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The role of neutrophils in the
dysfunction of central nervous
system barriers
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Leukocyte migration into the central nervous system (CNS) represents

a central process in the development of neurological diseases with a

detrimental inflammatory component. Infiltrating neutrophils have been

detected inside the brain of patients with several neuroinflammatory

disorders, including stroke, multiple sclerosis and Alzheimer’s disease. During

inflammatory responses, these highly reactive innate immune cells can rapidly

extravasate and release a plethora of pro-inflammatory and cytotoxic factors,

potentially inducing significant collateral tissue damage. Indeed, several

studies have shown that neutrophils promote blood-brain barrier damage and

increased vascular permeability during neuroinflammatory diseases. Recent

studies have shown that neutrophils migrate into the meninges and choroid

plexus, suggesting these cells can also damage the blood-cerebrospinal fluid

barrier (BCSFB). In this review, we discuss the emerging role of neutrophils

in the dysfunction of brain barriers across different neuroinflammatory

conditions and describe the molecular basis and cellular interplays involved

in neutrophil-mediated injury of the CNS borders.

KEYWORDS

neutrophils, blood-brain barrier, blood-cerebrospinal fluid barrier (BCSFB),
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Introduction

The central nervous system (CNS) is physically separated from the peripheral
milieu by specialized barriers ensuring a constant state of homeostasis and efficient
neuronal function. It was previously considered an immune-privileged site, and this
view was attributed to the low number of CNS immune cells and the presence of
physical barriers limiting the communication between the systemic circulation and
neural tissue (Bechmann et al., 2007; Galea et al., 2007). Over the past decades, this
view has been challenged by several studies showing the presence of immune cells,
including T and B lymphocytes, in the healthy brain (Anthony et al., 2003; Smolders
et al., 2018). Additionally, recent reports describing CNS lymphatics, meningeal tissue
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and skull bone marrow as active immune hubs contributed
to a broader vision of the immune cell dynamics within the
healthy CNS (Louveau et al., 2015; Ribeiro et al., 2019; Alves
de Lima et al., 2020; Brioschi et al., 2021; Cugurra et al.,
2021; Herz et al., 2021; Rustenhoven et al., 2021). Particularly,
under physiological conditions, meningeal immunity plays a
key role in modulating cognition and behavior in a cytokine-
dependent manner, suggesting that brain borders play an active
role in brain functions (Filiano et al., 2016; Ribeiro et al., 2019;
Alves de Lima et al., 2020; Herz et al., 2021). During CNS
inflammatory pathologies, peripheral immune cells migrate
into the brain and meninges and play a pathogenic role in
several neuropathological disorders (Prinz and Priller, 2017;
Rossi et al., 2021). Neutrophils constitute the most abundant
immune cell population in the human peripheral blood (Juul
et al., 1984), and their role in disease development has been
shown in several CNS disorders such as stroke, multiple sclerosis
(MS) and Alzheimer’s disease (AD) (Rossi et al., 2020, 2021).
Their vast granule storage of enzymes potentially inducing
collateral tissue damage, the capacity to rapidly extravasate
and increase vascular permeability and the ability to favor
tissue remodeling, suggest neutrophils may have a key role
in the development CNS inflammatory disorders (Rossi et al.,
2020; Fischer et al., 2022). This review summarizes recent data
on the contribution of neutrophils to brain injury focusing
on pathological mechanisms occurring at CNS borders. We
discuss what is known about the involvement of neutrophils
in the induction of endothelial injury, increased vascular
permeability and degradation of extracellular matrix promoting
neuroinflammation and neurodegeneration.

Overview of the central nervous
system barriers

The CNS is physically separated from the peripheral
milieu by two main barriers: the blood-brain barrier (BBB)
and blood-cerebrospinal fluid barrier (BCSFB) (Figure 1).
Although both barriers are characterized by high expression
of junctional proteins and selective permeability capacities,
they also have unique anatomical and molecular characteristics.
The BBB is an endothelial structure of brain microvessels,
which limits the passage of plasma molecules and blood cells
into the brain and maintains the chemical composition of the
neuronal “milieu” (Zlokovic, 2008). On the other hand, the
BCSFB separates the blood from the CSF and was classically
associated with the epithelium of the choroid plexus (ChP)
and arachnoid matter (Brøchner et al., 2015; Engelhardt et al.,
2017) (Figure 1). Overall, the CNS barriers not only protect the
parenchyma, restricting the diffusion of pathogens and harmful
blood molecules, but also play a critical role in the uptake
of nutrients and excretion of byproducts of brain metabolism

(Ballabh et al., 2004). The BBB consists of a monolayer of
tightly packed and specialized non-fenestrated endothelial cells
(ECs) brought together by junctional complexes, covering brain
capillaries and postcapillary venules (Figure 1). It is fenced
by the glia limitans formed by perivascular astrocyte endfeet
and parenchymal basement membrane, which further restricts
BBB permeability. This specialized and dynamic structure,
together with the surveying microglia, astrocytes, pericytes,
neuronal branches, and the acellular basement membrane, form
the neurovascular unit (NVU) (Villabona-Rueda et al., 2019).
Furthermore, the BBB represents a high-resistance electrical
barrier, expressing transporters and efflux pumps for the
regulation of ion fluctuations and solutes, and limiting the
paracellular and transcellular movement of molecules. The
inter-endothelial junctional structures are responsible for the
“gate” function of ECs and consist of tight junction proteins
(TJ), adherens junctions (AJs) and gap junctions (Chow and Gu,
2015; Tietz and Engelhardt, 2015; Sweeney et al., 2019; Saint-Pol
et al., 2020). Brain endothelial TJs are the most apical cell-cell
junctional complexes and constitute the core elements of the
BBB with a crucial role in regulating paracellular permeability
and maintaining cell polarity. They contain transmembrane
proteins, including occludin claudins and junctional adhesion
molecules, anchored to intracellular scaffolding proteins of the
membrane-associated guanylate kinase family, also known as
zonula occludens (ZO-1, -2, -3) (Zlokovic, 2008). The integral
membrane proteins provide support to the TJs structure, with
occludin contributing to the regulation and stabilization of
the junctional structures (Cummins, 2012), whereas claudins
are critical sealing determinants of paracellular “tightness”
between adjacent ECs (Alahmari, 2021). Particularly, claudin-
5, the most abundant transmembrane TJ protein at the
BBB, plays a prominent role in maintaining the structural
integrity of the vasculature and preventing the diffusion of
small molecules through the intercellular space (Figure 2;
Greene et al., 2019). Reduced expression of occludin, claudin-
5, and ZO-1 is considered a sensitive indicator of BBB
alterations associated with increased permeability during CNS
diseases (Zlokovic, 2008; Cummins, 2012; Greene et al.,
2019). Among the junctional complexes between the cerebral
ECs, vascular endothelial (VE)-cadherin represents the major
AJ transmembrane protein. VE-cadherin is linked to the
cytoskeleton via catenins such as p120, β-catenin, plakoglobin,
and γ-catenin, ensuring AJ assembly and BBB stability
(Zlokovic, 2008; Li et al., 2018). Besides the organized junctional
complexes, additional independent molecules are present at
ECs junctions, including platelet-endothelial cell adhesion
molecule-1 (PECAM-1 or CD31) and CD99. These proteins
have homophilic and heterophilic binding capacity and have
a role in the context of leukocyte transmigration during
inflammatory responses (Lou et al., 2007; Zlokovic, 2008;
Sullivan and Muller, 2014). Alterations in junctional molecules
facilitate leukocyte transmigration during brain inflammation.

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2022.965169
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-965169 August 10, 2022 Time: 12:6 # 3

Santos-Lima et al. 10.3389/fnagi.2022.965169

FIGURE 1

Schematic representation of neutrophil migration through the CNS barriers. CNS barriers limit the accessibility of circulating cells and molecules
and can be divided into two main components: the Blood-Brain-Barrier (BBB) situated within the brain parenchyma and the blood-CSF-barrier
(BCSFB) present in the choroid plexus (ChP) and in the meninges. Starting from the outer part of the CNS (depicted on the top left), the
meninges represent a series of connective layers surrounding the brain, including dura mater and leptomeninges (arachnoid and pia mater).
During CNS inflammatory diseases, neutrophils adhere in pial vessels and migrate into the SAS; these cells may then cross pia matter and
migrate into the underlying brain parenchyma. Within the leptomeningeal vessels, neutrophils release MPO, potentially damaging endothelial
cells and the extracellular matrix. On the top right, a representation of the choroid plexus shows the production of neutrophil chemoattractants
CXCL1 and CXCL2 by the epithelial cells leading to neutrophil infiltration across the BCSFB. In both ChP stroma and within the CSF, neutrophils
have been shown to produce LCN2. On the lower panel, a simplified model of the BBB is depicted, along with the classical neutrophil migration
cascade. Inflamed BBB endothelial cells express adhesion molecules such as P- and E-selectins mediating capture and rolling through
interaction with neutrophil PSGL-1 and CD44. Endothelial ICAM-1 and VCAM-1 mediate the arrest phase by binding neutrophil integrins LFA-1
and VLA-4, respectively. Firm adhesion and transmigration may contribute to increased BBB permeability (created with BioRender.com).

Indeed, the binding of α4β1 integrin expressed on lymphocytes
to the endothelial vascular adhesion molecule (VCAM-1)
induces the phosphorylation of VE-cadherin and leads to the
opening of AJ contacts, facilitating leukocyte transmigration
(Vockel and Vestweber, 2013).

The BBB together with the BCSFB are considered part of
the neurovascular system, providing active immune surveillance
and supporting coordinated immune responses (Engelhardt
et al., 2017; Mastorakos and McGavern, 2019). Even though
the BCSFB is more accessible and permeable than the BBB,
the latter has received more attention for its involvement in
CNS pathologies (Felgenhauer, 1995; Tumani et al., 2017).
Nevertheless, growing evidence suggests the BCSFB also plays
a significant role in the communication between the periphery
and the CNS during inflammatory neurological disorders.
The BCSFB was mainly associated with two areas of the

CNS: the ChP and the arachnoid membrane covering the
subarachnoid space (SAS). The ChP is located in the lateral
and fourth ventricles and is an epithelial tissue surrounding
fenestrated vessels. It represents a major site of CSF production
in the brain and strictly regulates the exchange of substances
between the blood and the CSF (Lun et al., 2015). ChP
capillaries do not have TJs, allowing the free movement
of molecules through fenestrations and intercellular gaps.
However, the choroidal BCSFB is characterized by the presence
of junctional molecules in the epithelial lining of ChP, allowing
selective permeability of blood components. Despite functional
similarities between the BBB and the BSCFB, the choroidal
BCSFB shows mainly the expression of claudins 1–3, 9, 12
and 22 and almost no expression of claudin-5, suggesting
morphological differences that may lead to a more permeable
barrier to small molecules, macromolecules and circulating
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FIGURE 2

Molecular mechanisms mediating neutrophil-dependent BBB dysfunction. The BBB is a complex structure mainly composed of endothelial cells
tightly bound together by junctional molecules, astrocytic endfeet and pericytes. During neuroinflammation, microglia and astrocytes produce
IL-1b, which is a potent inducer of endothelial ICAM-1 and VCAM-1 and promotor of neutrophil infiltration. Engagement of neutrophil integrins
as well as other stimuli, lead to the production of neutrophil extracellular traps (NETs) and release of inflammatory mediators including reactive
oxygen species (ROS), lipocalin 2 (LCN2), myeloperoxidase (MPO) and matrix metalloproteinase 9 (MMP-9). These neutrophil-derived factors
contribute to the reduction of tight junction proteins (claudin-5, occludin and ZO-1) and BBB breakdown. (Created with BioRender.com).

immune cells (Kratzer et al., 2012; Tietz and Engelhardt, 2015).
The pial microvessel blood-CSF barrier across pial microvessels
is also considered part of the BCSFB (Brøchner et al., 2015).
Endothelial cells isolated from the pial vessels show similarities
with the BBB for some general ultrastructural features and
transendothelial electrical resistance (Allt and Lawrenson,
1997). However, pial microvessels show some differences in the
junctional systems compared to the BBB and lack astrocyte and
NVU proximity, suggesting these vessels are more permeable
and easier to cross by leukocytes during inflammatory responses
(Allt and Lawrenson, 1997; Cassella et al., 1997).

The meningeal tissue is now considered an active and
complex immune hub (Alves De Lima et al., 2020). From
a structural point of view, the meninges are divided into
three main layers: dura, arachnoid and pia. Dura mater is the
outermost layer and is securely attached to the periosteum of
the skull (Protasoni et al., 2011). It is composed of a dense and
thick fibrous tissue supplied with lymphatic vessels, meningeal

arteries and veins (Protasoni et al., 2011). The arachnoid mater is
an avascular, thin and translucent membrane forming a barrier
between the dura mater and the CSF flowing in the SAS (Yasuda
et al., 2013). This space includes trabeculae and collagen bundles
generated by fibroblast-like cells, which connect the arachnoid
to the pia mater (Alcolado et al., 1988; Saboori and Sadegh,
2015). The deepest layer of the meninges is the pia mater,
a thin and transparent membrane composed of connective
tissue permeable to solutes and containing a capillary network
that nourishes the brain (Adeeb et al., 2013). The pia mater
is anchored on the brain surface by astrocyte processes and
together with the arachnoid matter forms the leptomeninges
(Derk et al., 2021). In addition to their protective role, the
meninges also constitute a route of drainage for brain interstitial
fluid to lymphatic vessels and deep cervical lymph nodes (Natale
et al., 2021), providing communication between the CNS and
the immune system. The bona fide barriers from the meningeal
tissue can be subdivided into three main interfaces: (1) the
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BCSFB associated with the arachnoid layer separating the dura
and its fenestrated vessels from the CSF; (2) the BCSFB at
the level of SAS pial microvessels; and (3) the pial surface
layer, which together with glia limitans is considered a brain-
CSF barrier (Brøchner et al., 2015). The junctional components
of the meningeal barriers are less studied, but recent work
identified claudin-11 as a marker for the arachnoid BCSFB
(Brøchner et al., 2015). However, further studies are needed
to better understand the structural and molecular features of
meningeal barriers and how they regulate brain function during
health and disease.

Blood-brain barrier dysfunction
during neuroinflammation

Neuroinflammation is a well-defined pathological feature
of several neurodegenerative disorders and associates with
BBB structural changes and increased vascular permeability
(Zlokovic, 2008; Rossi et al., 2011; Zenaro et al., 2017; Liebner
et al., 2018). For example, studies performed in stroke models
and experimental autoimmune encephalomyelitis (EAE), the
most common model of MS, have shown increased BBB
permeability due to a reduction of claudin-5, occludin, and
ZO-1 levels in the mouse brain (Jiao et al., 2011; Wang
et al., 2016). Similar results were obtained in cerebral amyloid-
beta angiopathy in AD post-mortem brains, suggesting the
reduction of TJ molecules represents a general feature of BBB
dysfunction across several brain diseases (Carrano et al., 2012).
The redistribution of inter-endothelial junctional proteins
during BBB dysfunction depends on their phosphorylation state,
which can be affected by growth factors and inflammatory
cytokines (Van Itallie and Anderson, 2018). Vascular endothelial
growth factor (VEGF) is a potent angiogenic factor that
induces rapid phosphorylation of occludin and ZO-1, disrupting
the TJs organization and promoting endothelial permeability
(Antonetti et al., 1999; Wang et al., 2001; Storkebaum and
Carmeliet, 2004; Murakami et al., 2009). Moreover, pro-
inflammatory cytokines, including interferon (IFN)-γ, tumor
necrosis factor (TNF)-α and interleukin (IL)-1β, also affect the
molecular mechanisms associated with TJs integrity (Capaldo
and Nusrat, 2009). Particularly, IFN-γ can directly modify the
barrier function of TJs in cultured brain ECs by inducing
Rho kinase activity, leading to actin cytoskeletal contractions
and junctional disruption (Bonney et al., 2019). In addition,
IL-1β reduces the expression of ZO-1 and transendothelial
electrical resistance, increasing the paracellular permeability,
the expression of adhesion molecules, and leukocyte migration
across BBB models in vitro (Labus et al., 2014). During
neuroinflammation, the release of IL-1β by activated microglia
increases the BBB leakage and suppresses the capacity of
astrocytes to maintain BBB integrity. Furthermore, IL-1β

stimulates astrocytes to produce pro-inflammatory cytokines,

promoting BBB breakdown and increased leukocyte migration
(Wang et al., 2014). Exposure of brain ECs to pro-inflammatory
cytokines also triggers the expression of adhesion molecules,
such as P- and E- selectins, VCAM-1 and intercellular adhesion
molecule-1 (ICAM-1), which may bind their counter-ligands
on activated circulating immune cells, allowing leukocyte
extravasation in the inflamed brain (Wong and Dorovini-Zis,
1992; Rahman et al., 2000; Hauptmann et al., 2020). Despite
being constitutively expressed on brain ECs, ICAM-1 is further
up-regulated in response to pro-inflammatory mediators, and
its engagement activates signal transduction pathways leading
to increased BBB permeability (Adamson et al., 2002). BBB
integrity can also be affected by oxidative stress, particularly
by the imbalance between the generation of reactive oxygen
species (ROS) and their elimination by scavenger systems.
High levels of ROS trigger intracellular pathways leading to TJ
rearrangement and matrix metalloproteinase (MMP) activation,
which directly compromise BBB integrity. In vitro studies
demonstrated that H2O2 induces cytoskeleton dysfunction
and alters the localization of occludin and ZO-1, increasing
paracellular permeability of brain endothelial cells (Lee et al.,
2004; Anasooya Shaji et al., 2019). ROS also enhances the
release of MMPs by brain endothelial cells, acting directly on
TJ proteins and degrading the extracellular matrix (Aexander
et al., 2002; Harada et al., 2012). Large amounts of ROS can
be released by parenchymal-resident cells, such as activated
microglia, leading to a loss of BBB integrity. Particularly, the
microglial NADPH oxidase system is the main producer of
superoxide anion (O2

−), which damages ECs and increases
BBB permeability (Kahles et al., 2007; Rojo et al., 2014).
The principal source of ROS from CNS infiltrating peripheral
immune system cells is represented by activated neutrophils,
which are professional phagocytes with a strong NADPH
oxidase machinery and may also contribute to BBB damage.
Neutrophil adhesion to inflamed cerebral vasculature engages
integrins leading to ROS production and release of both granule
enzymes and complex web-like structures of decondensed
DNA fibers and antimicrobial molecules, called neutrophil
extracellular traps (NET) (Figure 2; Pietronigro et al., 2017).
Thus, migrating neutrophils across the CNS barriers release
inflammatory and cytotoxic factors promoting endothelial
injury and vascular permeability.

Neutrophils-blood-brain barrier
interplay

Leukocytes receive a variety of signals upon interaction with
inflamed endothelial cells, facilitating a cascade of adhesive
events, including tethering and rolling, integrin activation,
arrest (or firm adhesion), luminal crawling and diapedesis
(also called transmigration) (Ley et al., 2007; Vestweber, 2015).
Tethering and rolling of circulating leukocytes in inflamed
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CNS venules are mainly mediated by endothelial P- and
E-selectin and their counter-ligands P-selectin glycoprotein
ligand-1 (PSGL-1), TIM (T cell immunoglobulin and mucin
domain)-1 glycoprotein and CD44 (Siegelman et al., 2000;
Piccio et al., 2002, 2005; Battistini et al., 2003; Fabene et al., 2008;
Rossi et al., 2011; Angiari and Constantin, 2014; Angiari et al.,
2014; Pietronigro et al., 2016; Zenaro et al., 2017; Figure 1).
Leukocyte arrest in CNS venules is mediated by the VLA
(very late antigen)-4 integrin binding to VCAM-1 and LFA
(lymphocyte functional antigen)-1 and Mac-1 integrins binding
to ICAM-1 and ICAM-2 (Figure 1; Engelhardt and Ransohoff,
2005; Rossi et al., 2011). Whereas activated T cells mainly
rely on VLA-4 (α4β1 integrin) for their intravascular arrest,
neutrophils highly depend on β2 integrins (LFA-1 and Mac-
1) to arrest and crawl on inflamed brain endothelium (Rossi
et al., 2011; Gorina et al., 2014; Zenaro et al., 2015; Pietronigro
et al., 2019). However, VLA-4 integrin represents an alternative
pathway for neutrophil adhesion, whereas VCAM-1 is a marker
of CNS vascular inflammation, suggesting that VLA-4-VCAM-1
interactions may also control neutrophil adhesion during CNS
inflammatory diseases (Johnston and Kubes, 1999).

The capacity of neutrophils to increase vascular permeability
has been known for four decades, and the interplay between
neutrophil adhesion and vascular damage has been studied
in several pathological conditions, including brain diseases
(Wedmore and Williams, 1981; Wang and Doerschuk, 2002;
DiStasi and Ley, 2009; Rossi et al., 2020). In stroke models,
neutrophils adhere to cerebral microvessels one hour after
stroke induction, suggesting they are early contributors to
vascular dysfunction (Hallenbeck et al., 1986; Kataoka et al.,
2004; Sienel et al., 2022). Neutrophils can also rapidly adhere in
cerebral vessels after status epilepticus induction and contribute
to endothelial damage promoting chronic recurrent seizures
(Fabene et al., 2008). Interestingly, in both focal ischemia
and epilepsy models, it has been suggested that intravascular
neutrophil adhesion per se without transmigration is sufficient
to induce BBB damage and neuronal dysfunction and death,
pointing to neutrophil adhesion mechanisms as drug targets for
CNS diseases (Fabene et al., 2008; Sienel et al., 2022).

Studies in EAE models also demonstrated the pathogenic
role of neutrophils and the contribution of these cells to blood-
spinal cord barrier (BSCB) disruption (Wu et al., 2010; Aubé
et al., 2014). These data were confirmed by the analysis of
postmortem CNS samples of MS patients showing infiltrated
neutrophils in areas of BBB or BSCB leakage. However, whereas
ICAM-1 and VCAM-1 have been shown to be upregulated on
CNS microvascular endothelial cells during EAE, the molecular
mechanisms controlling neutrophil adhesive interactions with
the BBB or BSCB are still unclear (Steffen et al., 1994). A role
for neutrophils has also been shown in AD, and our group
has demonstrated that LFA-1 integrin mediates neutrophil
interaction with brain ECs expressing ICAM-1 in transgenic
mice with AD-like disease (Zenaro et al., 2015). In addition

to the adhesion capacity on the vascular wall, neutrophils
can also stall in brain capillaries, obstructing blood flow.
Indeed, neutrophil depletion induces capillary reperfusion and
reduces brain damage in experimental models of stroke and
AD (Cruz Hernández et al., 2019; El Amki et al., 2020).
Together, these studies suggest a complex detrimental role
for neutrophils in CNS inflammatory diseases by increasing
vascular permeability following adhesion to the ECs and
inducing ischemic phenomena by plugging cerebral capillaries.

During inflammatory responses, neutrophils can release a
plethora of factors potentially contributing to tissue injury.
Furthermore, it has been known that adhesion on vascular
endothelium via engagement of β2 integrins leads to neutrophil
activation and consequent secretion of inflammation mediators
such as ROS and cytotoxic granule enzymes (Figure 2; Richter
et al., 1990; Cheung et al., 1993; DiStasi and Ley, 2009).
Indeed, in animal models of stroke, NET formation and release
of neutrophil elastase (NE) have been reported to induce
increased BBB permeability, and the inhibition of these two
factors reduces brain injury and promotes recovery (Kang et al.,
2020). Neutrophils can also produce MMPs, which have been
previously shown to represent a key factor in the induction
of vascular damage (Aexander et al., 2002; Kolaczkowska and
Kubes, 2013). MMPs were shown to be increased in the CNS
during several neuroinflammatory conditions, including MS,
stroke, epilepsy, and AD, although their presence was not clearly
associated to neutrophil infiltration (Backstrom et al., 1996;
Clark et al., 1997; Kieseier et al., 1998; Nygårdas and Hinkkanen,
2002; Solé et al., 2004; Wilczynski et al., 2008; Takács et al., 2010;
Quirico-Santos et al., 2013; Py et al., 2014). However, among all
MMPs produced by neutrophils, MMP-9 was highly correlated
with vascular damage during diseases such as tuberculosis,
myocardial infarction and cystic fibrosis (Kurihara et al., 2012;
Halade et al., 2013; Garratt et al., 2015; Ong et al., 2017; Gelzo
et al., 2022). MMP-9 was also associated with BBB dysfunction,
and its expression is involved in the disruption of BBB TJs
and degradation of basal lamina (Figure 2; Mun-bryce et al.,
1998; Asahi et al., 2001; Moxon-Emre and Schlichter, 2011;
Li et al., 2013). Furthermore, MMP-9 expression was clearly
correlated with the presence of granulocytes in models of stroke
and ischemia-reperfusion injury, in which neutrophils were
considered the main source of MMP-9 (Romanic et al., 1998;
Gidday et al., 2005; Turner and Sharp, 2016). In addition, by
using MMP-9−/− mice, several studies confirmed the critical
role of this enzyme in the induction of BBB permeability in
stroke models and EAE (Dubois et al., 1999; Asahi et al.,
2001; Agrawal et al., 2006; Svedin et al., 2007). Finally, MMP-
9-positive neutrophils have been found surrounding brain
microvessels with severe type IV collagen degradation and BBB
breakdown in patients with stroke, clearly showing a strong
association between neutrophils, MMP-9 and BBB damage also
during human CNS disease (Rosell et al., 2008). Interestingly,
the C-1562T polymorphism in the MMP-9 gene, which is

Frontiers in Aging Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnagi.2022.965169
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-965169 August 10, 2022 Time: 12:6 # 7

Santos-Lima et al. 10.3389/fnagi.2022.965169

associated with an elevated MMP-9 expression, increases the
susceptibility to neuropsychiatric conditions, suggesting that
neutrophil MMP-9 may represent a pathogenic factor also in
mental disorders (Rybakowski et al., 2009a,b).

Human MMP-9 is covalently linked to lipocalin
(LCN2), which increases its stability and confers protection
from proteolytic degradation (Tschesche et al., 2001).
LCN2 expression is increased during aging and several
neuroinflammatory conditions, including AD, MS and stroke
suggesting a role for LCN2 in CNS disorders (Anwaar et al.,
1998; Marques et al., 2012; Chou et al., 2015; Weng and Chou,
2015; Al Nimer et al., 2016; Dekens et al., 2017). However,
whereas in vitro data suggested a possible role for LCN2 in
preserving BBB integrity, other studies clearly showed that
LCN2 expression was found in cerebral endothelial cells and
neutrophils in a mouse model of stroke, and its inhibition
significantly reduced BBB leakage in vivo (Du et al., 2019;
Wang et al., 2020). In support of these data, LCN2 was
increased in the CNS and CSF in patients with vascular
dementia, correlating with reduced expression of TJ proteins
and increased BBB permeability, thus suggesting a role for
LCN2 in BBB dysfunction (Kim et al., 2017; Llorens et al., 2020).

Myeloperoxidase (MPO) is the most abundant protein
stored in neutrophil azurophilic granules. It can be released
upon β2 integrin cross-linking in neutrophils and its expression
was associated with areas of myeloid cell infiltration in
stroke and MS (Figure 2; Matsuo et al., 1994; Walzog
et al., 1994; Breckwoldt et al., 2008; Chen et al., 2008;
Sajad et al., 2009; Forghani et al., 2012, 2015; Pulli et al.,
2015). The link between MPO secretion and endothelial
damage has also been reported. Indeed, pharmacological
inhibition of MPO attenuates endothelial dysfunction in a
mouse model of atherosclerosis (Cheng et al., 2019). Notably,
MPO-deficient mice showed decreased leakage in LPS-induced
BBB inflammation compared to wild-type littermates (Üllen
et al., 2013). These results were supported by in vitro
data showing that the MPO-H2O2-Cl2 system causes barrier
dysfunction in primary brain microvascular endothelial cells
by inducing alterations of TJs and AJs (Üllen et al., 2013).
Using the MPO inhibitor 4-aminobenzoic acid hydrazide, BBB
dysfunction was partially rescued, demonstrating a direct link
between BBB increased permeability and MPO release (Üllen
et al., 2013). Moreover, in EAE and stroke mouse models,
inhibition of MPO with N-acetyl lysyltyrosylcysteine amide
prevented BBB breakdown and reduced disease severity, further
demonstrating a role for MPO in CNS barrier breakdown
(Zhang et al., 2016; Yu et al., 2018). Of note, high expression
of MPO was associated with ischemic stroke, and MPO
inhibition had beneficial effects, suggesting that MPO may
represent a therapeutic target in stroke (Malle et al., 2007;
Kim et al., 2016; Kim H. J. et al., 2019; Wang et al.,
2022). Interestingly, epidemiological studies associated MPO
polymorphisms with an increased risk of neurodegenerative

diseases (Reynolds et al., 1999; Crawford et al., 2001; Combarros
et al., 2002; Zappia et al., 2004; Pope et al., 2006). Moreover,
MPO+ cells (probably neutrophils) were increased in the brain
in subjects with AD and Parkinson’s disease (PD) (Zenaro et al.,
2015; Gellhaar et al., 2017), thus supporting a role for this
enzyme in neurodegeneration. Importantly, recent studies by
Smyth et al. have shown that MPO staining is mainly associated
with infiltrating neutrophils in the AD brain, further providing
evidence of a role for neutrophil-derived inflammatory factors
in BBB dysfunction (Smyth et al., 2022).

Choroid plexus: A gateway for
neutrophil infiltration

The ChP constitutively expresses adhesion molecules and
cytokines supporting continuous immune surveillance of the
CNS (Steffen et al., 1996; Meeker et al., 2012; Kunis et al., 2013;
Lun et al., 2015; Strominger et al., 2018). Indeed, the stromal
compartment of the ChP is populated by several types of cells,
including immune cells of peripheral origin (Marques et al.,
2012; Schmitt et al., 2012; Szmydynger-Chodobska et al., 2012;
Marques and Sousa, 2015). During inflammatory responses, the
ChP epithelium and blood vessels further upregulate adhesion
receptors and chemokines, facilitating the migration of blood
leukocytes into the CSF (Steffen et al., 1994; Vercellino et al.,
2008; Marques et al., 2009, 2012; Kunis et al., 2013). In addition
to immune cell migration, structural and functional changes at
the level of ChP are present during various brain disorders, and
BCSFB breakdown may precede clinical symptoms (Schwartz
and Baruch, 2014; Alicioglu et al., 2017; Saul et al., 2020;
Gião et al., 2022; Mold and Exley, 2022). During AD, the
dysfunctional ChP is characterized by alterations of secretory,
barrier, transport, and immune functions. Moreover, several
imaging studies in AD subjects showed premature ChP aging
with increased lipofuscin vacuoles and Biondi bodies compared
to age-matched healthy controls (Miklossy et al., 1998; Wen
et al., 1999; Serot et al., 2000; Krzyzanowska and Carro,
2012; Tadayon et al., 2020). In addition, the ChP of AD
patients have a lower rate of CSF production (Silverberg et al.,
2001), show an increase of several inflammatory transcripts
and downregulation of claudin-5, claudin-11, and claudin-18,
pointing to a role for ChP breakdown in disease development
(Bergen et al., 2015; Kant et al., 2018). Expression of TJ proteins
in ChP epithelial cells has also been studied in MS. Although
the specific functions of individual TJ proteins are unclear,
the analysis of post-mortem brain tissues from MS patients
showed a selective loss of claudin-3 compared to control tissues.
Claudin-3 displays ChP selectivity and is expressed at the apical
parts of epithelial cells, acting as a sealant in a similar manner as
claudin-5 at the BBB level (Steinemann et al., 2016). Confirming
these data, mice lacking claudin-3 showed impaired BCSFB
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function and a faster onset and increased EAE severity, clearly
indicating a role for claudin-3 in ChP breakdown in CNS
autoimmune diseases (Kooij et al., 2014).

Neutrophils can migrate into the CSF through a
dysfunctional ChP in several CNS inflammatory conditions.
Peripheral administration of the TLR2 ligand PAM3CSK4, a
prototypic Gram-positive bacterial lipopeptide, induces the
migration of neutrophils through the ChP barrier (Mottahedin
et al., 2017). Neutrophils can also infiltrate the ChP in EAE
mice and represent a source of CSF LCN2 during early disease
phases (Figure 1; Marques et al., 2012). Supporting these
data, neutrophils migrate into the ChP stroma in MS patients,
and this process is probably favored by a high expression of
adhesion molecules on ChP blood vessels (Vercellino et al.,
2008; Rodríguez-Lorenzo et al., 2020). Similarly, in models of
traumatic brain injury (TBI), the choroidal epithelium produces
CXCL1 and CXCL2 chemokines, which promote neutrophil
migration, supporting the view that ChP represents an entry
point for neutrophils invasion of the damaged brain (Figure 1;
Szmydynger-Chodobska et al., 2009). Also, neutrophils migrate
in the ChP in stroke models, further showing that ChP is a
key site for neutrophil infiltration (Otxoa-De-Amezaga et al.,
2019). Despite a clear demonstration of neutrophil migration
into the ChP during CNS diseases, the molecular mechanisms
promoting neutrophil-dependent ChP damage are unclear.
However, previous studies have shown a correlation between
ChP dysfunction and increased expression of MMP-8 and
MMP-9 (Batra et al., 2010). These two enzymes have been
shown to mediate neutrophil-dependent damage in other
pathological contexts, suggesting this may be the case also
during CNS inflammatory conditions. Collectively, these data
suggest that ChP is a gateway for neutrophil entry into the brain,
and further studies are needed to better understand neutrophil
contribution to BCSFB breakdown.

Neutrophil contribution to
meningeal inflammation

The meninges also serve as an important route for immune
cell entry into the CNS (Ransohoff et al., 2003; Derk et al., 2021).
Indeed, dural venous sinuses were recently shown to be active
sites of immune cell trafficking and contain both adaptive and
innate immune cells (Mrdjen et al., 2018; Jordão et al., 2019;
Van Hove et al., 2019; Rustenhoven et al., 2021). Particularly,
recent results have shown that dural sinuses regulate T cell
trafficking and contain APCs presenting CSF antigens to
patrolling T cells, demonstrating a role for dura in CNS
immune surveillance (Rustenhoven et al., 2021). Furthermore,
by releasing cytokines, meningeal immune cells regulate several
brain functions, including spatial learning (Derecki et al., 2010;
Radjavi et al., 2014; Brombacher et al., 2021), short-term

memory (Ribeiro et al., 2019), sensory responses (Oetjen et al.,
2017) and adult hippocampal neurogenesis (Wolf et al., 2009).
Notably, recent studies described meningeal-bone marrow
channels directly feeding the meninges with immune cells
(Herisson et al., 2018; Brioschi et al., 2021; Cugurra et al.,
2021), suggesting that a dysfunctional meningeal immunity
may contribute to CNS disorders, such as MS, AD, and PD
(Russi and Brown, 2015; Silva and Ferrari, 2019; Zou et al.,
2019; Mentis et al., 2021). The meningeal BSCFB is more
permissive to the entry of immune cells and large molecules
compared to the highly restrictive BBB (Ransohoff et al.,
2003). The permeability changes of the arachnoid barrier
were less studied in CNS diseases. However, recent studies
showed that claudin 11, a TJ protein enriched in the arachnoid
barrier, is downregulated in EAE mice (Uchida et al., 2019),
indicating a disruption of the arachnoid BCSFB. Increased
permeability of the leptomeningeal vessels has also been shown
in MRI studies in several brain disorders, including stroke, CNS
infections and cerebral amyloid angiopathy (Ineichen et al.,
2022). Leptomeninges are now recognized as key players in
the development of MS and EAE (Pikor et al., 2015; Russi
and Brown, 2015; Rua and McGavern, 2018; Wicken et al.,
2018). Indeed, subpial lesions are considered the most common
type of lesions in MS patients and autoreactive effector T
cells have been shown to infiltrate the leptomeninges via pial
microvessels, demonstrating a fundamental immunological role
for this vascular district in CNS autoimmunity (Bartholomäus
et al., 2009; Schläger et al., 2016; Filippi et al., 2018). Accordingly,
reports of gadolinium enhancement in the leptomeningeal
compartment have been described in MS, confirming a role for
meningeal inflammation in MS (Absinta et al., 2015).

Several studies performed in animal models of AD, MS,
TBI, stroke and systemic inflammation have shown increased
expression of the adhesion molecules, such as ICAM-1, VCAM-
1 and P-selectin, as well as consequent leukocyte adhesion
in pial microvasculature (Kerfoot and Kubes, 2002; Piccio
et al., 2002; Mel’nikova, 2009; Zhou et al., 2009; Zenaro et al.,
2015; Szmydynger-Chodobska et al., 2016; Dusi et al., 2019;
Lodygin et al., 2019; Pietronigro et al., 2019). These findings
support the idea that meningeal tissue represents a gateway
for immune cell access into the CNS and open the possibility
of a neutrophil contribution to BCSFB dysfunction (Walker-
Caulfield et al., 2015). Indeed, studies performed in patients
with stroke and its animal model demonstrated the presence
of extravasated neutrophils in the leptomeninges, suggesting
a role for neutrophils in meningeal inflammation (Perez-de-
Puig et al., 2015; Kim S. W. et al., 2019). Also, in a mouse
model of subarachnoid hemorrhage, neutrophils infiltrated the
meninges and were associated with neuronal damage (Coulibaly
et al., 2021). Notably, mice deficient for MPO lacked neuronal
dysfunction suggesting this lysosomal enzyme represents
a putative mechanism of neutrophil-dependent damage to
the underlying brain tissue in subarachnoid hemorrhage
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(Coulibaly et al., 2021). Furthermore, studies performed by our
group in mouse models of AD showed that neutrophils migrate
in pial vessels and brain parenchyma during early disease stages
via an LFA-1-dependent mechanism promoting cognitive deficit
and neuropathological hallmarks of AD (Zenaro et al., 2015).
Furthermore, it has been suggested that neutrophil influx in
the leptomeninges of EAE mice during pre-clinical stages of
the disease promotes early BCSFB breakdown facilitating the
access of other immune cells into the CNS (Christy et al., 2013).
Overall, although current data provide evidence of neutrophil
accumulation in the leptomeninges in models of CNS diseases,
how neutrophils promote BCSFB dysfunction and neuronal
damage is still largely unknown.

Conclusion and future directions

The role of neutrophils in the induction of BBB damage is
now well documented in animal models of neuroinflammation
and patients with CNS diseases. Although less investigated,
the contribution of neutrophils to BSCFB breakdown is
now emerging from recent studies on stroke, AD and MS.
Neutrophil-mediated damage to CNS barriers since early
disease stages may pave the way for the recruitment of other
leukocyte populations during brain inflammatory diseases,
and further studies are needed to clarify this interesting
aspect (Christy et al., 2013; Rossi et al., 2020, 2021).
However, whereas neutrophil accumulation in the meninges
and ChP was clearly demonstrated, the intravascular adhesion
mechanisms mediating neutrophil-endothelial interactions and
the interplay between neutrophils and other barrier cells, such
as ChP epithelial cells, are still unknown. Indeed, in vivo
tracking of migrating neutrophils in animal models of CNS
disorders using advanced microscopy together with non-
invasive imaging of radioactive leukocyte tracers may improve
our future understanding of neutrophil interaction with CNS
borders (Mel’nikova, 2009; Zhou et al., 2009; Szmydynger-
Chodobska et al., 2016; Lodygin et al., 2019; Pietronigro
et al., 2019). Neutrophils release their arsenal of cytotoxic
molecules during inflammatory responses, potentially causing
significant collateral tissue damage (Kolaczkowska and Kubes,
2013). However, the molecular mechanisms contributing to
neutrophil-dependent inflammation of CNS barriers leading to
neuronal and glial cell dysfunction are largely unknown and may

represent a new field of investigation. Finally, the elucidation of
the molecular pathways underlying neutrophil contribution to
CNS diseases may help design new therapies for neurological
disorders such as stroke, MS and AD.
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