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Subjective cognitive decline (SCD) is considered the first stage of Alzheimer’s

disease (AD). Accurate diagnosis and the exploration of the pathological

mechanism of SCD are extremely valuable for targeted AD prevention.

However, there is little knowledge of the specific altered morphological

network patterns in SCD individuals. In this present study, 36 SCD

cases and 34 paired-matched normal controls (NCs) were recruited. The

Jensen-Shannon distance-based similarity (JSS) method was implemented

to construct and derive the attributes of multiple brain connectomes

(i.e., morphological brain connections and global and nodal graph metrics)

of individual morphological brain networks. A t-test was used to discriminate

between the selected nodal graph metrics, while the leave-one-out cross-

validation (LOOCV) was used to obtain consensus connections. Comparisons

were performed to explore the altered patterns of connectome features.

Further, the multiple kernel support vector machine (MK-SVM) was used for

combining brain connectomes and differentiating SCD from NCs. We showed

that the consensus connections and nodal graph metrics with the most

discriminative ability were mostly found in the frontal, limbic, and parietal

lobes, corresponding to the default mode network (DMN) and frontoparietal

task control (FTC) network. Altered pattern analysis demonstrated that SCD

cases had a tendency for modularity and local efficiency enhancement.

Additionally, using the MK-SVM to combine the features of multiple brain

connectomes was associated with optimal classification performance [area

under the curve (AUC): 0.9510, sensitivity: 97.22%, specificity: 85.29%, and

accuracy: 91.43%]. Therefore, our study highlighted the combination of

multiple connectome attributes based on morphological brain networks and

offered a valuable method for distinguishing SCD individuals from NCs.

Moreover, the altered patterns of multidimensional connectome attributes

provided a promising insight into the neuroimaging mechanism and early

intervention in SCD subjects.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease
accompanied by cognitive decline, changes in personality,
and impaired ability to perform daily activities. A total of
131.5 million people are estimated to have dementia by
2050 worldwide (Quinn et al., 2018). Early AD prevention
and treatment are critical. Subjective cognitive decline (SCD),
a self-experienced and reported worsening of confusion and
memory loss, is one of the initial manifestations of preclinical
AD (Jessen et al., 2014). Therefore, finding objective evidence
to diagnose SCD early is extremely valuable for targeted AD
prevention.

Researchers have used noninvasive magnetic resonance
imaging (MRI) to assess alterations in brain structure and
function in the initial asymptomatic stages of AD (Xu et al.,
2021). Several studies have found that SCD patients had lower
hippocampal volume and thinner cortical thickness in their
temporoparietal lobe, which was linked to faster subsequent
memory loss and higher risk of disease aggravation (Verfaillie
et al., 2016, 2018a; Yue et al., 2018). In addition, various MRI
techniques, such as resting-state functional MRI (rs-fMRI),
diffusion tensor imaging (DTI), and three-dimensional (3D)
T1-weighted images (WI) structural MRI (3D-T1WI sMRI),
have been used to assess changes in the morphology, structure,
and function of brain network and provided new insights into
the topological organization of graph theory attributes in SCD
individuals. Furthermore, rs-fMRI has found that SCD cases had
increased functional connectivity in their retrosplenial cortex
and precuneus but decreased functional connectivity in their
frontoparietal cortex and posterior memory system (Dillen et al.,
2016; Dong et al., 2018; Viviano et al., 2019). In a study by
Shu et al. (2018), the investigators used DTI to investigate
the brain structural connectome in SCD patients and found
significant disruptions in the topological efficiency in structural
connectomes associated with memory impairment. Recently, the
individual morphological brain network construction methods
based on 3D-T1 sMRI have been used to explore the
characteristics of brain networks (Kong et al., 2014). Some
researchers (Tijms et al., 2018; Verfaillie et al., 2018b) have used
the individual morphological brain network approach in SCD
patients and found that they exhibited abnormal topological
attributes, such as lower path length values in the precuneus,
frontal, occipital, and temporal lobes, which were associated
with disease progression and obvious deterioration in clinical
cognitive performance. Nevertheless, the specific alterations
in various topological properties of SCD patients and their
value for early identification of SCD remain to be further
investigated.

For the diverse connectome indicators derived from
morphological brain networks, such as morphological brain
connections and global and nodal graph metrics, a combination
of multidimensional data was conducted to distinguishing

the SCD individuals from normal controls (NCs). In our
previous study, this proposed method, multiple kernel support
vector machine (MK-SVM), was used to fuse the functional
brain connectome information and has demonstrated a good
classification performance in differentiating between patients
with mild cognitive impairment (MCI) and NCs (Xu et al.,
2020a). However, the combination of topological features of
structural brain networks to accurately identify SCD patients
remains to be further validated.

By combining graph-theoretic analysis and MK-SVM based
on individual-level morphological brain network, this study
primarily aimed to: (i) identify the discriminative topology
properties and specific brain areas of SCD subjects; (ii)
determine the distinctive alteration patterns in connectome
features that are significantly different between SCD and NC
groups; and (iii) explore an accurate classifier for distinguishing
SCD patients from NCs.

Materials and methods

Participants

For this study, 36 SCD patients and 34 NCs were
selected. Each participant underwent neuropsychological and
neuroimaging tests. The neuropsychological scales used in this
study were the Verbal Fluency Test (VFT), Activity of Daily
Living Scale (ADL), Auditory Verbal Learning Test (AVLT; Vakil
and Blachstein, 1993), Geriatric Depression Scale (GDS; Sawada
et al., 2019), and Montreal Cognitive Assessment (MoCA;
Nasreddine et al., 2005). SCD cases were selected based on
the following criteria (Jessen et al., 2014): (a) the age of onset
of >60 years; (b) gradual decrease in self-perceived memory
during the past 5 years (compared to initial non-disease state)
or that could be validated by a close caregiver; (c) normal
general cognitive function, as confirmed by the objective scale.
NCs comprised participants with no cognitive impairment and
normal neuropsychological scale scores.

The study protocol was approved by the Ethics Committee
of Tongji Hospital of Tongji University (Shanghai, China).
Before sample enrollment, each participant or their legal
representative(s) provided signed consent for participation.

Data acquisition

The 3.0T MagnetomVerio MRI scanner (Siemens, Munich,
Germany), equipped with 32-channel head coils, was used to
perform T1WI-MRI on each participant. During the MRI, each
participant was advised and guided to: (1) close their eyes (not
sleeping); (2) keep calm and avoid any thoughts as much as
possible; and (3) avoid any movements. High-resolution T1WI
3D scans were obtained by using the 3D magnetization-prepared
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rapid gradient echo (MP-RAGE) at the following parameters:
slice number = 192; flip angle = 7◦; matrix size = 256× 256; echo
time (TE) = 2.98 ms; inversion time (TI) = 1,100 ms; repetition
time (TR) = 2,530 ms; slice thickness = 1.0 mm; field of view
(FOV) = 256× 256 mm2, voxel size = 1.0× 1.0× 1.0 mm3. The
scan was performed in 6.03 min.

Preprocessing of MRI

Statistical Parametric Mapping (SPM12; Pataky, 2010) was
used to preprocess the scan images. Voxel-based morphometric
(VBM) was used to segment individual structural MRI images
into the cerebrospinal fluid (CSF), gray matter (GM), and
white matter (Ashburner and Friston, 2000). DARTEL was
used to normalize the GM images according to the Montreal
Neurologic Institute (MNI) criteria (Ashburner, 2007). Jacobian
determinants were used to compensate and modify the effects
of spatial normalization. Lastly, smoothing of all normalized
T1WI structural images was performed using a 6.0-mm
full width at half-maximum Gaussian kernel to enhance
the signal-to-noise ratio and allow even data distribution
(Shen and Sterr, 2013).

Construction of individual morphological
brain network

The brain was divided into 90 regions of interest (ROIs)
based on the Automatic Anatomical Labeling (AAL) atlas, which
were defined as nodes of the morphological brain network
(Tzourio-Mazoyer et al., 2002). Jensen-Shannon distance-based
similarity (JSS) was used to evaluate the morphological brain
network connections between two brain ROIs (Endres and
Schindelin, 2003; Peng et al., 2022). First, the GM volume values
were extracted from all voxels of each brain region. Second,
the kernel density estimation (KDE) was used for calculating
the GM volume values probability density function. Third, the
probability distribution function (PDF) was calculated for the
derived GM volume value probability density function. Lastly,
based on the probability distribution function, we calculated the
JSS value between any pair of ROIs. The value range of JSS was
(0, 1), where 1 represented the same distribution. Therefore,
a closer GM density distribution between two ROIs was
represented by a higher JSS value. The set of sparsity thresholds
(range, 0.1–0.4; steps, 0.01) was also used for constructing an
undirected binary network.

Statistical analyses

The Statistical Package for Social Science (SPSS v26; IBM,
Armonk, NY, USA) was used to compare baseline data between

SCD patients and NCs with a two-sample t-test, rank-sum
test, or chi-squared (χ2) test. A P value of <0.01 was
used as the threshold for statistical difference. Comparisons
between discriminative brain network connectome features were
performed with the two-sample t-test (P < 0.01). Their false
discovery rate for multiple comparisons was also determined for
corrections as needed.

Feature selection and classification

The t-test was applied to identify discriminative brain
regions and nodal graph metrics of the brain network. For
the high-dimensional connectome information, MK-SVM was
used to combine different types of connectome features. The
MATLAB LIBSVM toolbox3 was used to perform the MK-SVM
classification (Xu et al., 2020a). The specific calculation process
was listed as follows.

min
w
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2
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‖

2
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(
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φm (xm) was used to define

the kernel matrix between a new test sample and the
ith training sample for the mth modality. MK-SVM was
used to assess the classification performance using the
following equation.
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βm was used on the grid-searching space based on a cross-
validation scheme using the constraint

∑
m βm = 1. C ranged

between 2−5 and 25.
Considering the small sample size used in the present

study, we utilized the Leave-one-out cross-validation (LOOCV)
strategy to optimize the parameters and discern classification
performance. The classification performance was compared for
a single feature and the combination of different connectome
features, including morphological brain connection (C), global
graph metrics (G), nodal graph metrics (N), C+G+N, C+N,
G+N, and C+G, respectively.

Consensus connections

When using the nested cross-validation strategy to assess
the classification performance based on the proposed MK-SVM
method, all selected connection features during the training
process were recorded. In the present study, as the selected
features by t-tests in each validation might be different, we
recorded all the selected features during the training process.
The consensus connections refer to the features that are
consistently selected in all validations (Dosenbach et al., 2010;
Zeng et al., 2012). Therefore, in our study, the consensus
connections of brain networks were considered the most
discriminative features to explore the pathological mechanisms
and potential biomarkers associated with SCD. The data
processing and classification methodologies are illustrated in
Figure 1.

Results

Demographic and neurocognitive
characteristics

Table 1 shows the characteristics of the study participants.
Our findings showed that the SCD group had significantly higher
VFT-vegetable scores than the NC group (p < 0.01). The other
variables between the two groups were not significantly different.

Graph metrics of the morphological
brain connectome

Our results showed that an increase in the connection
density was associated with an increase in the value of Cp, Eglobal,
and Elocal and a decrease in Lp, λ, γ, σ, and Q between the two
groups (Table 2, Figure 2). Moreover, SCD patients and NCs
both fitted γ = Creal

p /Crand
p >1, and λ = Lreal

p /Lrand
p ≈1, indicating

that the morphological networks of the brain were associated
with greater real Cp values and similar real Lp values compared
with the matched random networks. Thus, both groups met the
“small-world” topological attributes. Further, we observed that
SCD patients had lower λ values than NCs for almost the entire
range of connection density (P < 0.01).

We analyzed the most discriminative nodal graph
topological features. Table 3 shows that the betweenness
centrality, degree centrality, and nodal efficiency were the most
discriminative abilities between the two groups and were mostly

FIGURE 1

The procedure of data processing and classification.
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TABLE 1 Demographic and neurocognitive characteristics of the NC
and SCD groups.

Variables SCD (n = 36) NC (n = 34) T/X2/Z P

Age (years) 67.89± 6.395 69.24± 6.228 −1.065c 0.287
Education 11.19± 2.806 10.29± 2.970 1.321c 0.186
Gender (F/M) 27/9 20/14 2.074b 0.150
MoCA 24.25± 2.862 22.50± 3.612 −2.253a 0.027
Type of AVLT recall

Immediate 17.83± 4.379 16.15± 4.083 1.686c 0.092
Short-delayed 6.06± 1.999 5.35± 2.581 −1.278a 0.206
Long-delayed 5.61± 2.533 4.09± 2.906 2.069c 0.039

VFT-vegetable∗ 16.50± 3.946 14.00± 3.104 −2.955a 0.004
VFT-fruit 11.47± 3.229 11.38± 2.871 −0.123a 0.903
VFT-idiom 4.92± 3.865 3.53± 3.277 1.434c 0.152
GDS 4.03± 4.766 4.85± 6.629 0.595c 0.552
ADL 14.08± 0.280 15.00± 2.934 −1.651c 0.099

∗P < 0.01, significant differences between the two groups. aT, derived from the
two-sample t-test. bX2 , derived from the chi-square test. cZ, derived from the
rank-sum test. The data represent the mean ± standard deviation (SD). SCD,
subjective cognitive decline; NC, normal control; MoCA, Montreal Cognitive
Assessment; AVLT, Auditory Verbal Learning Test; VFT, Verbal Fluency Test; GDS,
Geriatric Depression Scale; ADL, Activity of Daily Living Scale.

TABLE 2 Statistical result of graph metrics between the two groups.

Global graph metrics SCD NC

Cp 0.2946± 0.01 0.2949± 0.01
Lp 0.9445± 0.02 0.9557± 0.03
γ 0.8123± 0.06 0.8044± 0.07
λ∗ 0.5152± 0.01 0.5203± 0.01
σ 0.6899± 0.05 0.6762± 0.06
Eglobal 0.2375± 0.00 0.2358± 0.01
Elocal 0.3502± 0.01 0.3497± 0.01
Q 13.7664± 1.05 13.5253± 1.12

Cp , clustering coefficient; Eglobal , global efficiency; Elocal , local efficiency; Lp ,
characteristic path length; NC, normal control; SCD, subjective cognitive
decline; Q, modularity score; γ, normalized clustering coefficient; λ, normalized
characteristic path length; σ, small world. ∗Significant with FDR (0.05).

found in the limbic and frontal lobes, corresponding to DMN,
frontoparietal task control (FTC), and sensory/somatomotor
hand (SH) brain networks. Further comparisons of nodal graph
metrics revealed that SCD patients had significantly higher
values of betweenness centrality, nodal clustering coefficient,

degree centrality, nodal efficiency, and local nodal efficiency
in the frontal lobe (e.g., the bilateral inferior frontal and right
superior frontal gyri), limbic lobe (e.g., left parahippocampal
gyri), and central region (e.g., left postcentral gyri). In contrast,
the nodal shortest path length and degree centrality values were
significantly lower in the left supplementary motor area, left
superior frontal gyri, and medial orbital gyri (P < 0.01 for all).

Consensus connections of
morphological brain connectome

We investigated the significantly different consensus
connections between the two groups. As shown in Table 4 and
Figure 3, most of the consensus connections were found in the
frontal, temporal, parietal, and occipital lobes. Furthermore,
corresponding subnetworks to these brain regions were the
DMN, visual network, and auditory network. Additionally, our
results suggested that the mean values of consensus connections
distributed in the occipital and temporal lobes were lower in the
SCD group than in the NC group. However, the mean values of
consensus connections distributed in the frontal lobe or between
the frontal lobe and other brain regions (e.g., the temporal and
parietal lobes) of SCD patients were higher than those in NCs.

Classification

The MK-SVM method was used to differentiate SCD
patients from NCs based on brain connectome information
(Table 5, Figure 4). Our results showed that the classification
accuracy of the brain networks C, G, and N was 82.86%,
55.71%, and 61.43%, respectively. Furthermore, we performed
combinations of the brain network graph metrics, and our
results showed that the classification accuracy for C+G, C+N,
and G+N was 84.29%, 90.00%, and 62.85%, respectively. The
optimal classification performance was with the combination

FIGURE 2

Comparison of normalized clustering coefficient (γ), normalized characteristic path length (λ), and “small world” (σ) between the subjective
cognitive decline (SCD) and normal control (NC) groups.
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TABLE 3 Top 15 most discriminative nodal graph metrics.

Nodal graph metrics Mean value AAL brain regions Sub-network

SCD NC

Nodal efficiency 0.290 0.273 PHG.L DMN
Degree centrality 16.711 14.391 PHG.L DMN
Betweenness centrality 29.788 20.937 ORBinf.R DMN
Nodal efficiency 0.260 0.244 IFGoperc.R FTC
Nodal clustering coefficient 0.318 0.287 PoCG.L SH
Betweenness centrality 41.295 31.871 PHG.L DMN
Degree centrality 12.434 10.691 IFGoperc.R FTC
Nodal efficiency 0.296 0.280 IFGtriang.L FTC
Nodal local efficiency 0.376 0.344 PoCG.L SH
Nodal efficiency 0.278 0.260 SFGdor.R DMN
Nodal shortest path 0.811 1.381 SMA.L CTC
Degree centrality 17.332 15.560 IFGtriang.L FTC
Degree centrality 14.810 12.909 SFGdor.R DMN
Degree centrality 9.247 11.050 ORBsupmed.L DMN
Nodal efficiency 0.253 0.231 ORBsup.R FTC

AAL, automated anatomical labeling atlas; DMN, default mode network; FTC, frontoparietal task control; SH, sensory/somatomotor hand; CTC, cingulo-opercular task
control.

TABLE 4 Consensus connections in the NC and SCD groups.

ROI ROI Mean value P

SCD NC

REC.L OLF.L 0.392 0.642 9.340× 10−4

CAU.R ORBinf.R 0.704 0.463 3.655× 10−3

HES.R STG.R 0.173 0.289 3.779× 10−3

ITG.L ORBsup.R 0.770 0.526 4.928× 10−3

MOG.R IOG.R 0.461 1.133 5.570× 10−3

PHG.L IFGtriang.L 1.429 0.925 6.198× 10−3

SFGmed.L IFGtriang.L 0.937 0.877 6.545× 10−3

SMG.L IOG.R 0.594 0.998 7.378× 10−3

LING.R CAL.L 0.856 1.052 7.451× 10−3

SMG.L SFGdor.L 1.523 0.672 7.968× 10−3

SFGmed.L MOG.L 1.105 0.834 8.223× 10−3

ROI, region of interest.

of C, N, and G, which demonstrated an accuracy, sensitivity,
specificity, and area under the curve (AUC) of 91.43%, 97.22%,
85.29%, and 0.9510, respectively, indicating that combining the
multimodal features could effectively boost the performance of
the classification.

Discussion

Compared with previous morphological brain network
construction methods, the JSS method provides a more
accurate evaluation of the similarity between brain regions
(Endres and Schindelin, 2003; Li et al., 2021). The quantitative
and symmetric JSS divergence evaluation method enables
a more objective and accurate description of connections
between brain regions in morphological brain networks.
Based on the individual morphological brain network, we
could identify the most significantly affected brain regions
and specific graph metrics that could differentiate between
SCD patients and NCs. The altered patterns of topological

properties of the morphological brain connectome indicated
the enhancement of local brain network function associated
with SCD. We trained a classifier for differentiating SCD
patients from NCs and acquired a surprising result based
on the MK-SVM method. Finally, we applied the MK-SVM
method for the combination of multidimensional brain
network connectome features and distinguishing SCD patients
from NCs.

Most discriminative brain network
features and the altered patterns

For the discriminative brain network features identified in
this study, our results indicated that the nodal graph metrics
and consensus connections with the most discriminative abilities
were primarily located in the frontal, limbic, and parietal lobes.
Furthermore, an analysis showed that when these brain regions
were projected to subnetworks, most of them were located in
the DMN and FTC networks, among which DMN demonstrated
the greatest ability to distinguish SCD patients from NCs.
Previous literature has reported an association between DMN
and episodic memory loss, which was then referred to as the
most significant cognitive domain impairment in early-stage
AD (Wang et al., 2013; Joshi et al., 2019). Previous studies
comparing the functional brain networks between SCD and
MCI patients have also confirmed these early alterations and the
important role of DMN-related brain regions (Xu et al., 2020a,b).
Nevertheless, our study validated the significant changes in
DMN in SCD patients from the individual morphological brain
network perspective. Thus, our results not only validated the
discriminative ability of the DMN for discriminating NCs from
SCD patients but also showed the repeatability and verifiability
of the proposed methods.
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FIGURE 3

The consensus connections of the morphological brain network. Left: the consensus connections of the morphological brain network selected by
leave-one-out cross-validation (LOOCV) in the subjective cognitive decline (SCD) and normal control (NC) groups based on AAL90. The thickness
of an arc in the circle indicates the discriminative power of an edge, which is inversely proportional to the estimated P-values. The colors were
randomly generated to differentiate regions of interest (ROIs). Right: the consensus connections selected by LOOCV. The connections were
mapped on the ICBM 152 template with the BrainNetViewer package (http://nitrc.org/projects/bnv/). Blue and red represent the decrease and
increase of morphological connection weight of SCD groups, respectively.

TABLE 5 Classification performance of different structural graph
metrics.

Method Accuracy Sensitivity Specificity AUC
(%) (%) (%)

C 82.86 88.89 76.47 0.9027
G 55.71 61.11 50.00 0.6266
N 61.43 69.44 52.94 0.6756
MK_CG 84.29 88.89 79.41 0.9061
MK_CN 90.00 97.22 82.35 0.9509
MK_GN 62.85 72.22 52.94 0.6781
MK_CGN 91.43 97.22 85.29 0.9510

Structural connectivity (C), Global metric (G), Nodal metric (N); MK-SVM,
multiple kernel support vector machine.

For the altered pattern analysis of brain network connectome
features, our results showed that both SCD patients and NCs met
the “small-world” topological attributes, which was consistent
with our previous findings on functional brain networks. This
suggests the high efficiency of brain networking in integrating
information rapidly in real time across brain regions to actively
optimize information processing between brain regions at the
lowest cost possible (Watts and Strogatz, 1998; Liao et al.,
2017). In addition, some previous studies based on the white
matter structural network or functional network have found that
functional integration among brain regions was decreased in
SCD (Xu et al., 2020b; Tao et al., 2021). In our study, we found
that a decreased value of λ was associated with an increase in
the function of brain network integration in SCD, suggesting
that SCD patients had an enhanced ability to communicate and
transmit global information compared to NCs, which might be

FIGURE 4

Receiver operating characteristic (ROC) of classification based on
different morphological connectome features. C, connection; G,
global metrics; N, nodal metrics; FPR, false-positive rate; TPR,
true-positive rate.

related to compensatory alterations in the morphological brain
networks during SCD progression.

At the level of local brain regions, we observed that the
discriminative ability for nodal efficiency, degree centrality,
and betweenness centrality was the most significant among
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the selected nodal graph measurements. A previous study has
found that SCD patients had less global efficiency and local
efficiency mainly distributed in the bilateral prefrontal regions
and left thalamus and demonstrated the disruption of structural
network topology in SCD (Shu et al., 2018). In our study, an
increase in nodal clustering coefficient and local efficiency and
reduced values in nodal shortest path length in the frontal and
limbic lobes were associated with increased modularity and local
efficiency in the morphological brain network in SCD patients.
The result reflected the enhanced function of brain network
segregation in SCD, which were also found in functional brain
network (Xu et al., 2020b). Similarly, the increased mean value
of consensus connections distributed between the frontal lobe
or frontal lobes and other brain regions (e.g., the temporal and
parietal lobes) in the SCD group indicated the compensatory
changes in the morphological brain network with enhanced
connectivity of some brain regions. As mentioned in a previous
study, these compensatory changes may be attributed to the
indistinctive decline in cognitive function during SCD (Chen
et al., 2020).

Classification performance of different
connectome features

This study used MK-SVM to combine brain connectomes
and differentiate SCD patients from NCs. MK-SVM is a sparse
machine-learning method that can solve imbalanced dimension
issues to achieve the best classification performance. As shown
in Table 5, brain connections exhibited the most excellent
performance for the single modality of morphological brain
network connectome, with an AUC of 0.9027. We found that
regardless of global or nodal graph metrics, combining with
brain connections could effectively improve their classification
performance, the reason for which may be that brain
connections carry abundant information. Notably, despite the
worst classification performance of the global graph metrics
among these features, it does not mean that it is insignificant,
and the result may be related to the low dimension of the data
it contains. The global graph metrics were very meaningful for
exploring the global properties of brain network connectomes
and disease mechanisms. Although the AUC of global and
nodal graph metrics were lower than brain connections, the
combination of C+G, C+N, and G+N significantly improved
classification performance. Particularly, combining three brain
connectome features (C+G+N) with MK-SVM demonstrated
optimal classification performance, with an AUC of 0.9510,
which was superior to the SCD classification based on the
functional brain network in our previous study (Xu et al.,
2020b). Recent studies, such as that by Huang et al. (2021)
have employed MK-SVM to integrate information from three
types of white matter networks and obtained an accuracy of
83.3% for distinguishing MCI subjects from NCs. Previous

researchers, using the linear kernel SVM, achieved the accuracy
of 79.49% and 83.13% in two different cohorts for the diagnosis
of SCD individuals (Lin et al., 2022). For our results, these
results can only be used for reference and compared to some
extent. Due to the differences in data sets and model parameters,
further verification is needed to understand whether different
classification models can be compared or not. In sum, our results
demonstrated that a combination of brain connectome features
provided complementary information to each other and further
enhanced SCD classification performance.

Limitations and perspectives

There were some limitations to the present study that need to
be addressed in the future. First, it was a single-center study with
a relatively small number of participants. Hence, the robustness
and generalizability of the proposed model still require further
validation and improvement in multicenter and larger cohort
studies. Second, only neuroimaging information was used in this
study, but we intend to combine SCD with additional diagnostic
tests (i.e., PET, electroencephalography, biomarkers, and clinical
cognitive function examinations) to deepen our understanding
of SCD pathogenesis. Third, a stringent and longer follow-up
of different AD stages via imaging techniques would be useful
to identify early and specific markers that could improve the
diagnosis of AD and predict its progression.

Conclusions

This study showed that compared with NC, the most
discriminative traits of SCD patients were located in the frontal,
limbic, and parietal lobes, corresponding to DMN and FTC
networks. The altered pattern analysis demonstrated that SCD
was more inclined to modularity along with local efficiency
enhancement. Furthermore, MK-SVM combined with multiple
brain connectome features to overcome the problems of the
high-dimensional curves and small samples and effectively
improved the classification performance for SCD diagnosis.
Our research findings provided insights for improving the SCD
diagnosis. Multidimensional connectome attributes analysis
based on the morphological changes in brain networks provides
a promising approach for insight into the neuroimaging
mechanism and early intervention in SCD subjects.
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