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Objective: Analyzing neuroimages being useful method in the field of neuroscience and
neurology and solving the incompatibilities across protocols and vendors have become
a major problem. We referred to this incompatibility as “center effects,” and in this study,
we attempted to correct such center effects of cortical feature obtained from multicenter
magnetic resonance images (MRIs).

Methods: For MRI of a total of 4,321 multicenter subjects, the harmonized w-score
was calculated by correcting biological covariates such as age, sex, years of education,
and intercranial volume (ICV) as fixed effects and center information as a random
effect. Afterward, we performed classification tasks using principal component analysis
(PCA) and linear discriminant analysis (LDA) to check whether the center effect was
successfully corrected from the harmonized w-score.

Results: First, an experiment was conducted to predict the dataset origin of a random
subject sampled from two different datasets, and it was confirmed that the prediction
accuracy of linear mixed effect (LME) model-based w-score was significantly closer to
the baseline than that of raw cortical thickness. As a second experiment, we classified
the data of the normal and patient groups of each dataset, and LME model-based
w-score, which is biological-feature-corrected values, showed higher classification
accuracy than the raw cortical thickness data. Afterward, to verify the compatibility of the
dataset used for LME model training and the dataset that is not, intraobject comparison
and w-score RMSE calculation process were performed.

Conclusion: Through comparison between the LME model-based w-score and existing
methods and several classification tasks, we showed that the LME model-based
w-score sufficiently corrects the center effects while preserving the disease effects
from the dataset. We also showed that the preserved disease effects have a match
with well-known disease atrophy patterns such as Alzheimer’s disease or Parkinson’s

Frontiers in Aging Neuroscience | www.frontiersin.org 1 June 2022 | Volume 14 | Article 869387

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.869387
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnagi.2022.869387
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.869387&domain=pdf&date_stamp=2022-06-17
https://www.frontiersin.org/articles/10.3389/fnagi.2022.869387/full
http://loop.frontiersin.org/people/933607/overview
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-869387 June 13, 2022 Time: 14:1 # 2

Kim et al. Multicenter-Image Harmonization by LME-Model

disease. Finally, through intrasubject comparison, we found that the difference between
centers decreases in the LME model-based w-score compared with the raw cortical
thickness and thus showed that our model well-harmonizes the data that are not used
for the model training.

Keywords: magnetic resonance imaging, cortical thickness, multicenter data harmonization, linear mixed effect
model, Alzheimer’s disease, Parkinson’s disease

INTRODUCTION

Analyzing neuroimages has been a useful method in the field
of neuroscience and neurology. Previous studies have shown
that magnetic resonance imaging (MRI) can be used to find
meaningful biomarkers for various clinical diseases such as
Alzheimer’s disease (AD) (Frisoni et al., 2010; Davatzikos et al.,
2011; Salvatore et al., 2015), Parkinson’s disease (PD) (Schwarz
et al., 2011; Salvatore et al., 2014), brain tumors (Arevalo-
Perez et al., 2015), and so on. Specifically, cortical thickness
has contributed to reveal clinical features and content of such
neurodegenerative diseases (Querbes et al., 2009; Gao et al., 2018;
Wannan et al., 2019). For example, predicting mild cognitive
impairment (MCI) or AD conversion through normalized
thickness in longitudinal data is a typical usage of cortical
thickness (Querbes et al., 2009). In addition, the relationship
between cortical reduction in specific brain regions and PD
disease severity at different Hoehn-Yahr (H-Y) stages is found
using cortical thickness (Gao et al., 2018). The brain cortical
thickness network analysis informs the irregular topographic
distribution of cortical thickness reduction in schizophrenia
(Wannan et al., 2019).

There are many cases of applying machine learning to the
neuroimage field (Moradi et al., 2015; Ball et al., 2016; Steele
et al., 2017). Among them, remarkable results came from studies
using cortical thickness as the learning features (Eskildsen et al.,
2014; Lavagnino et al., 2018). It is difficult to deny that one
of the most important points in a machine learning study is
the number of training data, but it can be seen that a large
number of neuroimage studies only used datasets acquired from
a single center. This is because there is no unified protocol for
acquiring T1 images across multiple centers and vendors; there
is variety of scanner types in the field, and such heterogeneity
of protocols and vendors creates incompatibilities between the
acquired images (Kruggel et al., 2010). In this article, we call
these incompatibilities across protocols and vendors “center
effect.”

Several methods have been proposed to solve the center effect
problem (Chung et al., 2017; Fortin et al., 2018; Zhao et al., 2019;
Sun et al., 2021). Among then, two of the most representatives
are combat harmonization (Johnson et al., 2007; Fortin et al.,
2018) and w-score method (Chung et al., 2017). Both methods are
based on multiple linear regression (MLR), and they are shown
to be able to compute good-quality standard scores on data in
centers with sufficient number of cognitive normal (CN) training
data. However, this method imposes the following limitations
on the problem of calculating the harmonization score when
acquiring data from a new center: (1) A lack of CN data in
a new center cannot train a harmonization model, or even if

trained, the harmonization score calculated by that model cannot
be trusted. (2) Even if the number of CN data for the new center is
sufficient, the harmonization model, including the center, should
be retrained from the beginning, or a new harmonization model
for the center should be trained separately. Therefore, as new data
are added, it is impossible for the existing harmonization model
to grow through the reinforcement process.

In this study, we introduced a harmonization technique based
on the linear mixed effect (LME) model to overcome these
limitations. The LME model has mainly been used for the
correction or analysis of time points in longitudinal studies
(Bernal-Rusiel et al., 2013a,b). In our problem setting, we
used the LME model to explore multicenter cortical thickness
measurements by setting the center information as the random
effects of the model instead of time points (Ten Kate et al., 2018;
Laansma et al., 2021). We first demonstrated the efficacy of the
proposed LME method compared with two other harmonization
methods using a total of 10 discovery datasets divided according
to various scanner types and protocols. We showed that the score
calculated by the LME method effectively compensates the center
effect across multiple datasets, preserves the disease effect, and
has the scalability of the model compared with the other two
harmonization methods.

The contributions of our harmonization model are as follows:

1. Our model can express the cortical thickness extracted
from T1-MRI as a center effect-free normalized w-score,
which represents the degree of regional cortical atrophy.

2. Our model can calculate the w-score for a subject from a
center that cannot build the cortical atrophy model on its
own due to the insufficient number of CN individuals of
the corresponding center.

3. Even when data of centers with enough CN individuals
are added, the LME model can be updated without
the whole training process similar to the framework of
online learning.

MATERIALS AND METHODS

Participants
There are total 4,321 T1-weighted MRIs in the discovery set,
including 3,641 CN subjects, 823 AD patients, and 81 PD
patients. Among them, 537 CN and 343 AD subjects are collected
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI);
75 CN and 56 AD subjects are collected from Open Access Series
of Imaging Studies (OASIS); 2,907 CN and 351 AD subjects
are collected from the Samsung Medical Center (SMC); 51 CN
and 64 AD subjects are collected from the Gacheon Medical
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Center (GMC); and 71 CN and 81 PD subjects are collected from
the Shinchon Severence Hospital. As an external validation set,
images of 10 subjects were acquired at SMC and Chaum Hospital
at similar time.

According to the field strength and manufacture of MRI
scanners, we divided the ADNI dataset into a total of 6 datasets.
By combining the remaining centers, total 10 independent
datasets were used as a discovery set in this study. The criteria for
dividing all the datasets (10 discovery set + 1 external validation
set) are described in Table 1. The descriptive statistics of each
dataset are provided at Table 2.

Image Acquisition and Preprocessing
Magnetic resonance imaging scans were performed under various
scanner conditions, including different Tesla (1.5 and 3.0 T),
manufacturers (GE Healthcare, Philips Medical Systems or
Siemens Medical Solutions), TR, TE, etc. The summaries of scan
parameters for each center are also described at Table 1 (Jack
et al., 2008; Marcus et al., 2010; Cho et al., 2016; Chung et al.,
2017, 2019; Jeong et al., 2020).

All images underwent preprocessing steps performed with the
standard FreeSurfer T1 MRI preprocessing pipeline1. For the
intensity-scale standardization, the raw image was conformed
to the common voxel size to control image resolution.
Then, nonparametric and non-uniform intensity normalization
was performed (Sled et al., 1998). A series of intensity
normalization steps were performed to improve the intensity-
based segmentation. After the intensity-scale standardization,
white matter and pial surfaces were segmented, and cortical
thickness was measured at every vertex. Finally, the mean cortical
thickness values were extracted for 68 regions of interest (ROIs)
defined by the Desikan-Kiliany atlas.

During preprocessing steps, intracranial volume (ICV) was
calculated for each subject. ICV is defined as the total brain
volume, including white matter, gray matter, cerebrospinal fluid,

1http://surfer.nmr.mgh.harvard.edu

and meninges. We used ICV as a biological covariate to measure
the individual variability, just like age, sex, and years of education.

Harmonization Procedures
For the harmonization procedures, we compared three different
methods, namely, (1) protocol-specific w-score (Chung et al.,
2017) referred as Self-W; (2) ComBat (Johnson et al., 2007);
and (3) LME model-based w-score referred as LME-W. We also
compared the absence of the harmonization procedure, which we
refer to as raw. Each harmonization techniques are described in
the following sections.

Protocol-Specific W-Score
W-score is a standardized score of disease values compared with
the distribution of normal values, using MLR (Chung et al., 2017).
The protocol-specific w-score is modeled under the assumption
that the observed cortical thickness is predictable by biological
features. However, Chung et al. (2017) assumed that the values
corresponding to each region in a subject’s brain are nonlinearly
distributed. In addition, the difference according to the imaging
protocol of each dataset is also assumed to be nonlinear, and
these nonlinear effects work equally for the same region of
patients obtained under the same protocol. In other words, the
protocol specific w-score models the following equation with
the assumption that the observed cortical thickness is linearly
biased for biological features and nonlinearly biased for dataset
(protocol) and brain regions:

yijk = αjk + Xijβjk + εijk.

whereyijk is the observed cortical thickness of k-th brain region
of i-th subject from j-th dataset, and Xij is a 1× p vector of
biological covariates of i-th subject from j-th dataset. αjk is the
average cortical thickness for k-th ROI from j-th dataset, and βjk
is p× 1 vector of the regression coefficients associated withXij for
k-th ROI. εijk is the residual term, which cannot be explained by
biological covariates, which are assumed to follow the Gaussian
distribution εijk ∼ N(0, σ 2).

TABLE 1 | Scan parameters for T1-weighted magnetic resonance imaging (MRI) of each dataset.

Dataset No. ofsubjects Center/Cohort Manufacturer Field Strength(Tesla) TRa(ms) TEb(ms) Flipangle (◦)

D1 203 ADNI GEc 1.5 3000 100 8

D2 140 ADNI GE 3 3000 97.2 8

D3 41 ADNI Philips 1.5 shortest 4 8

D4 102 ADNI Philips 3 shortest shortest 8

D5 167 ADNI Siemens 1.5 2400 3.5 8

D6 227 ADNI Siemens 3 2300 2.91 9

D7 131 OASIS Siemens 1.5 9.7 4 10

D8 3258 SMC Philips 3 9.9 4.6 8

D9 115 GMC Siemens 3 1900 2.93 8

D10 152 Severance Philips 3 9.8 4.6 8

D11 10 Chaum GE 3 9.12 3.568 12

aRepetition time.
bEcho time.
cGeneral Electric Healthcare.
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TABLE 2 | Description of the subjects of each dataset set.

Dataset Group No. ofsubjects No. ofmales (%) Agea Years ofEducationb ICVc(x105)

D1 CN 107 55 (51) 76.15 ± 4.56 15.84 ± 3.01 15.32 ± 1.54

AD 96 49 (51) 74.87 ± 7.84 14.74 ± 3.21 15.37 ± 1.85

D2 CN 92 36 (39) 72.83 ± 5.67 16.48 ± 2.67 14.32 ± 1.18

AD 48 29 (60) 74.50 ± 8.15 15.48 ± 2.91 14.60 ± 1.65

D3 CN 25 18 (72) 74.76 ± 3.57 17.24 ± 2.20 15.62 ± 1.18

AD 16 7 (44) 74.20 ± 9.20 14.63 ± 3.30 15.21 ± 1.69

D4 CN 68 29 (43) 72.99 ± 6.04 16.63 ± 2.44 14.96 ± 2.18

AD 34 16 (47) 72.54 ± 7.12 15.76 ± 2.88 15.29 ± 2.34

D5 CN 93 42 (45) 76.03 ± 5.79 15.91 ± 2.76 15.31 ± 1.73

AD 74 36 (49) 76.97 ± 7.20 14.49 ± 3.39 15.44 ± 1.78

D6 CN 152 76 (50) 73.03 ± 6.40 16.74 ± 2.50 15.01 ± 1.56

AD 75 45 (60) 75.73 ± 8.09 15.96 ± 2.58 15.43 ± 1.65

D7 CN 75 21 (28) 74.65 ± 7.92 15.28 ± 2.73 14.54 ± 1.59

AD 56 29 (52) 75.43 ± 6.55 13.71 ± 2.83 14.50 ± 1.70

D8 CN 2907 1455 (50) 64.12 ± 7.20 12.76 ± 4.33 12.48 ± 2.09

AD 351 111 (32) 71.21 ± 9.23 9.17 ± 5.59 13.87 ± 2.00

D9 CN 51 27 (53) 64.24 ± 11.30 11.80 ± 4.84 13.99 ± 1.86

AD 64 21 (33) 66.33 ± 10.09 8.96 ± 4.70 13.82 ± 1.93

D10 CN 71 28 (39) 65.89 ± 7.57 12.79 ± 4.33 12.24 ± 2.20

PD 120 59 (49) 64.70 ± 7.25 10.70 ± 5.03 13.08 ± 2.21

D11 – 10 5 (50) 72.2 ± 8.80 – 13.69 ± 1.86

aMean ± SD (range), years.
bMean ± SD (range), years.
c Intracranial volume, Mean ± SD (range), mm3.

For each dataset and ROI, we calculate an estimator β̂jk of the
parameter vector βjk using iteratively reweighted least squares
(IRLS). The normalized w-score calculation is done by dividing
the difference between real cortical thickness value and the
predicted value by standard deviation (SD) of the residuals:

wijk =
yijk − ŷijk

SD(yjk − ŷjk)
.

ComBat
The ComBat harmonization model (Johnson et al., 2007) has
similar assumptions as the protocol-specific w-score method.
However, instead of fitting MLR model per each dataset, the
ComBat harmonization model includes the dataset information
to the covariates. Furthermore, it makes the assumption that
dataset difference has multiplicative effects as well as additive
effects on the data. As a result, the ComBat model describes the
observed cortical thickness (y) of the i-th subject from j-th dataset
at each region (k) as follows:

yijk = αk + Xijβk + Zijbk + δjkεijk,

where Xij is the biological covariates of i-th subject from j-th
dataset, αk is the average cortical thickness for k-th ROI, βjk is
the coefficients associated with Xij for k-th ROI, Zij is the dataset
indicator of i-th subject from j-th dataset, bk is the coefficients
associated with Zij for k-th ROI, and εik is the residual term,
which cannot be explained by biological covariates nor center
effects, which is assumed to have mean 0. The parameter δjk

describes the multiplicative effect of the j-th dataset on k-th ROI.
For easier understanding of the notations used in Johnson et al.
(2007), we rewrote Zijbk as γjk as the authors of Fortin et al.
(2018) did. For each brain region, we estimated the parameters
γjk and δjk using Empirical Bayes, as described in Johnson et al.
(2007). The final ComBat harmonized score is defined as follows:

yComBat
ijk =

yijk − Xiĵβk − γ∗jk

δ∗jk
+ Xiĵβk.

Linear Mixed Effect Model-Based W-Score
The LME model-based w-score models the cortical thickness of a
specific subject with the linear bias of biological covariates and
the nonlinear bias of the brain region, similar to the protocol
specific w-score. However, it is different from the protocol-
specific w-score in that the model considers nonlinear bias caused
by differences in datasets. LME regards biological features as fixed
effects and dataset information as random effects and models the
relationship between them and cortical thickness as follows:

yik = αk + Xiβk + Zibk + εik.

In this study, yik is the observed cortical thickness of k-th
brain region of i-th subject, Xi is a 1× p vector of biological
covariates of i-th subject, αk is the average cortical thickness for
k-th ROI, and βk is p× 1 vector of the fixed effects coefficients
associated with Xi for k-th ROI. Zi is the dataset indicator of
i-th subject, which is the biggest point compared with the two
methods introduced above. Unlike the Self-W method, where the
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harmonization model had to be created as much as the number of
the datasets multiplied by the number of brain regions, the LME
model only needs to be trained considering the number of brain
regions. bk is the random effect coefficients associated with Zi
for k-th ROI, whic h is assumed to follow the distribution bk ∼

N(0,D), and εik is the residual term, which cannot be explained
by biological covariates nor center effects, which is assumed to
follow the Gaussian distribution εik ∼ N(0, σ 2).

From the above LME model, we may notice the difference
between the marginal and conditional mean of yik. The marginal
mean of yik is

E
(
yik
)
= Xiβk,

while the conditional mean of yik given bk is

E
(
yik
)
= Xiβk + Zibk.

The fixed-effect parameters β is assumed to be the same for all
subjects and must be interpreted in terms of population, while the
random effect parameters b results in dataset-specific regression,
which describes the mean trajectory of a specific dataset.

For each brain region, we calculated the estimator β̂ of the
parameter vector β using the closed-form solution for maximum
likelihood (ML):

β̂ =

( n∑
i=1

XY
i 6̂
−1
i Xi

)−1 n∑
i=1

XY
i 6̂
−1
i yi,

where 6̂i = ZiD̂ZT
i + σ̂2. We also calculate the estimator D̂ and σ̂

of the parameter vector b by maximizing the following restricted
ML function (ReML) (Verbeke, 1997):

lReML =
1
2

n∑
i=1

log|6−1
i | −

1
2

n∑
i=1

(
yi − X îβ

)T
6−1

i
(
yi − X îβ

)
−

1
2

log
n∑

i=1

XT
i
∣∣6−1

i
∣∣Xi,

where 6i = ZiDZT
i + σ2. There is no closed-form solution for

the ReML function; therefore, numerical iterative solvers need
to be used. We have implemented the quasi-Newton optimizer
provided in MATLAB2.

The normalized w-score calculation is carried out by dividing
the difference between real cortical thickness value and the
predicted value by standard deviation (SD) of the residuals:

wik =
yik − ŷik

SD(yk − ŷk)
.

The process is summarized in Figure 1.

Center-Effect-Free Harmonization
In our first experiment, we conducted binary classification for
dataset prediction over the discovery set before and after the
normalization process. The 68-ROI raw cortical thickness values
and the corresponding w-score calculated by the LME model

2mathworks.com

were used as input features for classification. The w-scores were
corrected for age, sex, years of education, and intercranial volume
(ICV). We assumed that biological covariates and center effects
would behave like noise in the cortical thickness. However, we
believed that there will also be effects that we have not considered,
such as atrophy due to diseases. Therefore, we conducted the
experiment using only CN subjects to minimize the impact
of the disease when testing whether the center effect can be
well calibrated.

We used all the CN subjects in each dataset when we trained
the harmonization model because the number of CN subjects
in some datasets was not enough to be used for training the
harmonization model. We thought it would be better to train
the model using all the data rather than dividing the dataset into
train-test sets in this case. In addition, we hoped that even if we
conducted the classification experiment with the harmonization
scores calculated based on as much information as possible, we
would be able to show whether the classification model proceeds
with an ideal performance of nearly 50%.

The classification was carried out using the PCA-LDA
framework, which is a well-known classification technique in
traditional machine learning field (Zhao et al., 1999; Lu et al.,
2003; Cho et al., 2012; Lee et al., 2018; Kim et al., 2019).
When there is class imbalance between any two datasets, we
undersampled the training data until both the dataset was
equal in number. To show that the optimized classifier cannot
discriminate harmonized w-scores of each dataset, the model
performance was calculated as the test accuracy of the training
set. The classification procedure including the undersampling
process was randomly repeated 30 times, and we reported the
overall mean accuracy.

Disease-Effect-Preserving
Harmonization
As the second experiment, we performed binary classification to
discriminate the cognitive normal group and the patient group.
Our goal was to show that LME-based w-scores well characterize
disease factors even after conversion in cortical thickness. We first
compared the classification accuracy of the normal-vs.-disease
group for each dataset to show that the w-score did not lose
the disease factor at the individual level. We also reported the
classification accuracy of another dataset, which we call merged
AD, where we merged all discovery set except D10, to test if that
same results were obtained for the whole normal-vs.-AD group
datasets with the center effect corrected. The classification details
are equal to that of the section 2.4.

Intrasubject Validation
For external validation, we performed an in-subject experiment.
We conducted an experiment with a total of 20 images of 10
subjects taken at similar time periods at two different centers.
One of these two centers corresponds to D8, and the other
is not included in the discovery set. The dataset contains 10
subjects, which is not enough to train the Self-W and ComBat
models, so we cannot calculate the harmonization score for
these two methods. However, in the LME model, even datasets
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FIGURE 1 | Overall pipeline of the proposed linear mixed effect model harmonization method. Abbreviations: LME, linear mixed effect; CN, cognitive normal.

that were not used for training can be inferenced to calculate
the w-score. Therefore, with the LME model trained on the
discovery set, we had to check how well the non-discovery set
image features were harmonized when converted to LME model-
based w-scores. We compared the differences in mean values of
raw cortical thickness and LME model-based w-scores between
the two centers. To adjust the variance of the two domains, we
divided the cortical thickness by the standard deviation of the
normal patient data at D8.

Scalability of Linear Mixed Effect Model
One of the advantages of using the LME model is that we can
make inferences of data with unknown random effect variable.
In other words, well-built LME model must be able to calculate
w-scores of subjects whose center lack of CN subjects and thus
is impossible to build its own w-score calculation model. To
show this, we compared the protocol-specific w-scores and LME
model-based w-score through the following procedure.

For all the subjects in the discovery set, we calculated the
LME-W of a single test dataset with all the possible combinations
of the other 9 datasets remaining. Then, we obtained the root
mean square error (RMSE) between each LME-W calculated and
the reference LME-W of the corresponding dataset. Finally, the
RMSE obtained for all combination is averaged according to the
number of datasets used when calculating the LME-W, as a result
we could be able to observe the overall trend of error over the
number of datasets used to build an LME model.

RESULTS

Center-Effect-Free Harmonization
Figure 2 shows our results of the center effect-free harmonization
experiment. For the heatmap-looking boxes (Figures 2A–D), the
color of each cell represents the mean accuracy of successfully
predicting a subject’s data origin. If the experiment is conducted
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FIGURE 2 | Visual results of binary classification using different harmonization methods. Each cell of the box represents the accuracy of center-wise classification
results carried out by (A) Raw, (B) ComBat, (C) Self-W, and (D) LME-W. Mean accuracy and standard deviation classification results of each harmonization scores
are described as bar graphs at (E).

with two datasets from which the center effect is completely
removed, the binary classification result of the well-trained
classifier will converge to 50%. Therefore, it can be interpreted
that the closer the cell of the figure is to green as a whole, the
more successfully the center effect is removed.

The bar graph (Figure 2E) shows the average classification
accuracy of each score. The classification results of raw have an
accuracy of 89.5% on average, while the classification results of
harmonized scores show dramatically low accuracy, which are
54.3%, 58.6%, and 53.6% on average for Self-W, ComBat, and
LME-W, respectively.

Disease-Effect-Preserving
Harmonization
We reported our classification results including accuracy,
sensitivity, and specificity in Table 3. Each score showed high
average accuracy of 78.7, 83.0, 81.6, and 83.3%, for raw, Self-W,
ComBat, and LME-W, respectively. In all datasets, the accuracy of
classification using LME-W is superior to that of raw (+ 1.2%p–
+ 10.3%p). Other harmonization scores also outperform raw in
accuracy, sensitivity, and specificity. Except for datasets D2, D5,
and D6, LME-W shows better classification performance than
other harmonization scores. For those datasets, Self-W was the
best for D2 and ComBat for D5 and D6. For the “AD” dataset,
which merged all datasets including Alzheimer patients, LME-W
performed better than other scores, with 82.2, 74.1, 82.1, and

76.5% for LME-W, raw, Self-W, and ComBat, respectively, in
terms of acuity.

Intrasubject Validation
Figure 3 shows that the mean LME model-based w-score of the
whole brain is not significantly different between the centers from
the same subjects (p > 0.05), while the mean cortical thickness of
the whole brain is significantly different (p < 0.005). To compare
the difference in two scales, cortical thickness was divided by the
standard deviation of the CN subjects of D8. Compared with raw,
the center-to-center difference of LME-W showed an average
decrease of 66.1% among the subjects.

Scalability of Linear Mixed Effect Model
Figure 4 shows the RMSE normalized by interquartile range
over the number of datasets. Of all datasets, only D1 shows the
minimum error when the number of datasets used is 4 and then
gradually increases after that. Other datasets show decreasing
trend, from 1.043 (no. of dataset used = 1) to 0.888 (no. of
datasets used= 9) on average (red dash line).

DISCUSSION

The LME model framework, which considers samples drawn
in a specific population as random effects and analyzes other
variables as fixed effects, has been a popular method for dealing
with longitudinal data. Using this nature of LME, we were able

Frontiers in Aging Neuroscience | www.frontiersin.org 7 June 2022 | Volume 14 | Article 869387

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-869387 June 13, 2022 Time: 14:1 # 8

Kim et al. Multicenter-Image Harmonization by LME-Model

TABLE 3 | Cognitive normal-vs.-patient prediction results before/after normalization.

Raw SELF-W ComBat LME-W

Acc. Sen. Spe. Acc. Sen. Spe. Acc. Sen. Spe. Acc. Sen. Spe.

D1 0.784 0.874 0.714 0.815 0.904 0.686 0.782 0.859 0.696 0.832 0.911 0.722

D2 0.850 0.879 0.841 0.917 0.929 0.895 0.855 0.921 0.780 0.880 0.895 0.836

D3 0.840 0.882 0.819 0.891 0.941 0.811 0.894 0.941 0.836 0.900 0.942 0.836

D4 0.760 0.850 0.690 0.863 0.920 0.767 0.862 0.923 0.782 0.863 0.922 0.783

D5 0.836 0.883 0.810 0.849 0.899 0.769 0.859 0.894 0.814 0.848 0.885 0.770

D6 0.807 0.888 0.746 0.839 0.890 0.758 0.886 0.926 0.816 0.847 0.895 0.769

D7 0.621 0.672 0.570 0.670 0.669 0.641 0.668 0.664 0.586 0.679 0.659 0.61

D8 0.827 0.907 0.747 0.850 0.926 0.745 0.793 0.936 0.660 0.863 0.942 0.755

D9 0.830 0.940 0.739 0.874 0.976 0.742 0.867 0.915 0.770 0.879 0.987 0.741

D10 0.716 0.753 0.689 0.769 0.754 0.754 0.736 0.748 0.727 0.777 0.804 0.77

AD 0.741 0.799 0.703 0.821 0.904 0.710 0.765 0.890 0.641 0.822 0.896 0.718

The bolded values show the highest performance in the corresponding dataset.

FIGURE 3 | Intrasubject comparison of Raw and LME-W. (A) Spaghetti diagram showing mean cortical thickness of each dataset divided by standard deviation of
cognitive normal subjects of D8. (B) Spaghetti diagram showing mean the LME-based W-score of each dataset. (C) Spaghetti diagram showing the difference
between two centers of before and after the harmonization. Abbreviations: NS, not significant.

to find the way to approaching center effects, a problem which
is prominent in neuroimaging field. Among the existing studies
that applied MLR to solve such incompatibility problem across
multiple centers, few studies consider the center of sampling
data as a random effect. The LME model showed efficacy in
solving this problem.

As the first experiment, we applied the LME model and the
existing well-known methods to calculate the harmonization
score for 10 datasets to see how well each method corrects the
center effect. Binary classification using PCA-LDA framework
was performed to check whether machine learning algorithms
can distinguish each other’s centers in four cases, namely, raw
cortical thickness, protocol-specific w-score, ComBat score, and
LME model-based w-score. In this study, the protocol-specific
w-scores are obtained based on the CN of each dataset. Since
the Self-W of each dataset is calculated without being affected by

other datasets, the average score of CN in each dataset becomes
zero. Therefore, in this study, we assumed that the center effect
is sufficiently corrected from Self-W, and it may play a role as
a gold standard.

The ComBat harmonization score corrects the center effect
well compared with the raw cortical thickness, but the LME
model-based w-score and protocol-specific w-score show much
lower overall binary classification accuracy. Since the protocol-
specific w-score was calculated using the CN of each dataset as
a reference, in theory, it plays a role of the gold standard in this
study. Compared with the protocol-specific w-score, the average
accuracy of the LME model-based w-score is slightly close to the
baseline accuracy 50%. Even taking into account that the standard
deviation of LME model-based w-score is slightly larger than that
of the protocol-specific w-score, it can be interpreted that the
LME model sufficiently corrects the center effect.
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FIGURE 4 | Each line plot represents the root mean square error (RMSE) between the Self-W and LME-W of the datasets. In the experiment, all LME models that
were used to calculate the LME-W of a dataset were trained without the corresponding dataset. The red dot line represents the fitted linear plot of average RMSE
over all datasets.

FIGURE 5 | Visualization of mean LME-W over each patient with neurodegenerative disease. Since the w-score represents the atrophy of each region, LME-W
identifies the entorhinal cortex, fusiform gyrus, temporal lobe, and inferior parietal lobe as the Alzheimer’s dementia risk area (A). Similarly, fusiform gyrus, precuneus,
supramarginal gyrus, and temporal lobe are identified as the Parkinson’s disease risk area (B).

As the second experiment, we conducted binary classification
of normal and patient groups to show that the LME model-
based w-score is a score that shows the disease effect of
individual patients while compensating the center effect.
Of all the classification results, the D7 dataset has poor
classification accuracy (62.1%–67.9%). The patients with
Alzheimer’s disease at the OASIS center (corresponding
to the D7 dataset) were 45 patients with clinical dementia
rating (CDR) of 0.5 and 12 patients with CDR of 1. Since
the AD progression across the dataset has been minor, it
would have been difficult to perform the task of classification
between CN and patients. However, the remaining datasets
showed high classification accuracy regardless of the
harmonization procedure, and the average accuracy for
each score, excluding the result of D7, corresponds to 80.6,
85.2, 83.7, and 85.4%, for raw, Self-W, ComBat, and LME-W,
respectively. From this, we found that the LME model-based

w-score preserves the disease effect while compensating for the
center effect.

An interesting result of the classification between normal
and patient groups is that the overall classification accuracies of
harmonization scores are higher than that of raw. For this result,
we believed that the w-score is a more suitable input for this
kind of classification task, compared with raw, which remains
biased to the biological covariates. Also, the results for the merged
AD dataset are interesting. In the case of raw, the accuracy
of the merged AD dataset (74.1%) was lower than the average
accuracy of each dataset, whereas LME-W (82.2%) and other
harmonization scores (84.1% for Self-W and 83.0% for ComBat)
did not. This shows that merging the data without removing
center effect lowers the overall classification and at the same time
suggests the possibility that LME-W can be used for large-scale
experiments by merging the data, which might be more attractive
in future big-data analysis.
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Furthermore, a notable part of the results of this experiment
is that the difference in classification accuracy between raw and
other harmonic scores varies depending on the dataset. For
example, in the case of D3, D4, and Merged AD, the results
of raw and LME-W showed high differences of 6.0%p, 10.3%p,
and 8.1%p, respectively, while D5 and D8 showed relatively
low differences of only 1.2%p and 3.6%p, respectively. We have
not prepared a clear explanation for these differences, and we
suspect that the distribution of biological covariates that play an
important role in AD pathology, such as Mini-Mental State Exam
(MMSE) scores and APOE genetic information, varies different
from dataset to dataset.

Furthermore, we modeled the average of LME-W for each
neurodegenerative disease on the brain surface mesh to conduct
qualitative observations of the atrophy pattern according to the
disease. The entorhinal cortex (Marzi et al., 2018; Grubman
et al., 2019), fusiform gyrus (Chang et al., 2016), temporal lobe
(Miller et al., 2013; Wolk et al., 2017), and inferior parietal
(Greene et al., 2010), which are areas of frequent atrophy in the
brains of Alzheimer’s patients, were identified in Figures 5A,B
shows fusiform gyrus (Watanabe et al., 2013; Tard et al., 2015),
precuneus (Thibes et al., 2017; Jia et al., 2019), supramarginal
(Watanabe et al., 2013), and temporal lobe (Tard et al., 2015),
which are frequently atrophy areas in the brain of Parkinson
patients. Through the above two cases, it could be seen that the
atrophy pattern according to the neurodegenerative disease is
well represented by the expression of LME-W.

In addition, through intrasubject experiments, we tried to
check whether our harmonization process works well for data,
which were not used for the LME model training. When
analyzing the MRI of 10 subjects obtained from two different
centers, the mean cortical thickness showed a significant
difference between centers. However, there was no significant
difference when LME model-based w-scores were calculated for
the same data. We visualized the difference between the centers
before and after harmonization for each individual with spaghetti
diagram, and it showed that the difference was reduced except
for one subject.

Finally, we used the LME model trained by the whole
discovery set as a reference and conducted an experiment to
check the scalability of the LME model by measuring the error
between the reference and the estimated LME-W of the center
not used when training the LME model. We have obtained the
result that the w-score gets closer to the reference as the number
of centers used when learning the LME model increases. As a
conclusion together with the previous intrasubject comparison
experiment, it can be seen that our LME model can successfully
reconcile data not used for training, and that the reconciliation
performance improves as the number of datasets used when
training the LME model increases.

This fact seems to be very important in future multicohort
studies. In many real-world situations, when the number of CN
in a certain center is insufficient, the existing methodology will
not be able to predict from which distribution the data in the
center is sampled. If the proposed LME model is well-trained, this
problem can be solved by estimating data distribution through
coefficients corresponding to random effects. In addition, from

the results obtained above, it could be inferred that if the
proposed LME model can calculate the w-score close to the
reference for such a center.

There are several limitations to our study, one of which
is that we have identified only the presence of harmonization
in cortical thickness among the many biomarkers available in
neuroimage. In the future, we would like to try harmonization
if we obtain datasets for other biomarkers with center effects.
Another limitation is that our dataset is heavily skewed to AD
among various neurodegenerative descriptions. Although there
were also dataset containing patients with PD (D10), the number
was too small, and in the future, we would like to conduct
experiments with data on various neurodegenerative diseases
which comes with cortical atrophies. Finally, the harmonization
method using LME can be biased by the imbalance variable
between datasets. These biases may be included in random effects
removed through LME along with center effects. Therefore, in
this study, we cannot say that we have removed only the center
effects, and in the future, we will be able to design a more detailed
experiment on this problem.
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