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Parkinson’s disease (PD) is one of the most common neurodegenerative

diseases in which neuroinflammation plays pivotal roles. An important

mechanism of neuroinflammation is the NLRP3 inflammasome activation that

has been implicated in PD pathogenesis. In this perspective, we will discuss the

relationship of some key PD-associated proteins including α-synuclein and

Parkin and their contribution to inflammasome activation. We will also review

promising inhibitors of NLRP3 inflammasome pathway that have potential

as novel PD therapeutics. Finally, we will provide a summary of current and

potential in vitro and in vivo models that are available for therapeutic discovery

and development.
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Introduction

Parkinson’s disease (PD) is the second-most common neurodegenerative disease,
predominantly affecting the elderly. Its prevalence has increased more than 20% over
the past 30 years (Ou et al., 2021). PD was first described by James Parkinson in
1817 and the neuropathological hallmark of PD includes substantial dopaminergic
neuronal loss in the substantia nigra, leading to reduced dopamine level in the striatum
(Lotharius and Brundin, 2002). Another key feature in the substantia nigra of PD
patients is the presence of Lewy bodies in the neurons (Lotharius and Brundin, 2002).
Clinical diagnosis depends on both motor symptoms such as resting tremor, rigidity,
bradykinesia/akinesia and postural instability, and non-motor symptoms including
orthostatic hypotension, constipation, urinary dysfunction, mood and sleep disorders,
and cognitive impairment (Schrag et al., 2015; Williams-Gray and Worth, 2016). The
pathogenesis of PD contributed by both environmental and genetic factors is rather
complex and not fully understood (Kouli et al., 2018).
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The limited treatment options also add to its socioeconomic
impact. The use of dopamine precursor levodopa can be
traced back to 1960 and it is still serving as a gold standard
for PD treatment today, often combined with a peripheral
decarboxylase inhibitor such as carbidopa (Fahn et al., 2004).
Other pharmacological agents include dopamine agonists such
as ropinirole and pramipexole, and monoamine oxidase B
inhibitors such as selegiline, which are more commonly used for
patients with milder symptoms (Armstrong and Okun, 2020).
By modulating dopamine levels or its receptor activity, these
agents improve motor symptoms for the early-stage PD patients.
However, they are associated with significant side effects
and do not help with alleviating non-motor symptoms. For
instance, levodopa treatment’s side effects include orthostatic
hypotension, gastrointestinal symptoms and hallucination as
well as motor fluctuation and dyskinesia (Armstrong and Okun,
2020). Other approaches, including deep brain stimulation, can
help medication-resistant symptoms to some extent, but also
come with many side effects (Groiss et al., 2009; Kalia et al.,
2013). Importantly, to date, no therapies are able to prevent
or delay the disease progression. Thus, there is an enormous
need to have a deeper understanding of PD pathogenesis and
develop novel therapeutic approaches to improve the lives of PD
patients.

Among the various novel approaches to manage PD,
immunomodulation has gained much popularity recently. This
approach is conceived based on the heavy involvement of
the immune system in the pathogenesis and progression of
PD. Neuroinflammation is one of the immune processes
of paramount importance in PD (Wang et al., 2015).
Reactive microglia increased significantly in the substantia
nigra region of PD patients upon post-mortem examinations
(McGeer et al., 1988; Roca et al., 2011). Moreover, enhanced
microglial activation was also observed in various PD animal
models, including α-synuclein overexpression models, as
well as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),
6-hydroxydopamine (6-OHDA) and rotenone neurotoxin-
induced mice, rats and monkeys (Roca et al., 2011). The
activated microglia led to elevated pro-inflammatory cytokines
production in the midbrain region, including interleukin-1β

(IL-1β), IL-6, IL-12, tumor necrosis factor-α (TNF-α), and
other stress-inducing molecules such as reactive oxygen species
(ROS) and nitric oxide (Sawada et al., 2006). Though microglial
activation does have essential housekeeping roles such as
removing neuronal cell debris, the chronic overactivation of
microglia can cause overproduction of the pro-inflammatory
cytokines and dopaminergic neuron degeneration (Ferrari
et al., 2006; McCoy et al., 2006). This process is also self-
amplifying as the ATP, α-synuclein, and metalloproteinase-3
(MMP-3) released from degenerated neurons further activate
microglia, amplify neuroinflammation, and accelerate the
neurodegeneration process (Hammond et al., 2019; Kelly et al.,
2020). Besides central nervous system (CNS) inflammation,

peripheral inflammation is also believed to play a pivotal
role in PD. Peripheral pro-inflammatory stimuli can be
transported to the brain, activate the primed microglia, prompt
neuroinflammation, and exacerbate disease progression (Ferrari
and Tarelli, 2011; Tan E.-K. et al., 2020; Tan J. S. Y. et al., 2020).
CD4+ T lymphocytes and inflammatory cytokines including IL-
1β, IL-6, IFN- γ, and TNF- α were found to be upregulated in
the serum of PD patients as well (Brodacki et al., 2008; Harms
et al., 2013).

One key component of neuroinflammation is
inflammasome activation. The inflammasome pathways
consist of sensor proteins, such as NOD-like receptors NLRP1,
NLRP3, NLRC4, and AIM2-like receptors AIM2, IFI16, that
recognize exogenous microbe-derived stimuli or endogenous
molecular stress stimuli (Zheng et al., 2020). Once activated,
these sensors will induce the activation of the intracellular
adapter apoptosis-associated speck-like protein containing a
CARD (ASC) which also contains a PRYIN domain (PYD). The
ASC monomers then aggregate and form speck-like polymers
that activate caspase-1. Activated caspase-1 induces pyroptotic
cell death and promotes the release of inflammatory cytokine
IL-1β that is capable of further amplifying inflammation (Dick
et al., 2016; Zheng et al., 2020). Out of all the discovered
inflammasome pathways, NLRP3 is the most well-studied.
NLRP3 contains a PRYIN domain (PYD), a nucleotide binding
and oligomerization domain (NACHT), an N-terminal caspase
activation and recruitment domain (CARD), and a C-terminal
leucine-rich repeats (LRRs) (Proell et al., 2008; Howe et al.,
2013). The NLRP3 inflammasome pathway is heavily involved
in many acute infections and chronic inflammatory diseases
including PD. Due to the importance of NLRP3 in the PD
pathogenesis and it being a fairly recent discovery, this
work aims to explore the involvement of NLRP3 in PD and
summarize some of the therapeutic agents targeting NLRP3.
We will also evaluate the current and potential in vitro and
in vivo PD models for studying pathogenesis and developing
new therapeutics.

Inflammasome activation in
Parkinson’s disease pathogenesis

Inflammation activation in PD has been reported in
PD patients as well as multiple in vitro and in vivo
PD models. Clinical evidence obtained, via post-mortem
examinations of PD patients’ brains, also showed increased
NLRP3 inflammasome expression and activation at the
substantia nigra where dopaminergic neuronal loss has occurred
(Gordon et al., 2018; von Herrmann et al., 2018; Anderson
et al., 2021). Interestingly, multiple NLRP3 inflammasome-
related proteins, including NLRP3, ASC, caspase-1, and IL-
1β, as well as α-synuclein proteins were detected in PD
patient’s serum or plasma (Lin et al., 2017; Fan et al., 2020;
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Anderson et al., 2021). These circulating inflammasome-
related proteins might be just a reflection of intracranial
neuroinflammation or potentially a sign of a more complex
cross-talk between peripheral and central inflammation. A link
between NLRP3 inflammasome activation in microglia and the
progression of both dopaminergic neurodegeneration and α-
synuclein accumulation has been established in different PD
mouse models. In 6-OHDA-induced PD mouse models, NLRP3
inflammasome was involved in dopaminergic neuronal loss
and motor symptoms (Gordon et al., 2018). In MPTP mouse
model, NLRP3 inflammasome activation in microglia was also
shown to play a key role in pathogenesis of PD (Lee et al.,
2019).

The key known molecular mechanism of NLRP3 activation
in PD involves α-synuclein. α-synuclein aggregates or fibrils
trigger a delayed but robust activation of NLRP3 inflammasome
in mouse primary microglia, resulting in IL-1β secretion
and ASC release without proptosis (Gordon et al., 2018).
Similarly, α-synuclein fibrils can activate NLRP3 in human
primary microglia (Pike et al., 2021). In human induced
pluripotent stem cell (hiPSC)- derived microglia (hiMG), dual
stimulation of Toll-like receptor 2 (TLR2) engagement and
mitochondrial damage is implicated in the NLRP3 activation
(Trudler et al., 2021). In addition, priming via TLR2 and
activation via phagocytosis followed by ROS production and
cytosolic cathepsin B release are demonstrated in human
peripheral monocytes (Codolo et al., 2013). Although microglial
endocytosis of and subsequent lysosomal cathepsin B release of
α-synuclein is shown in BV2 cells, a murine microglial cell line,
the role of TLRs, ROS and lysosome destabilization in NLRP3
activation in primary microglia is yet to be validated (Zhou et al.,
2016).

Several links between several PD-associated genes and
inflammasomes have also been reported. Although most PD
cases are idiopathic, about 5–10% of them are hereditary and
are attributed to autosomal recessive (such as parkin/PARK2
and PINK1/PARK6) or autosomal dominant (such as LRRK2,
SNCA, VPS35) mutations (Deng et al., 2018). Both Parkin and
PINK1 seem to be negative regulators of NLRP3 inflammasome
(Mouton-Liger et al., 2018). Loss of function mutation of
Parkin leads to exacerbation of NLRP3 activation in blood-
derived macrophages via induction of A20 (Mouton-Liger
et al., 2018). More recently, this E3 ubiquitin ligase Parkin
is shown to negatively regulate NLRP3 in dopamine neurons
via ubiquitinating NLRP3 for proteasomal degradation and
reducing mitochondrial-derived ROS production (Panicker
et al., 2022).

Importantly, loss of Parkin activity observed in the
context of both hereditary and sporadic PD models leads to
neuronal NLRP3 assembly and cell death, while inhibition
of NLRP3 inflammasome in neurons alleviates dopamine
neuron degeneration. This suggests neuronal NLRP3 activation,

independent of microglia, contributes to pathogenesis of PD.
On the other hand, the kinase activity of LRRK2 is required for
activation of NLRC4 inflammasome instead of NLRP3, through
directly interacting with NLRC4 (Denes et al., 2015). Although
NLRC4 has not shown to be involved in PD pathogenesis, it has
been implicated in neuroinflammation in the context of acute
brain injury (Denes et al., 2015). It is yet to find out how LRRK2
mutations affect NLRC4 activation and if modulation of NLRC4
contribute to the LRRK2-driven PD.

As new evidence evolves to understand the pathogenesis
of PD, the gut-brain axis, a bidirectional network of signaling
pathways which consists of multiple connections has gained
increased interest. Enteric bacteria have been reported to
modulate inflammatory pathways via NLRP3 signaling and
ultimately influence brain homeostasis (Rutsch et al., 2020).
A significant change in the composition of gut microbiota
can in turn mitigate an inflammatory cascade via the gut-
brain axis. This include alterations in compositions in several
bacterial families such as Prevotellaceae, Verrucomicrobiaceae,
Bradyrhizobiaceae, and Lactobacillaceae (Scheperjans et al.,
2015). PD specific intestinal flora was observed to be starved
off butyrate producing bacteria such as Lachnospiraceae that
has anti-inflammatory properties (Keshavarzian et al., 2015).
During dysbiosis, gut microbiota metabolites and products,
such as tryptophan (Rothhammer et al., 2018). SCFAs, vitamins
or neurotransmitters, may translocate into the bloodstream
and subsequently to the brain with altered permeability of the
blood-brain barrier (BBB) and activate CNS inflammatory cells
including microglia (Luczynski et al., 2016; Pellegrini et al.,
2020). These products can also activate peripheral immune
cells which release cytokines or migrate to the CNS and affect
brain physiology (Shi et al., 2017; Pellegrini et al., 2020).
The NLRP3 inflammasome plays a key role in this gut-brain
communication as it is a sentinel sensor of the enteric bacteria.
Recent study showed that NLRP3 gene deficiency in mice altered
the gut microbiota composition and affected both mood-related
behaviors and locomotor activities, whether this is also true in
Parkinson’s disease has yet to be studied (Zhang Y. et al., 2019).
Exposure to environmental toxins such as herbicides/pesticides,
MPTP, and heavy metals like manganese was also associated
with Parkinsonism (Ballard et al., 1985; Gorell et al., 1997,
1998). A few of these agents, including rotenone and MPTP,
are now commonly used to induce PD in established animal
models.

These evidences suggest that the NLRP3 inflammasome-
driven neuroinflammation plays a critical role in the
pathogenesis of neuroinflammation in PD. Therefore,
microglial and neuronal NLRP3 inflammasome is a promising
target for PD drug development with great potential. Figure 1
summarizes the molecular mechanisms of α-synuclein-
mediated NLRP3 inflammasome activation in PD as well as the
potential drug targets.
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FIGURE 1

The strategies for inhibition of NLRP3 inflammasome activation in Parkinson’s disease (PD). The activation of NLRP3 inflammasome in microglia
can be divided into the priming stage and activation stage. Various inflammatory cytokines and damage-associated or pathogen-associated
molecular patterns, including fibrillar α-synuclein, can activate the NF-κB pathway to upregulate the expression of NLRP3 sensor protein,
pro-IL-1β, and pro-IL-18. The inactive NLRP3 proteins then oligomerize upon activation by the various stimuli including potassium ion efflux,
mitochondrial dysfunction, and related reactive oxygen species (ROS) release. These signals might be generated by, but not limited to, the
phagocytosis of fibrillar α-synuclein. The activated NLRP3 proteins then trigger an assembly of apoptosis-associated speck-like protein
containing a CARD (ASC), which subsequently activate pro-caspase 1. Activated caspase 1 facilitates the maturation of pro-cytokines, leading to
pro-inflammatory cytokine release. The released cytokines as well as fibrillar α-synuclein directly exocytosed by the microglia promotes
neuronal death, leading to the release of more fibrillar α-synuclein, thus amplifying microglial activation and neuroinflammation. Potential target
sites of NLRP3 activation in microglia include: À targeting the NF-κB priming pathway to prevent the upregulation of NLRP3 and cytokines,
however, this might be highly non-specific; Á directly targeting the inflammasome components and preventing its activation; Â targeting the
downstream inflammasome effectors. The specific NLRP3 inhibitors mentioned in this work are indicated in red. **Anakinra and rilonacept
indirectly inhibit IL-1β by binding to IL-1 receptors and serving as a decoy receptor for IL-1β, respectively.

Anti-inflammasome as a novel
therapeutic approach for
Parkinson’s disease

Since the NLRP3 inflammasome pathway plays a pivotal
role in PD pathogenesis, targeting NLRP3 can be a viable
approach to develop novel therapeutics to slow down the disease
progression. Table 1 summarizes the inhibitors targeting NLRP3
inflammasome that have been investigated in pre-clinical or
clinical studies, especially in the context of PD and other
CNS diseases. Figure 1 indicates the mechanisms of action for
the NLRP3 inhibitors discussed in this section. These NLRP3

inhibitors with an effect in CNS diseases indicate their ability to
cross blood-brain barrier (BBB) and hence are promising drug
candidates for PD.

Direct NLRP3 inhibitors

MCC950 is a NLRP3-specific small molecular inhibitor
that directly interacts the ATP-hydrolysis motif within NACHT
domain, blocks its ATPase activity and locks NLRP3 in an
inactive conformation (Coll et al., 2015, 2019). It is the
most widely used tool for NLRP3 inhibition in research and
has been tested in a wide range of NLRP3-driven disease
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TABLE 1 Direct NLRP3 inhibitors as potential Parkinson’s disease (PD) therapeutics at pre-clinical stages.

Target
category

Inflammasome
component

Direct NLRP3
inhibitors

Mechanism of inhibition Current CNS models

Sensor NLRP3 MCC950 Blocks ATPase activity
Locks NLRP3 in inactive state (Coll et al.,
2015, 2019)

MPTP-induced mice (Huang et al., 2021)
α-synuclein PFF–injected mice (Gordon
et al., 2018)
MitoPark mice (Gordon et al., 2018)
6-OHDA-lesioned mice (Gordon et al.,
2018)

CY-09 Blocks ATPase activity
Binds NACHT region of NLRP3 (Jiang W.
et al., 2017)

Stroke mice (Sun et al., 2020)

Bay 11-7082 Blocks ATPase activity (Juliana et al.,
2010)
Unknown binding site

Spinal cord injury mice (Jiang W. et al.,
2017)

OLT1177 Blocks ATPase activity (Marchetti et al.,
2018)
Unknown binding site

Alzheimer’s disease mice (Lonnemann
et al., 2020)
Experimental autoimmune
encephalomyelitis (Sanchez-Fernandez
et al., 2019)

Oridonin Attenuates NLRP3-NEK7 interaction
Binds Cys279 (NACHT domain) (He
et al., 2018)

Traumatic brain injury mice (Zhao et al.,
2022)

RRx-001 Attenuates NLRP3-NEK7 interaction
Binds Cys409 (NACHT domain) (Chen Y.
et al., 2021)

Experimental autoimmune
encephalomyelitis mice (Chen Y. et al.,
2021)

JC-171 Attenuates NLRP3-ASC (Guo et al., 2017) Experimental autoimmune
encephalomyelitis (Guo et al., 2017)

Effectors Caspase-1 VX-765 Reduce caspase-1-induced α-synuclein
aggregation (Wang et al., 2016)

Multiple system atrophy (MSA) mice
(Bassil et al., 2016)
Alzheimer mice (Flores et al., 2020)

Gasdermin D Dimethyl fumarate Succinates C191
Blocks GSDMD oligomerization (Yadav
et al., 2021)

Experimental autoimmune
encephalomyelitis mice (Yadav et al., 2021)

models including in vitro and in vivo PD models. The
in vitro IC50 of MCC950 is 7.5 nM in mice bone marrow
derived macrophages and 8.1 nM in human monocyte derived
macrophages (Coll et al., 2015). The small molecule is able to
penetrate the blood-brain barrier and achieve a concentration
higher than the IC50 in the CNS (Gordon et al., 2018).
Upon administration, MCC950 inhibited fibrillar α-synuclein-
induced NLRP3 activation and reduced dopaminergic neuron
degeneration, aggregation of α-synuclein, and the motor
symptoms experienced by the PD mice (Gordon et al., 2018). In
addition, MCC950 derivative, ZYIL1 is currently under phase
I safety trial and also under clinical investigation in Cryopyrin
Associated Periodic Syndrome patients (clinical trial identifiers:
NCT04972188 and NCT05186051).

Though MCC950 seems to be a promising candidate for
further development, its phase II clinical trial for rheumatoid
arthritis was discontinued due to its hepatotoxicity (Mangan
et al., 2018). Besides MCC950, several NLRP3 specific
inhibitors have been investigated in CNS disease model through
interfering NLRP3 domain and binding sites. This suggests
that NLRP3 inhibitors are capable of crossing blood-brain

barrier and exerts its inflammasome inhibition activity in
neurodegeneration context. For example, CY-09 appears to
inhibit ATPase activity and binds to Walker A site in NACHT
domain of NLRP3 and is shown to reduce neuroinflammation
in cerebral ischemic stroke model (Jiang H. et al., 2017;
Sun et al., 2020). Additionally, several compounds that show
ATPase blocking activity with unidentified binding sites was
investigated and proven to be effective in CNS diseases. Some
of the inhibitors include Bay-11-7082 (spinal cord injury)
(Juliana et al., 2010; Jiang H. et al., 2017) and OLT1177 (AD,
EAE) (Marchetti et al., 2018; Sanchez-Fernandez et al., 2019;
Lonnemann et al., 2020). Besides direct NLRP3 inhibition,
compounds that modifies key domain and affects protein-
protein interaction of NLRP3 were also identified in neuronal
diseases. This is demonstrated through Oridonin (TBI) (He
et al., 2018; Zhao et al., 2022) and RRx-001 (EAE) (Chen Y. et al.,
2021), in which both disrupts NLRP3-NEK7 interaction while
JC-171 (EAE) attenuates NLRP3-ASC interaction (Guo et al.,
2017). The disruption of JC-171 on NLRP3-ASC interaction
was shown in reduced ASC level pulldown by NLRP3 with co-
immunoprecipitation assay (Guo et al., 2017). Though Oridonin
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and RRx-001 share similar mechanism in blocking NLRP3-
NEK7, they covalently modify C279 and C409 in the NACHT
domain in NLRP3, respectively (Chen Y. et al., 2021).

ASC is an adaptor that acts downstream of NLRP3 and
activate Caspase-1. However, little is known about the regulation
of ASC oligomerization and currently no inhibitor is discovered.

Inhibitors targeting downstream
effectors and cytokines

After NLRP3 oligomers are formed upon external
stimulation, it allows recruitment of adaptor protein ASC
which subsequently promote downstream Caspase-1 activation
and cleavage of Gasdermin D effectors, both of which
are critical steps in proinflammatory components release
from the cells. Thus, targeting downstream effectors of the
NLRP3 inflammasome is an important strategy in controlling
inflammation in PD.

Caspase-1
Besides facilitate IL-1β maturation and Gasdermin

D cleavage, Caspase-1 also directly truncates α-synuclein
molecules to a pro-aggregation state (Wang et al., 2016).
Subsequent aggregation of α-synuclein lead to neuronal death
and neuroinflammation. The use of a promising Caspase-1
inhibitor VX-765 was shown to reduce α-synuclein aggregation
in transgenic mice multiple system atrophy (MSA) model and
reduce neuroinflammation in Alzheimer mice model (Bassil
et al., 2016; Flores et al., 2020). Despite the lack of in vivo study
using VX-765 on PD animal models, in vitro experiments in
PD neuronal cell lines reported satisfactory neuroprotection
(Wang et al., 2016). Intraperitoneal injection of VX-765 also
reduced neuroinflammation in mice model of spinal cord
injury, proving its ability to cross the BBB (Chen J. et al.,
2021). VX-765 is currently undergoing clinical investigation in
epilepsy (clinical trial identifier: NCT01048255) and psoriasis
(clinical trial identifier: NCT00205465) without any reports of
toxicity yet. However, targeting caspase-1 is even less specific
than targeting ASC as it is the universal effector of multiple
inflammasomes.

Gasdermin D
Gasdermin D (GSDMD) is a key effector in NLRP3

inflammasome pathway which control pyroptosis and
proinflammatory components release from the cells including
IL-1β and IL18. Given that GSDMD modulates the release
of IL-1β downstream of inflammasome activation, it is
served as a pharmacological target to block cell lysis and
proinflammatory contents and implicated in CNS disease. For
instance, Dimethyl fumarate (DMF) succinates C191, block
GSDMD oligomerization in autoimmune encephalitis (Yadav
et al., 2021). However, GSDMD inhibitors targeting PD might

be limited since DMF is suggested to affect infiltration of
macrophages in the CNS rather than neurons (Yadav et al.,
2021).

Interleukin-1β

Interleukin-1β is the pro-inflammatory cytokines released
upon inflammasome activation and thus it can be a primary
target in NLRP3 related pathology. There are three proteins
approved for use in targeting IL-1β and the IL-1 receptors:
Anakinra, Canakinumab, and rilonacept. Anakinra competes in
binding to the IL-1 receptor, Canakinumab is a neutralizing
antibody to IL-1β and rilonacept is a soluble decoy receptor that
could bind both IL-1a and IL-1β, sequestering circulating IL-1
(Murray et al., 2015; Mangan et al., 2018). Nevertheless, the IL-
1β inhibitors remains a limited options for PD treatment due to
the poor penetrating ability at the blood-brain barrier (Murray
et al., 2015; Mangan et al., 2018).

Indirect inhibitors of NLRP3

Apart from direct NLRP3 inhibition, several other
compounds are shown to regulate NLRP3 indirectly via
modulating its transcription, inflammasome priming, protein
expression or post-translational modifications. Therefore,
these compounds suppress NLRP3 activity and IL-1β release
independently of their direct effect on any components in the
NLRP3 inflammasome.

For example, a natural flavanol, Kaempferol degrades
NLRP3 through autophagy and ubiquitin related proteolysis
which protects dopaminergic neuron loss in PD mice model
(Han X. et al., 2019). Besides, various indirect NLRP3 inhibitors
isolated from traditional Chinese medicine regulates NLRP3
via NF-kb pathway: Bushen-Yizhi Formula (BYF), Antrodia
camphorate polysaccharide (APC), tenuigenin, salidroside, and
baicalein (Fan et al., 2017; Mo et al., 2018; Han C. et al.,
2019; Rui et al., 2020; Zhang et al., 2020). Next, a recombinant
peptide semaglutide, an analogs of GLP-1, was shown to have
neuroprotective effects in MPTP induced mice model via
inhibiting NLRP3 through NF-kb signaling (Zhang L. et al.,
2019; Chen X. et al., 2021). Another novel approach in inhibiting
NLRP3 is microRNA which affects protein expression via
post-transcriptional regulation. MicroRNA-30e and microRNA-
7 mimics are two of the leading candidates demonstrated to
effectively and specifically target the expression of NLRP3 (Zhou
et al., 2016; Li et al., 2018). The levels of inflammatory cytokines,
including IL-1β, IL-18, and TNF-α, were also lowered due to
the miRNA-30e agomir-mediated decrease in NLRP3 expression
(Li et al., 2018). In a similar manner, miRNA-7 was found to
inhibit NLRP3 expression in both MPTP-induced PD mice and
α-synuclein-overexpression transgenic mice (Zhou et al., 2016).
The resulting dampening in caspase 1 activation and IL-1β

production lead to a neuroprotective effect on the dopaminergic
neurons in both models (Zhou et al., 2016).
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NLRP3 driven neuroinflammation has been found to be
critical in neurodegenerative diseases. Though some of the
NLRP3 inhibitors are entering early clinical stages, more
investigations are required to robustly test the NLRP3 inhibitors
efficacy and discover new inhibitors targeting inflammasome
pathway. Given that the involvement of inflammasome NLRC4,
AIM2, and NLRP1 in diseases is emerging, molecules that block
multiple inflammasome is a promising therapeutic strategy,
for instance inhibiting ASC formation. Hence, targeting
multiple layers of inflammasome will be a promising next
generation anti-inflammatory approach to effectively control
excessive inflammation.

In vitro models of Parkinson’s
disease

The discovery and development of novel PD therapeutics
strongly rely on the presence of robust in vitro models.
Though many in vitro models have been developed over the
past few decades, the study of NLRP3 in PD introduces an
additional challenge on the existing models as the mechanism
involves a complex interplay between the immune system
and the neuronal system. Currently available in vitro PD
models can be categorized into four groups: immortalized
cell lines, primary cells, induced pluripotent stem cell (iPSC)
lines, and organoids. Human embryonic kidney cells (HEK293)
and human neuroglioma cells (H4) are commonly used for
PD studies due to the ease of culture and manipulation
(Tabrizi, 2000; McLean et al., 2001). However, they are non-
neuronal cell types and do not intrinsically express the
inflammasome components to effectively study the effect of
NLRP3 manipulation in PD. Pheochromocytoma (P12) cells
were derived from rat adrenal medulla with the expression
of NLRP3 inflammasome pathway components (Malagelada
and Greene, 2008; Gong et al., 2018). However, PC12’s non-
human origin may lead to altered intracellular signaling. Co-
cultures of microglia and/or astrocytes with neuronal cell lines,
such as the human neuroblastoma SH-SY5Y cells and the
Lund human mesencephalic (LUHMES) cells, have also been
employed to closely mimic the physiological environment of
neurons in the human brain, providing a more relevant system
to study the effect of microglia NLRP3 activation (Sherer et al.,
2002; Zhang et al., 2014). However, these cell lines are hard
to manage and manipulate, leading to high variabilities. In
addition, the neoplastic origin of SH-SY5Y does not represent
the true characteristic and physiology of primary neurons.
Besides immortalized cell lines, primary cells are also used in
PD studies. Primary dopaminergic neurons and primary cortical
neurons are commonly used due to their similar characteristics
to human neurons in the physiological environment (Freundt
et al., 2012; Gaven et al., 2014). However, primary neuronal cell
culture’s usage is also limited by the great variabilities imposed

by the differences in host species and the efficiencies in specific
cell type isolation. The primary neuronal cells also do not
accurately reflect the actual physiology in vivo.

Moving beyond traditional cell line models, iPSC and 3D
organoids have gained much popularity. Both of these models
can be patient-derived and thus could carry the specific gene
mutations from the hosts to achieve more precise reconstruction
of the disease genotype (Martínez-Morales and Liste, 2012;
Chlebanowska et al., 2020). In particular, iPSCs have the
potential to differentiate into any cell types including neurons,
astrocytes and microglia, which can be extremely difficult
to obtain directly from the patients (Badanjak et al., 2021).
However, iPSC may not be the best model for age-related
diseases since the cellular hallmarks of aging are reversed during
reprogramming (Mertens et al., 2018; Strässler et al., 2018). In
addition, the clonal heterogeneity of the iPSC derived from the
same donor makes it difficult to define meaningful phenotypic
differences (Devine et al., 2011). Thus, clonal selection or more
specific gene editing techniques are required to generate better
iPSC-based models. The 3D human organoids, especially the
midbrain organoids, have unique advantages of being a 3D
structure containing a mixture of cells including dopaminergic
neurons, astrocytes, and microglia, closely mimicking the in vivo
environment (Galet et al., 2020). However, the development of
organoids can be highly time-consuming with a high degree
of variability. Though organoid models attempt to recapitulate
the cellular composition of in vivo brain, few organoid models
actually include microglia, which is of paramount importance
in the study of NLRP3 in PD (Ormel et al., 2018).

Despite the various limitations, the value of
in vitro PD models cannot be overlooked. Established
immortalized/primary cell models, iPSCs and organoids
can be used for large scale screening and validation of potential
drug candidates with higher efficiency and reproducibility
(Skibinski and Finkbeiner, 2011; Jo et al., 2016). In addition,
since peripheral inflammation plays an important role in
the pathogenesis and progression of PD, it can be easily and
robustly modeled by in vitro cells such as human peripheral
blood mononuclear cells (PBMCs). Having effective in vitro
models of peripheral inflammation/inflammasome activation
may provide a new angle in the therapeutics and intervention
discovery for PD.

In vivo models of Parkinson’s
disease

Though in vitro models provide significant convenience
and streamlining for PD research, the research on PD
pathogenesis and the screening for potential therapeutics cannot
be substantiated and validated without robust PD animal
models. The common PD animal models involve the use of
neurotoxins such as MPTP (Dovero et al., 2016), 6-OHDA
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(Sauer and Oertel, 1994), and pesticides/herbicides including
rotenone, paraquat, and maneb (Domico et al., 2006; Chia et al.,
2020; Cristóvão et al., 2020; Innos and Hickey, 2021). Besides
chemical inducers, transgenic animal models are also used to
investigate the phenotypes of specific mutations in PD-related
genes such as PTEN-induced putative kinase 1 (PINK1), DJ-
1, and Parkin (Kitada et al., 1998; Bonifati et al., 2003; Valente
Enza et al., 2004). Overexpression of wild-type or variants of
α-synuclein is also a strategy commonly explored to model
the important role of α-synuclein in PD pathogenesis (Koprich
et al., 2017).

The choice of model organism is also critical in evaluating
the success of PD investigation. A systematic review has revealed
that rodents are the most commonly used animals for both
neurotoxin and transgenic PD models due to their ease of
handling and conducting genetic manipulation as well as closely
resembling the human anatomy (Kin et al., 2019). Non-rodents,
such as the zebrafish, drosophila and C. elegans, are more
commonly used as transgenic models than neurotoxin models
in PD research because of their well-annotated genome and
relatively shorter lifespan (Kin et al., 2019). One limitation
of these organisms is that they do not intrinsically express
α-synuclein. Although primates and other mammals, such as
cats, dogs, and minipigs, are physiologically closer to humans,
they are not as commonly used in PD research due to higher
cost and increased difficulty in genetic manipulation and
handling/breeding (Kin et al., 2019).

Conclusion

Since NLRP3 inflammasome pathway activation contributes
significantly to PD neuroinflammation, targeting NLRP3 as a
PD therapeutic strategy is a promising approach that has been
gaining increasing attention over the recent years. We discussed
the key role of the PD-associated genes including α-synuclein
and Parkin in NLRP3 activation and PD pathogenesis. We also
systematically catalog the NLRP3 inflammasome inhibitors that
have been tested in PD and other CNS disease models. Lastly, we
highlighted the recent advances and limitations in PD in vitro
and in vivo models which aid in future study design. These
research tools are essential for future screening, validation, and
development of novel therapeutics.
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