + µ (2)

Where Z represents the features after the reparametrized process,
ε represents the n values created by standard normal distribution
ε ∼ N(0, 1), SD σ can be formulated as:

σ = efs(h)/2 (3)

Where h represents initial features, fs(h) represents linear
transformation by fully connected layer fs, Mean value µ can be
formulated as:

µ = fm(h) (4)

fm(h) represents linear transformation by a fully connected layer.
According to Equation 2, it is obvious that the processed features
can be derived linearly from the normal distribution ε ∼ N(0, 1).
We can achieve dimension reduction by modifying the number
of neurons in the full connection layers fm and fs. The proposed
reparametrized module can predict features distribution instead
of obtaining features directly, our reparametrized function can
increase the diversity of the features.

2.5. Loss Function
In this study, we proposed a loss function based on cross entropy
and KL divergence. The cross entropy loss lce is used to increase
the difference in the features. The feature distribution in hidden
space became discontinuous due to the cross entropy (as shown
in Figure 2A). Therefore, KL divergence loss lkl was used to
restrict feature distribution to standard normal distribution. Our
loss function can be expressed as:

l = lce + αlkl (5)

α is an adjustable hyper-parameter representing the balance
proportionality between the two loss functions, KL divergence
loss function lets the feature distribution in hidden space become
more continuous (as shown in Figure 2B). The cross entropy loss
function lce can be formulated as:

lce =
1

N

∑

i

Li = −
1

N

∑

i

M∑

c

yiclog(pic) (6)

Where yic is set to 1 if the prediction category is equal to the label
category, otherwise is set to 0. pic is the probability that sample i
belongs to class c. KL divergence loss lkl can be formulated as:

lkl = KL(p(x), q(x)) =
∑

p(x)log
p(x)

q(x)
(7)

Where p(x) is a standard normal distribution N(0, 1), q(x) is
features distribution of hidden space. All feature distributions
in hidden space are constrained to N(0, 1) through the KL
divergence loss function. The KL divergence loss can be
simplified by µ and σ of the hidden space feature distribution:

lkl =
1

2

J∑

j=1

[(µ2
j + σ 2

j )− 1− logσ 2
j ] (8)

Where µ and σ in Equations 3 and 4 have the same
meaning, J denotes the feature dimension of hidden space and
j denotes the jth feature. Our loss function ensures that the
features’ similarity is maximized while the differential features
are retained.

2.6. Experiments
A total of 415 NC samples and 351 AD samples were selected
from ADNI dataset for the experiments, we applied 80% of
samples for model training, and 20% of samples for model
validation.We fixed random seeds tomake sure the same samples
were utilized in the training and validation of all models. We
modified the seed value to implement random cross-validation.
As for the sample imbalance of AD andNC groups in the training
set, we adopted oversampling method to give more weight to
the AD group. AIBL was used to test directly as external multi-
site data.
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Our Re-CNN was implemented using Python with the
Pytorch package, and the computer contains a single GPU
(NVIDIA RTX 3090 24GB). We adopted random initialization
weight to train Re-CNN from scratch. The Adam optimizer with
a 0.0005 learning rate and a mini-batch size of 32 was set for
training. The Re-CNN was trained for 120 epochs, which took
around 7min (i.e., 3.54 s for each epoch). The initial learning rate
was set to 0, the learning rate warm-up method was used in the
first two epochs and the rate increased according to the amount
of training data. Finally, the learning rate remained unchanged
at 0.0005 after the second epoch. Then, we adjusted the learning
rate dynamically according to the number of epochs (learning
rate shrinks 5 times per 40 epochs) to achieve better convergence.

2.7. Performance Metrics
The AD recognition performance was evaluated by four metrics,
including accuracy (ACC), sensitivity (SEN), specificity (SPE),
and area under the receiver operating characteristic curve (AUC).
These metrics are defined as ACC =

TP+TN
TP+TN+FP+FN , SE =

FIGURE 3 | Area under the receiver operating characteristic curve at different

semantic features dimension and hyperparameter α.

TP
TP+FN , SP =

TN
TN+FP , where TP, TN, FP, and FN denote, the

true positive, true negative, false positive, and false negative
values, respectively.

3. RESULTS

Our Re-CNN model can differentiate AD from NC by applying
morphological metrics and most distinguishing deep semantic
features. The experiments results were shown in (Figure 3
and Table 1). Table 1 shows the AUC of the model at
different semantic features dimension and hyperparameter α,
all the results were validated five times to reduce randomness,
and the mean and SD of AUC were illustrated. Figure 3

visualized the AUC at different semantic features dimension and
hyperparameter α. Our model achieved the optimal AUC when
the hyperparameter α is 10, and the feature dimension is 100.

When hyperparameter α is equal to 10, at different semantic
features dimension, precision, sensitivity, specificity, and AUC of
our model were shown in Figure 4.

We compared our model with conventional CNN,MLP, SVM,
random forest, and Xgboost, the descriptive information about
these five models was added in the Supplementary Materials. All
the models used the same training and validation data as our Re-
CNN, as shown in Section 2.6. All the results in Tables 2, 3 were
validated five times (random cross-validation based on different
seeds), and the mean and SD of ACC, SP, SE, and AUC of all the
models are shown in Tables 2, 3.

In addition, we compared the weights of the neurons in MLP
corresponding to deep semantic features in conventional CNN
and our Re-CNN, results showed that conventional CNN had
much more high neurons weights than our Re-CNN, as shown
in Figure 5. The left figure shows the first 100 neuron weights
corresponding to conventional CNN. The middle figure shows
the weights for Re-CNN when alpha equals 1 and the deep
semantic feature dimension equals 100. The right figure shows
the neuron weights histogram of the two models.

4. DISCUSSION

To improve the accuracy of discriminating AD from NC
by structural MRI, we built an end-to-end model Re-CNN
that integrates morphological metrics and deep semantic

FIGURE 4 | Precision, sensitivity, specificity, and AUC of our model (when α equals 10, semantic features dimension increases from 0 to 512). (A) Re-CNN. (B) CNN

model. (C) Reparametrize module.
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TABLE 2 | Area under the receiver operating characteristic curve (AUC) of our Re-CNN model at different semantic features dimension and hyperparameter α.

Features α = 0.1α = 0.1α = 0.1 α = 0.5α = 0.5α = 0.5 α = 1α = 1α = 1 α = 5α = 5α = 5 α = 10α = 10α = 10 α = 20α = 20α = 20

mf+ 0 0.8977 ± 0.020 0.8999 ± 0.015 0.9033 ± 0.015 0.8950 ± 0.012 0.9050 ± 0.016 0.9020 ± 0.020

mf+ 1 0.9121 ± 0.019 0.9135 ± 0.015 0.9122 ± 0.012 0.9129 ± 0.011 0.9140 ± 0.013 0.9128 ± 0.026

mf+ 30 0.9034 ± 0.016 0.9114 ± 0.014 0.9141 ± 0.012 0.9155 ± 0.020 0.9149 ± 0.024 0.9114 ± 0.025

mf+ 50 0.9086 ± 0.019 0.9071 ± 0.013 0.9155 ± 0.015 0.9176 ± 0.018 0.9188 ± 0.022 0.9117 ± 0.026

mf+ 70 0.9106 ± 0.014 0.9086 ± 0.014 0.9095 ± 0.019 0.9151 ± 0.022 0.9183 ± 0.025 0.9150 ± 0.024

mf+ 100 0.8991 ± 0.015 0.9075 ± 0.019 0.9094 ± 0.017 0.9154 ± 0.024 0.9198 ± 0.023 0.9175 ± 0.027

mf+ 150 0.8988 ± 0.012 0.9052 ± 0.019 0.9053 ± 0.026 0.9087 ± 0.021 0.9115 ± 0.029 0.9161 ± 0.022

mf+ 200 0.8967 ± 0.011 0.8972 ± 0.020 0.9093 ± 0.025 0.9076 ± 0.021 0.9101 ± 0.019 0.9195 ± 0.027

mf+ 250 0.8881 ± 0.012 0.9013 ± 0.020 0.9025 ± 0.021 0.9026 ± 0.025 0.9064 ± 0.034 0.9128 ± 0.015

mf+ 300 0.9021 ± 0.013 0.8981 ± 0.018 0.8949 ± 0.020 0.8985 ± 0.024 0.9067 ± 0.026 0.9075 ± 0.019

mf+ 400 0.8985 ± 0.015 0.8979 ± 0.024 0.8967 ± 0.020 0.9047 ± 0.020 0.9019 ± 0.031 0.9056 ± 0.024

mf+ 512 0.8919 ± 0.013 0.9034 ± 0.025 0.8993 ± 0.021 0.9050 ± 0.027 0.8960 ± 0.020 0.9037 ± 0.017

The mf in this table represents morphological metrics.

Bold value indicates Re-CNN achieves best AUC when α equals to 10 and semantic features dimension equals to 100.

TABLE 3 | ADNI random cross-validation, ACC, SE, SP, and AUC of all the models.

Models CNN Random Forest SVM Xgboost MLP Re-CNN

ACC 0.8201 ± 0.018 0.8398 ± 0.018 0.7954 ± 0.021 0.8549 ± 0.026 0.8062 ± 0.030 0.8508 ± 0.027

SE 0.8652 ± 0.035 0.7949 ± 0.038 0.7480 ± 0.044 0.8168 ± 0.040 0.7870 ± 0.089 0.7914 ± 0.047

SP 0.7639 ± 0.031 0.8807 ± 0.015 0.8386 ± 0.030 0.8900 ± 0.024 0.8372 ± 0.086 0.9050 ± 0.020

AUC 0.8938 ± 0.028 0.9145 ± 0.014 0.8600 ± 0.018 0.9275 ± 0.014 0.9020 ± 0.020 0.9198 ± 0.052

Bold value indicates Re-CNN achieves best SP.

features from structural MRI for AD recognition. To address
the problem of redundancy and correlation of the deep
semantic features, we designed a reparametrized module to
impose similarity constraints on features and retain the most
distinguishing features.

We constructed a new loss function by integrating cross
entropy and KL divergence loss functions. The weight coefficient
α of KL divergence is an adjustable hyper-parameter to balance
proportionality between the two loss functions. When α was set
to small values, i.e., weak similarity constraint, a large number
of redundancy features were extracted by the CNN model. The
recognition performance of our model [The AUC is about 0.90,
as shown in Figure 3 (α = 0.1)] cannot be further improved since
the weak similarity constraint. As the α increased, the redundant
features were filtered out and the most distinguishing features
were extracted through the model. It should be noted that the
performance of our Re-CNN cannot be improved consistently
with the increase of hyperparameter α, as shown in Figure 3

(α = 5, 10, 20), when the α was very large, the deep semantic
features are over-constrained, most of the deep semantic feature
distributions were restricted to the standard normal distribution,
the distinguishing ability of deep semantic features was gradually
lost. When α was set to 10, our Re-CNNmodel achieved the best
performance (AUC = 0.9198± 0.020).

In our study, the deep semantic features dimension also
affects the performance of our Re-CNN model. When the
number of deep semantic features was set to 0 or 1, there is
no deep semantic features adopted and the Re-CNN model
degenerated to MLP (The AUC is about 0.90, as shown in
Table 2, mf + 0,1). As the deep semantic features increased,
recognition performance declined when α was set to 0.1 or
0.5 (as shown in Figure 3 blue and green line) since the
small α values can not constrain a large number of deep
semantic features. However, the performance increased when α

was set to 5,10,20 (as shown in Figure 3 in brown, red, and
pink lines) since the appropriate dimension of deep semantic
features were constrained and most distinguishing features were
extracted. When the number of deep semantic features was set
to 100 and α was set to 10, our Re-CNN model achieved the
best result.

In addition, the MLP module would respond to different
features with different weights. It could be clearly seen
that many neuron weights in the Re-CNN almost converge
to 0, while the neuron weights in the conventional CNN
were more scattered (as shown in Figure 5). The reason
was that high differentiation features would correspond to
larger weights, and redundant features corresponding weights
would tend to 0. Redundant features played little role in
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FIGURE 5 | Re-CNNs’ α equals 1, semantic features dimension equals 100, neuron weights corresponding to the semantic features are shown in the left figure. The

neuron weights of the first layer of MLP. The first 100 neuron weights from CNN are shown in the middle figure. The right figure shows the neuron weights histogram of

the two models.

TABLE 4 | AIBL multi-site testing, ACC, SE, SP, and AUC of all the models.

Models CNN Random Forest SVM Xgboost MLP Re-CNN

ACC 0.8699 ± 0.016 0.8575 ± 0.005 0.8481 ± 0.005 0.8584 ± 0.016 0.8564 ± 0.008 0.8541 ± 0.008

SE 0.4744 ± 0.034 0.5833 ± 0.127 0.4857 ± 0.128 0.5976 ± 0.095 0.5380 ± 0.073 0.5074 ± 0.068

SP 0.9481 ± 0.019 0.9084 ± 0.007 0.9178 ± 0.007 0.9097 ± 0.022 0.9213 ± 0.018 0.9356 ± 0.022

AUC 0.7797 ± 0.005 0.7999 ± 0.059 0.7494 ± 0.073 0.8012 ± 0.068 0.7846 ± 0.064 0.8034 ± 0.008

Bold value indicates Re-CNN achieves best AUC.

recognition tasks, so the weights of the neurons connected
converge to 0. The conventional CNN did not impose
similarity constraints on the features, a large number of
redundant features were fed into the classifier, resulting in low
recognition accuracy.

Most of the deep learning based AD recognition models
achieved relatively high recognition accuracy on structural
MRI. It is difficult to compare the performance of various
models because different models used different data sets. On
the same structural MRI data set, we compared the recognition
performance of our Re-CNN model with conventional CNN,
our model imposed similarity constraints on features and
retained the most distinguishing features. For the ADNI random
cross-validation (as shown in Table 3), the ACC, SP, and
AUC of our Re-CNN model (under α = 10, and the
deep semantic feature dimension is 100) outperformed the
conventional CNN model. For the AIBL multi-site testing
(as shown in Table 4), the SE and AUC of our Re-CNN
model were superior to the conventional CNN model. The
results showed that deep semantic features have limitations on
improving AD recognition performance, but constrained deep
semantic features with the reparametrized module can improve
recognition performance.

We compared the Re-CNN model with SVM, random forest,
MLP, and Xgboost on morphological metrics extract from
the same structural MRI data set (as shown in Table 3,4).

Compared to SVM, our Re-CNN has better ACC, SE, SP,
and AUC in both ADNI and AIBL. These results showed
the effectiveness of our Re-CNN. Compared to MLP, Re-
CNN utilized the same classifier structure as MLP. Our model
combined deep semantic features with morphological metrics
and achieved the best ACC, SP, SE, and AUC on ADNI and
the best SP and AUC on AIBL. The results demonstrated
that recognition performance can be improved by applying
constrained deep semantic features with the same classifier
(MLP). Compared with some stronger classifiers, such as random
forest and Xgboost, our model adopted a relatively weak
classifier MLP and reached comparable results (the best SP
on ADNI and the best AUC on AIBL) with random forest
and Xgboost, which means the extracted features with Re-CNN
are effective.

5. CONCLUSION

We proposed an end-to-end neural network model Re-CNN,
applying morphological metrics and deep semantic features from
structural MRI to distinguish AD from NC. The reparametrized
module imposed similarity constraints on deep semantic features
and retained themost distinguishing features. Ourmodel worked
with relatively high recognition and generalization performance
and was superior to the conventional CNN model.
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